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Abstract. Classically, risk aversion is equated with concavity of the utility function. In this

paper we explore the conceptual foundations of this definition. In accordance with neo-classical

economics, we seek an ordinal definition of risk aversion, based on the decisions maker’s preference

order alone, independent of numerical values. We explore two such definitions. We then show that

when cast in quantitative form these ordinal definitions coincide with the classical Arrow-Pratt

definition once the latter is defined with respect to the appropriate scale (which, in general is not

money), thus providing a conceptual foundation for the classical definition. The implications of

the theory are discussed, including, in particular, to defining risk aversion for non-monetary goods,

and to disentangling risk aversion from diminishing marginal utility. The entire study is within the

expected utility framework.
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1. Introduction

1.1. Risk Aversion - The Classic Approach. The concept of risk aversion is fundamental in

economic theory. Classically, it is defined as an attitude under which the certainty equivalent of

a gamble is less than the gamble’s expected value; e.g., if a decision maker prefers one unit with

certainty over a fair gamble between three units and none, then she is deemed risk averse.

Examining this core definition, two fundamental questions arise, the combination thereof drives

this work.

First, there is the matter of scale. Consider a decision maker having to choose between lotteries

on the temperature-level in her office room. If she prefers 40◦ F with certainty over a fair gamble

between 30◦and 60◦– should this be considered risk aversion? The Fahrenheit scale seems rather

arbitrary in this case, but it is not clear what other scale should or can be used. In the seminal

works of Arrow [2] and Pratt [24], risk aversion was defined with respect to money and the market

value of the goods. This, however, limits the notion to monetary (or liquid) goods. A core question

is thus if and how risk aversion can be defined for non-monetary goods - temperature, health, love,

pain, and the like.
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The second question is a conceptual one. The classic definition of risk aversion seems to be

based on the presumption that the natural certainty equivalent of a gamble is its expectation, and

risk aversion is defined with respect to this natural certainty equivalent. The question, however, is

why this presumption? Clearly, it cannot rest on empirical evidence, as most people are assumed

to be risk averse. The justification must be conceptual. But on a conceptual level, it is not clear

what reasoning dictates that a fair gamble between $100 and $200 “should” be worth $150; From

a decision theoretic perspective, where preference orders and independence curves are the core

elements of interest, what is the significance of the arithmetic mean? Providing a conceptual,

decision theoretic justification for basing the definition of risk aversion on the arithmetic mean is

the second core goal of this paper.

1.2. An Ordinal Foundation. In order to address the above questions, we start by seeking a fully

ordinal definition of risk aversion, independent of any units, and making no use of arithmetic notions

such as mean or expectation. We consider two such definitions, as outlined shortly. Both definitions

are fully ordinal, based solely on the internal structure of the decision maker’s preferences. Having

defined risk aversion in purely ordinal terms, we then derive a quantitative/numeric form of these

definitions. This quantitative form, we show, coincides with the classic Arrow-Pratt definition,

once the latter is defined with respect to an appropriate, natural scale. This scale, which in general

is not money, applies to any goods - monetary or non-monetary. Thus, we provide the missing

conceptual justification for the use of the expectation as the baseline for defining risk aversion, and

determine the “appropriate” scale.

Ordinal Definition I: Repeated Gambles. Consider a lottery L with certainty equivalent c. Arguably,

the most extreme form of risk aversion would be exhibited if, with probability 1, the certainty

equivalent is inferior to the outcome of the lottery. If that is the case then the decision maker is

willing to pay a premium, with certainty, merely to avoid being in an uncertain situation. Such

a preference, however, is ruled out by the von Neumann-Morgenstern (NM) axioms; the utility

of a lottery must lie between the utilities of its possible outcomes. Interestingly, while such a

preference is indeed not possible for any single lottery, it is possible once we consider sequences of

lotteries, and risk aversion as a policy - consistently adhered to over multiple gambles. We show

that for some preference orders (agreeing with the NM axioms), repeatedly choosing the certainty

equivalent of a lottery over the lottery itself can result in an outcome that is inferior to what would

have been the outcome of the lotteries, with probability 1. This is thus our ordinal definition of risk

aversion: a preference order is deemed risk-averse if adhering to this preference order over repeated

lotteries ultimately results in an inferior outcome, with probability 1. Importantly, here “inferior”

is according to the decision maker’s own preference order, over sequences, not any external market-

based criterion. The details of the definition are provided in Section 3.

The above definition requires the consideration of repeated lotteries. The next definition consid-

ers the “one-shot” case.
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Ordinal Definition II: Hedging. The second definition we consider is that of Richard [25]. Consider

two commodities/time-periods1 and assume that the certainty preferences on the commodities are

independent; that is, the certainty preferences on each commodity separately are well defined.

Then, Richard’s definition of (multivariate) risk aversion is the following:

Let a,A, be two states of one commodity and b, B, two states of the other commodity,

with a ≺ A and b ≺ B. Then, a risk averse decision maker always prefers the fair

gamble between (A, b) and (a,B) - the gamble wherein the loss in one commodity

is (somewhat) hedged against a win in the other - over the fair gamble between the

two extreme outcomes (a, b) and (A,B).2

Here, risk aversion is equated with a preference for hedging bets, whenever and to the extent

possible.

The above definition is stated in terms of two specific commodities, but can also be applied to

a partition of the entire space into independent factors (collections of commodities for which the

certainty preference are well defined), and hedging takes place between the factors. In this case it

may seem that the definition of risk aversion can depend on how the commodities are grouped: a

person may, say, prefer hedging between today and tomorrow, but dislike hedging between work

and pleasure. We show that this is not possible; regardless of how one chooses to partition the

commodities into independent factors, a decision maker is risk averse according to one partition if

and only if she is risk averse according to any and all other partitions. Thus, this definition of risk

aversion reflects an underlying attitude of the decision maker, not a particularity of the specific

partition.

Also, the definition can be extended to the case where the partition is into more than two factors,

and hedging takes place between two of the factors. In this case, it may again seem plausible that

the definition depend on which two factors are chosen. Again, we show that this is not the case; a

decision maker is risk averse when considering one pair of factors, if and only if she is risk averse

according to any and all other pairs (provided that the certainty preferences on any such pair are

well defined). Thus, again, the definition reflects an underlying attitude of the decision maker, not

a particularity of the specific pair in consideration.

A Quantitative Form. Having established ordinal definitions of risk-aversion, we show that these

ordinal notions can also be cast in quantitative form, using an appropriate scale. Such a scale,

we show, is provided by the multi-attribute (additive) value function, pioneered by Debreu [7, 8],

1Here and throughout, the term “commodities” may refer to different types of goods (e.g. apples and oranges),

or to the same good at different times (e.g. oranges today and oranges tomorrow), or to any combination thereof

(apples and oranges today and tomorrow). However, “commodities” does not refer to contingent commodities, as our

use of the term specifically refers only to sure outcomes. Preferences over contingent commodities are determined by

the lottery preferences.
2Following Richard’s initial definition, Epstein and Tanny [12] coined the term correlation aversion for such a

preference. Here, we use Richard’s original term.
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and commonly used in the theory of multi-attribute decision theory (see [19]). Debreu proves

that (under appropriate conditions) the preferences on commodity bundles can be represented

by the sum of appropriately defined functions of the individual commodities. Importantly, these

Debreu functions are defined solely on the basis of the internal preferences amongst the commodity

bundles. Thus, unlike market value - which is determined by external market forces - the Debreu

functions represent the decision maker’s own preferences. Also, the functions are defined using the

preferences on sure outcomes alone, with no reference to gambles. Thus, they provide a natural,

intrinsic yardstick with which risk-aversion can be measured.

We show that the two above mentioned ordinal definitions of risk-aversion coincide with the

Arrow-Pratt numerical definition, once the latter is defined with respect to the Debreu value func-

tion. Essentially, we show that the NM utility function is concave with respect to the associated

Debreu function if and only if the given preference order is risk averse, under either of the two

ordinal definitions.

It is interesting to note that Richard’s ordinal definition, while well known in the literature, has

been viewed as separate from the classic one; “a new type of risk aversion unique to multivariate

utility functions” - in the words of Richard [25]. We show that the two definitions are one and the

same, once the appropriate scale is used.

1.3. Implications. The approach offered in this paper has several implications for the understand-

ing of risk aversion, both conceptual and technical. Here, we mention two. Additional implications

are mentioned in the discussion.

Non-monetary Goods. First and foremost, the approach offers a way to define risk aversion for

non-monetary goods and goods with no natural scale, such as temperature, pain, and pleasure.

Indeed, in the definitions of this paper, externally defined scales (such as market value) do not play

any role. Rather, the only scale of interest is the intrinsic Debreu value, which reflects the decision

maker’s own certainty preferences.

Disentangling Risk Aversion from Diminishing Marginal Utility. On a conceptual level, the ap-

proach offered in this paper provides a natural way for disentangling risk aversion from diminishing

marginal utility. In this scheme, the curvature of the NM utility function with respect to money

is decomposed into two components: the curvature of the Debreu value function with respect to

money, and the curvature of the NM utility function with respect to the Debrue value function.

With this decomposition, the former may naturally be associated with diminishing marginal utility,

while the latter - we argue - represents the risk aversion component.

1.4. Assumptions.

Independence. Independence is a key notion and assumption throughout this work. Simply put,

a commodity, or set of commodities, is independent if the preference order over bundles of this
4



set of commodities is independent of the state in other commodities.3 Arguably, independence is

a strong assumption; having eaten Chinese food today may affect one’s gastronomical preferences

tomorrow. Nonetheless, independence is a common assumption in economic literature, and in

particular with respect to time preferences; indeed, the standard (exponential) discounted-utility

model implies independence of any time period (indeed, any subset of the time periods). We use

the independence assumption not because we believe it is a 100% accurate representation of reality,

but rather because we believe it is a good enough approximation, which allows us to concentrate

on and formalize other key notions.

Expected Utility. This work is presented entirely within the expected-utility (EU) framework. The

key reason is that the classical Arrow-Pratt definitions were provided within this framework, and we

seek to explore the conceptual foundations of these definitions. Additionally, while EU is perhaps

not the only possible model, it nonetheless is a possible model; and one that is frequently used

in real-world economic and financial applications. So, understanding the notion of risk aversion

within this framework is of interest. Extending these ideas to non-EU models is an interesting

future research direction.

1.5. Plan of the Paper. The remainder of the paper is structured as follows. Immediately

following, in Section 2, we present the model, terminology and notation used throughout. The

first ordinal definition is presented in Section 3, and its quantitative form in Section 4. Section 5

presents the second definition, with its equivalent quantitative form in Section 6. The relationship

between the two definitions in discussed in Section 7. The applications to multi-commodity risk

aversion are discussed in Section 8. We conclude the main body of the paper with a discussion in

Section 9. All proofs are deferred to an appendix.

2. Model, Terminology and Notation

The Commodity Spaces. Preferences are defined over a product space S = C1 × · · · × Cm, where

each Ci is a real interval representing the consumption space of commodity i.

Lotteries. We consider finite support lotteries over S , and denote by ∆(S) the space of all such

lotteries. The fair lottery between s1 and s2 is denoted 〈s1, s2〉.

Preference Orders. For a space S , two preferences orders are considered:

• the certainty preferences: a preference order - on S ,4

• the lottery preferences: a continuous preference order -
∆

on ∆(S), which agrees with - on

the sure outcomes.

3A formal definition is provided in the next section.
4A preference order is a complete, transitive and reflexive binary relation.
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As customary, ≺ denotes the strict preference order induced by -, and ∼ the induced indifference

relation; similarly ≺∆ and ∼∆ denote the relations induced by -
∆

. Continuity of -
∆

means that for

any lottery L, the sets {s : s≺∆ L} and {s : s�∆ L} are open (in S). Since -
∆

and - agree on S , this

implies that - is also continuous (that is, the sets {s : s≺∆ s′} and {s : s�∆ s′} are open for all s′ ∈ S)

All commodity spaces Ci are assumed to be strictly essential [15]; that is, for each i and s−i ∈ C−i

(the remaining commodities), there exist si, s
′
i ∈ Ci with (si, s−i) 6∼ (s′i, s−i).

We assume throughout that the von Neumann-Morgenstern (NM) axioms hold for all preference

orders on lotteries.

Factors and Partitions. The term factor refers to a single Ci or a product of several Ci’s; i.e., a

factor is the product of one or more commodity spaces. A partition of S is a representation of S
as a product of factors S = T1 × · · · × Tn. An element of S (or of any factor) is called a bundle.

Throughout, ai, bi, ci represent elements of Ti. For i, j, we denote S−{i,j} =
∏
t6=i,j Tt. For

c ∈ S−{i,j}, by a slight abuse of notation we denote

(ai, aj , c) = (c1, . . . , ci−1, ai, ci+1, . . . , cj−1, aj , cj+1, . . . , cn).(1)

Bundle Intervals. For s - s, we denote

[s, s] = {s : s - s - s}

That is, [s, s] is the closed interval of bundles between s and s. Hence, we call such an [s, s] a

bundle interval, or simply interval.

Utility Representations. A function f : S → R represents - if for any s, s′ ∈ S ,

s - s′ ⇐⇒ f(s) ≤ f(s′).

The function f : S → R is an NM utility of -
∆

if for any L1, L2 ∈ ∆(S),

L1-
∆

L2 ⇐⇒ EL1 [f(s)] ≤ EL2 [f(s)],

where ELj [f(s)] is the expectation of f(s) when s is distributed according to Lj . In that case we

also say that f represents -
∆

.

Independence. Independence is a key notion in our analysis. Simply put, a factor is independent if

the preferences on the factor are well defined; i.e., the preferences within the factor are independent

of the state in other factors. Formally, for a partition S = T1 × · · · × Tn, we say that factor Ti
is independent if there exists a preference order -Ti on Ti such that for any ai, bi ∈ Ti and any

c ∈ S−i (the remaining factors),

ai -
Ti bi ⇐⇒ (ai, c) - (bi, c).

It is important to stress that independence only refers to the certainty preferences; it does not state

or imply that the preferences on lotteries in one factor are independent of the state in other factors.

That would be a much stronger assumption, which we do not make.
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When no confusion can result, we may write - instead of -T ; thus, when a, a′ ∈ T , we may

write a - a′ instead of a -T a′. It is worth noting that the product of independent factors need

not be independent.5

A partition S = T1 × · · · × Tn is an independent partition if the product of any subset of factors

is independent. By Gorman [15], for n ≥ 3, it suffices to assume that Ti × Ti+1 is independent for

all i, and the independence of all other products then follows.

Relative Convexity/Concavity. Let f, g : S → R, for some space S, with g(x) = g(y)⇒ f(x) = f(y),

for all x, y ∈ S. We say that f is concave with respect to g if there is a concave function h with

f = h ◦ g. Similarly for convexity, strict concavity, and strict convexity.

3. Ordinal Definition I: Repeated Lotteries

Our first ordinal definition of risk aversion is set in the context of repeated lotteries. Con-

ceptually, this definition says that risk aversion is a preference that when adhered to repeatedly,

ultimately leads to an inferior outcome. More specifically, with a risk averse preference, repeatedly

choosing the certainty equivalent of a lottery over the lottery itself ultimately leads to an inferior

outcome, with probability 1. To make this definition concrete, we must first define the associ-

ated notions, including: repeated lotteries, certainty equivalent of a repeated lottery, and ultimately

inferior outcome.

The Space. We consider an infinite sequence of factors T1, T2, . . ., where Ti represents the consump-

tion space at time i.6 We denote Hn = T1× · · · × Tn - the finite history space up to time n. In the

following, ai, bi, ci, will always be taken to be in Ti, and lottery Li will be over Ti.

Preference Orders. While the number of factors is infinite, we only need to consider the preferences

on the finite history spaces Hn. We denote by -n the preference order on Hn, and by -
∆ n

the

preference order on ∆(Hn). The superscript n is frequently omitted when clear from the context.

Each Ti is assumed to be independent (in the certainty preference orders -n), but not necessarily

utility independent (in preference orders -
∆ n

).

We call the sequence of preference orders -
∆

= (-
∆ 1
,-

∆ 2
, . . .) the preference policy.

Lottery Sequences. Let L1, L2, . . . , be a sequence of lotteries (with Li over Ti). We denote by

(L1, . . . , Ln) the lottery overHn obtained by the independent application of each Li on its associated

factor.

5A simple example is the preference on X ×Y ×Z = (R+)3 represented by the function v(x, y, z) = xy+ z. Here,

each commodity space is independent, but Y × Z is not independent.
6We do not assume that Ti = Tj , i.e. the state spaces need not be the same at different time periods. In particular,

we do not assume any form of stationarity (though it is possible). Similarly, discounting may or may not be applied

between consecutive factors. Our discussion here is independent of any such nominal matters.
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Certainty Equivalents. Suppose that at time t = 1 the decision maker is offered the choice between

lottery L1 and its certainty equivalent c1. Then, consistent with her preference policy, she may

choose c1, which suppose she indeed does. Now, at time t2, she is offered the choice between

lottery L2 and its certainty equivalent c2. Again, consistent with her preference policy, she chooses

c2. Suppose that she is thus offered, in each time period, the choice between a lottery Li and

its certainty equivalent ci. Then the decision maker can consistently choose ci, ending up with

(c1, c2, . . .).

Accordingly, we say that c = (c1, c2, . . .) is the repeated certainty equivalent of L = (L1, L2, . . .)

if (c1, . . . , cn−1, cn)∼∆ n(c1, . . . , cn−1, Ln) for all n.

Ultimate Inferiority. Consider a sequence c = (c1, c2, . . .) of sure states, and a sequence L =

(L1, L2, . . .) of lotteries. Let `i be the realization of Li. We say that c is ultimately inferior to L if

Pr[(c1, . . . , cn) ≺n (`1, . . . , `n) from some n on] = 1.7

Notably, here ≺n denotes the preference over the sure states. Thus, if c is ultimately inferior to L,

then consistently choosing the sure state ci over the lottery Li, will, with probability 1, eventually

result in an inferior outcome, and continue being so indefinitely.

Similarly, c is ultimately superior to L if

Pr[(c1, . . . , cn) �n (`1, . . . , `n) from some n on] = 1.

Bounded and Non-Vanishing Lottery Sequences. We now want to define risk aversion as a policy

for which the repeated certainty equivalent of a lottery sequence is always ultimately inferior to the

lottery sequence itself. However, as such, this definition cannot be a good one since in the case that

the “magnitude” of the lotteries rapidly diminishes the overall outcome will be dominated by that

of the first lotteries, and we could never obtain an inferior outcome with probability 1. Similarly, if

the “magnitude” of the lotteries can grow indefinitely, then for almost any preference policy one can

construct a lottery sequence that is ultimately inferior to its repeated certainty equivalent.8 Hence,

we now define the notions of a bounded lottery sequence and a non-vanishing lottery sequence.

For bundle intervals [a1, b1] and [aj , bj ], we denote [aj , bj ] v [a1, b1] if (a1, c, bj) - (b1, c, aj) for

all c ∈ S−{1,j} (see Figure 1). Similarly, [a1, b1] v [aj , bj ] if (a1, c, bj) % (b1, c, aj) for all c ∈ S−{1,j}.

A sequence of intervals [a1, b1], [a2, b2], . . ., is bounded if [ai, bi] v [a1, b1], for all i. The sequence

is vanishing if for any [ã1, b̃1], there exists a j0 such that [aj , bj ] v [ã1, b̃1] for all j > j0. That is,

the intervals in the tail of the sequence become infinitely small.

A lottery sequence L = (L1, L2, . . .) is bounded if its support is entirely within some bounded

interval sequence (that is, there exists a bounded sequence of intervals [a1, b1], [a2, b2], . . . , with

7differently put: Pr[∃N,∀n ≥ N : (c1, . . . , cn) ≺n (`1, . . . , `n)] = 1.
8See Appendix B.
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Figure 1. Illustration of [aj , bj ] v [a1, b1] (the factors of S−{1,j} are not depicted).

Li ∈ ∆([ai, bi]) for all i). The sequence is non-vanishing if it includes an infinite sub-sequence of

fair lotteries, the support thereof is not entirely within any vanishing interval sequence.

Risk Averse Policies. Equipped with these definitions, we can now define risk aversion:

Definition 1. We say that preference policy -
∆

is:

• Risk averse if for any bounded non-vanishing lottery sequence, the repeated certainty equiv-

alent of the sequence is ultimately inferior to the lottery sequence itself.

• Weakly risk averse if the repeated certainty equivalent of any bounded lottery sequence is

not ultimately superior to the lottery sequence itself.

Thus, the bias of the risk averse for certainty can never result in an ultimately superior outcome,

and on non-vanishing lotteries necessarily leads to an inferior outcome.

Note that the above definition is fully ordinal; it makes no reference to any numerical scale, and

indeed, no such scale need exist.

3.1. Risk Loving and Risk Neutrality. For readability, we deferred the definitions of risk loving

and risk neutrality. We now complete the picture by providing these definitions.

Definition 2. We say that preference policy -
∆

is:

• Risk loving if for any bounded non-vanishing lottery sequence, the repeated certainty equiv-

alent of the sequence is ultimately superior to the lottery sequence itself.

• Weakly risk loving if the repeated certainty equivalent of any bounded lottery sequence is

not ultimately inferior to the lottery sequence itself.

• Risk neutral if it is both weakly risk loving and weakly risk averse.

Thus, the risk loving require an ultimately superior certainty equivalent to forgo their love of

risk.
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4. Repeated Lotteries: The Quantitative Perspective

The previous section provided a fully ordinal definition of risk aversion. We now show how this

ordinal definition can be cast in quantitative form. Specifically, we show that (under some assump-

tions) this ordinal definition of risk-aversion coincides with the Arrow-Pratt cardinal definition,

once the latter is defined with respect to the appropriate scale. This scale, we show, is provided by

the Debreu value function, which we review next.

4.1. Debreu Value Functions. The theory of multi-attribute decision making considers certainty

preferences over a multi-factor space, and establishes that under certain independence assumptions

such preferences can be represented by quantitative functions, as follows. Consider the space

Hn = T1 × · · · × Tn (n ≥ 2), with preference order -n. Debreu [7] proves that, if the partition

is independent9 then -n is additively separable;10 that is, there exist functions vTi : Ti → R, such

that for any (a1, . . . , an), (a′1, . . . , a
′
n)

(a1, . . . , an) -n (a′1, . . . , a
′
n) ⇐⇒

n∑
i=1

vTi(ai) ≤
n∑
i=1

vTi(a′i).

It is important to note that the functions are defined solely on the basis of the certainty preferences.

Debreu’s theorem also establishes that the functions are unique up to similar positive affine

transformations (that is, multiplication by identical positive constants and addition of possibly

different constants).

We call the function vTi a (Debreu) value function for Ti, and the aggregate function vn =∑n
i=1 v

Ti a (Debreu) value function for Hn.11 We note that Debreu [7] called these functions utility

functions; but following Keeney and Raiffa [19], we use the term value functions, to distinguish

them from the NM utility function.

4.2. Risk Aversion and Concavity. We now show that our ordinal definition of risk aversion,

Definition 1, corresponds to concavity of the NM utility functions with respect to the associated

Debreu value functions, provided these value functions exist, and that some consistency properties

hold among the preference orders on the Hn’s. The exact conditions are now specified.

Certainty Preference. Consider the case where each consecutive pair of factors Ti×Ti+1 is indepen-

dent. Also, assume that the preference orders -n are consistent in the sense that for n′ > n, the

preference order induced by -n
′

on Hn is identical to -n. These assumptions yield the existence

of value functions, as follows:

9see page 7.
10In the case of two factors (n = 2), the following Thomsen condition is also required: for all a1, B1, c1 ∈ T1, and

a2, b2, c3 ∈ T2, if (a1, b2) ∼ (b1, a2) and (b1, c3) ∼ (c1, b2) then (a1, c2) ∼ (c1, a2). For n > 2 the Thomsen condition

is implied by the independence of the pairs.
11This is a slight abuse of notation. More precisely, v is the function on Hn given by v(a1, . . . , an) =

∑n
i=1 v

Ti(ai).
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Proposition 4.1. There exist Debreu value functions vTi : Ti → R, i = 1, 2, . . ., such that for all

n, vn =
∑n

i=1 v
Ti represents -n.

Lottery Preferences. Whereas the factors are assumed independent, the lottery preferences there-

upon need not be independent. That is, the preference order on ∆(Hn) induced by -
∆ n+1

may

depend on the state an+1 in Tn+1. We do assume, however, a form of weak consistency, whereby

there exists some φn+1 ∈ Tn+1 with

L-
∆ n
L′ ⇐⇒ (L, φn+1)-

∆ n+1
(L′, φn+1);

that is, the preferences on ∆(Hn) are consistent with some possible future. We call the sequence

(φ2, φ3, . . .) a presumed future, and assume that it is internal,12 in the following sense. The sequence

(φ2, φ3, . . .) is internal if there exists an s > 0 with vTi(φi) ± s ∈ vTi(Ti) for all i; that is, the

presumed future is bounded away from the boundaries of the Ti’s.

4.2.1. Weak Risk Aversion and (Weak) Concavity. For each n, let un be the NM utility function

representing -
∆ n

. The next theorem establishes the connection between weak risk aversion and

concavity of the un’s.

Theorem 1. -
∆

is weakly risk averse if and only if un is concave with respect to vn for all n.

Thus, Theorem 1 provides the missing conceptual justification for defining risk aversion by con-

cavity of the utility function. It also establishes the appropriate scale - the Debreu value function.

Interestingly, the theorem provides that all NM utility functions must be concave, not only from

some n on.

4.2.2. (Strict) Risk Aversion and Strict Concavity. We would have now wanted to claim that (strict)

risk aversion corresponds to strict concavity of the NM utility functions (with respect to the value

function). However, strict concavity alone is not enough, as we are considering repeated lotteries,

and we cannot expect ultimate inferiority if the “level of concavity” rapidly diminishes. So, we need

a condition that ensures that the functions are also “uniformly” strictly concave in some sense. As

it turns out, the condition of interest is that the coefficient of absolute risk aversion of the NM

utility functions is bounded away from zero (when measured with respect to the value function).

The exact definitions follow.

For each n, let ûn be the function such that ûn(vn(a1, . . . , an)) = un(a1, . . . , an). This is well

defined, as -
∆ n

and -n agree on the certainty preferences. Conceptually, ûn is the function un once

the underlying scale is converted to the value function vn. Denote û = (û1, û2, . . .).

For a twice differentiable function f the coefficient of absolute risk aversion of f at x is:

Af (x) = −f
′′(x)

f ′(x)
.

12More precisely, we assume that there exists a presumed future that is internal.
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Theorem 2. If Aûn(x) is bounded away from 0, uniformly for all n and x,13 then -
∆

is risk averse

(assuming ûn is twice differentiable for all n).

Theorem 2 establishes a sufficient condition for risk aversion. We now proceed to establish a

necessary condition, which is “close” to being tight. To do so we need to consider the behavior of

the functions ûi, and the definition of Aûi(·), in a little more detail.

Let risk-premûn(x,±ε) be the risk premium according to ûn of the of the lottery 〈x+ ε, x− ε〉;
that is

risk-premûn(x,±ε) = x− (ûn)−1

(
ûn(x+ ε) + ûn(x− ε)

2

)
.

Now for any ε (sufficiently small) define

RPû(ε) = inf
n,x
{risk-premûn(x,±ε)}.

So, RPû(·) is a function. We will be interested in the rate at which RPû(ε) declines as ε→ 0. The

condition of interest, we show, is that RPû(ε) declines no faster than ε2.

Theorem 3.

(a) If RPû(ε) = Ω(ε2) as ε→ 0 then -
∆

is risk averse.14

(b) If RPû(ε) = O(ε2+β) as ε→ 0, for some β > 0, then -
∆

is not risk averse.

The sufficient condition of (a) and the necessary one of (b) are not identical, but are close.

Finally, we establish that the sufficient condition of Theorem 3-(a) and that of Theorem 2 are

the same.

Proposition 4.2. RPû(ε) = Ω(ε2) as ε → 0, if and only if Aûn(x) is bounded away from 0,

uniformly for all n and x (assuming ûn is twice differentiable for all n).

4.3. Risk Loving and Risk Neutrality. In analogy to Theorems 1 and 3 we have:

Theorem 4. For vn, un, and û as in Theorems 1 and 3

(a) Weak risk loving: -
∆

is weakly risk loving if and only if un is convex with respect to vn for

all n.

(b) Risk loving

• If (−RPû(ε)) = Ω(ε2) as ε→ 0 then -
∆

is risk loving.

• If (−RPû(ε)) = O(ε2+β) as ε→ 0 (for some β > 0) then -
∆

is not risk loving.

(c) Risk Neutral: -
∆

is risk neutral if and only if un is a linear transformation of vn for all n.

13that is, there exists an constant α > 0 such that Aûn(x) ≥ α for all n and x.
14recall that g(y) = Ω(h(y)) as y → 0 if there exists a constant M and y0 such that g(y) > M ·h(y) for all y < y0.
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5. Ordinal Definition II: Hedging

5.1. The Definition. Consider a space S and an independent partition S = T1×· · ·×Tn.15 Recall

the notation S−{i,j} =
∏
t6=i,j Tt, and for ai, aj , and c ∈ S−{i,j}, the slight abuse of notation (ai, aj , c)

for (c1, . . . , ci−1, ai, ci+1, . . . , cj−1, aj , cj+1, . . . , cn). The following definition is that of Richard [25].

Definition 3. Preference order -
∆

is R risk-averse (Richard risk averse) with respect to the inde-

pendent partition S = T1× · · ·× Tn, and the pair of factors Ti, Tj, i 6= j, if for any ai ≺ bi, aj ≺ bj,
and c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉≺∆ 〈(ai, bj , c), (bi, aj , c)〉 .(2)

and weakly R risk averse if (2) holds with weak preference.

Note that the left-hand side lottery, 〈(ai, aj , c), (bi, bj , c)〉, is between two extreme outcomes: 50%

probability for getting the better outcome in both commodities, and 50 % probability for getting

the lesser in both. In the right-hand side lottery, 〈(ai, bj , c), (bi, aj , c)〉, the loss in one commodity

is (partially) hedged by the gain in the other. Thus, a decision maker is R risk-averse if she prefers

to hedge her bets to the extent possible.

5.2. Properties. In definition 3, risk aversion is defined with respect to a specific partition, and

a specific pair of factors within the partition. The following proposition establishes that if the

definition holds for some partition and some pair, then it holds for any partition and all pairs.

Theorem 5. If -
∆

is R risk averse with respect to some independent partition S = T1×· · ·×Tn, and

some pair of factors Ti, Tj, then it is also R risk averse with respect to any independent partition,

and any pair therein. Similarly for weak R risk aversion.

By Theorem 5, we may drop reference to the specific partition and pair when considering R risk

aversion.

5.3. Perfectly Hedged Lotteries. In the definition of R risk aversion the decision maker must

prefer the hedged version of a lottery over the non-hedged version, for any quadruplet ai, bi, aj , bj ,

even if the resultant hedged lottery still entails some risk. A possible alternative definition would

require that the decision maker only prefer hedges that completely eliminate any risk, as in the

following definition:

Definition 4. For ai ≺ bi, aj ≺ bj, say that (ai, bj), (bi, aj) are perfectly hedged if (ai, bj) ∼ (bi, aj)

(see Figure 2).16

15Here we use the notation S rather than Hn since we will be considering one fixed space S .
16The equivalence relation (ai, bj) ∼ (bi, aj) is well-defined as Ti × Tj is independent.
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Figure 2. Illustration of a perfectly hedged pair.

We say that -
∆

is perfect-R risk-averse if for any partition S = T1 × · · · × Tn, and any ai, bi ∈
Ti, aj , bj ∈ Tj, and c ∈ S−{i,j}, if (ai, bj), (bi, aj) are perfectly hedged then,

〈(ai, aj , c), (bi, bj , c)〉≺∆ 〈(ai, bj , c), (bi, aj , c)〉 .(3)

The preference order is weakly perfect-R risk averse if (3) holds with a weak preference (-
∆

).

The following theorem establishes that R risk aversion and perfect-R risk aversion are in fact

equivalent.

Theorem 6. -
∆

is R risk-averse if and only if it is perfect-R risk averse.

We note that the theorem holds even if there are only two factors, in which case - may fail to

be additively separable.

5.4. Risk Loving and Risk Neutrality.

Definition 5. We say that -
∆

is R risk-loving if for any i 6= j, and any perfectly hedged (ai, bj), (bi, aj),

and any c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉�∆ 〈(ai, bj , c), (bi, aj , c)〉 .(4)

and weakly R risk loving if the preference in (4) is a weak one.

Similarly, -
∆

is R risk-neutral if for any i 6= j, and any perfectly hedged (ai, bj), (bi, aj), and any

c ∈ S−{i,j}

〈(ai, aj , c), (bi, bj , c)〉∼∆ 〈(ai, bj , c), (bi, aj , c)〉 .

Theorem 5 holds analogously for risk loving and risk neutrality.
14



6. Hedging Definition: The Quantitative Perspective

Again, the previous section provided a fully ordinal definition of risk aversion. We now show

how this ordinal definition, too, equates with concavity of the utility function with respect to the

value function, if and when the latter exists.

6.1. Uniqueness of the Aggregate Debreu Value Function. We will shortly establish the

relation between ordinal risk-aversion as in Definition 3, on the one hand, and the aggregate Debreu

value function, on the other. Before we can do so, however, we need to guarantee that the notion

of “the” aggregate Debreu value function is well defined. Debreu’s theorem relates to a specific

partition of the space, and asserts that the value functions are unique (up to similar positive affine

transformations) for the given partition. It does not assert that a different function may not arise

from a different partition. Thus, the notion of a single, unique value function for S may not be

well defined. The following simple theorem, which may be of independent interest, shows that this

is not the case; all disparate value functions that may arise from different partitions are identical.

Theorem 7. For any S, all (aggregate) Debreu value functions for S are identical up to positive

affine transformations.

6.2. Risk Aversion and the Debreu Value Functions. Assume that the conditions guarantee-

ing the existence of a Debreu value function for S hold.17 We now show that in this case, the ordinal

Definition 3 coincides with concavity of the utility function with respect to the value function.

Theorem 8. For NM utility u and Debreu value function v,

• Risk aversion:

◦ u is strictly concave with respect to v if and only if -
∆

is R risk averse.

◦ u is concave with respect to v if and only if -
∆

is weakly R risk averse.

• Risk loving:

◦ u is strictly convex with respect to v if and only if -
∆

is R risk loving.

◦ u is convex with respect to v if and only if -
∆

is weakly R risk loving.

• Risk neutrality: u is linear with respect to v if and only if -
∆

is R risk-neutral.

In all, we obtain that R risk aversion coincides with Arrow-Pratt risk aversion once concavity is

defined with respect to the Debreu value function.

7. Relating the Two Ordinal Definitions

We considered two separate ordinal definitions of risk aversion: Definition 1, based on repeated

lotteries, and Definition 3, based on hedging. Technically, the two definitions relate to different

17If there are three or more factors in the partition, then the existence of a value function is provided by the

independence of the partition. If there are only two factors, the additional Thomsen condition is required (see

Footnote 10).
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mathematical objects: the first relates to a preference policy, which is a sequence of preference

orders, while the latter relates to a single preference order. However, the two definitions are closely

related, as established by Theorems 3 and 8: both definitions correspond to concavity of the NM

utility function with respect to the Debreu value function (when it exists). For weak risk aversion

the concavity requirements in both theorem are identical – (weak) concavity. So, when a Debreu

value exist, a preference policy is weakly risk averse, according to Definition 1, if and only if each of

the preferences orders therein is weakly risk averse, according to the Definition 3. For (strict) risk

aversion, the requirement in Theorem 3 is a coefficient of absolute risk aversion bounded away from

zero, whereas Theorem 8 requires only strict concavity. So, if the preference policy is (strictly) risk

averse then so are all of the preference orders therein, but the opposite does not always hold. The

reason is that since we are considering the behavior on recurring gambles we need a “recurring”

bound on the strict concavity in all the gambles.

8. Multi-Commodity Risk Aversion

The seminal works of Arrow [2] and Pratt [24] defined risk aversion with respect to a single

commodity – money. Ever since, researchers have attempted to extend the definition, and associated

measures, to the multi-commodity setting (see [20, 28, 23, 9, 17, 25, 18, 21] for some references in

the expected utility model). It is out of the scope of this paper to review this extensive body of

research, but a key problem in the multi-commodity setting is that each commodity has its own

scale so the question is which scale should be used when measuring the concavity of the utility

function. Indeed, some papers (e.g. [9]) keep the multiple scales - in which case the measures of

risk aversion become vectors and matrices.

Our approach here takes a different direction, which, in a way is the reverse. We do not start

from the single commodity definition and extend it to multi-commodities, but rather start from

the multi-commodity setting, and then derive the uni-scale case as a quantitative representation

of the former. So, the “native” scales of the different commodities are immaterial in our approach.

Rather, the only scale of interest is the intrinsically defined Debreu value function, which is shared

across all commodities.

We note, again, that the second definition we consider, that of Richard, was presented as “a new

type of risk aversion unique to multivariate utility functions” [25]. Scarsini, in a paper based on

Richard’s definition, writes “[Richard’s definition] has nothing to do with what is generally known

as risk aversion” [27]. Theorem 8 establishes that the two definitions are one and the same, once

the appropriate scale is used.

We now show how, with the definition considered in this paper, the Arrow-Pratt framework

carries over to the multi-commodity setting.

CARA Preferences. A (uni-scale) preference order is CARA (constant absolute risk aversion) if the

coefficient of absolute risk aversion of its associated NM utility is constant. Arrow [2] showed that
16



a preference is CARA if and only if the preferences on lotteries are independent of the wealth level.

Specifically, for wealth level x and lottery L denote by (L, x) the lottery that gives the random

outcome L in addition to the sure outcome x. Then, Arrow shows that preference order -
∆

is CARA

if and only if for all lotteries L,L′ and wealth levels x, y

(L, x)-
∆

(L′, x) ⇐⇒ (L, y)-
∆

(L′, y).

Now, in the multi-commodity setting, a natural interpretation of the phrase “the preferences on

lotteries are independent of the wealth level” is that the preferences on lotteries in one commodity

are independent of the wealth level in other commodities. Using our definition of multi-commodity

risk aversion, we get the same correspondence as in the uni-scale case:

Theorem 9. In the multi-commodity setting (with S = T1×· · ·×Tn an independent partition), the

NM utility function u has constant coefficient of absolute risk aversion when measured with respect

to the Debreu value function v if and only if for any i, lotteries L,L′ over Ti, and x,y ∈ Ω−{i}

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

Furthermore, the following proposition establishes that our definition, in a way, is the only

definition that preserves this correspondence.

Proposition 8.1. Let - be an (additively separable) preference order on S = T1× · · · × Tn, and g

a real valued function on S. Suppose that the following holds for any NM utility function u:

• u has constant coefficient of absolute risk aversion when measured with respect to g if and

only if

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

for any L,L′ ∈ ∆(Ti), and x,y ∈ S−{i}.
Then g is a Debreu value function.

Comparative Multi-Commodity Risk Aversion. As observed by Kihlstrom and Mirman [20], in the

multi-commodity setting it is natural to limit comparisons of risk aversion to decision makers

agreeing on the certainty preferences. This also holds in our framework, as our definition of risk

aversion is always with respect to the certainty preferences. For individuals agreeing on the certainty

preferences, using our approach the entire Arrow-Pratt framework carries over as is, once the

underlying scale is converted to the associated (joint) Debreu value function. In particular, we

have the following. Let v be the joint Debreu value function and û1 and û2 be the NM utility

functions of players 1 and 2 - when measured with respect to v. For a lottery L let cej(L) be the

certainty equivalent of L by ûj (j = 1, 2). Then

ce1(L) - ce2(L)

for all lotteries L if and only if

Aû1(x) ≥ Aû2(x)
17



for all x (where Aûi(x) is the coefficient of absolute risk aversion of ûi at x). This follows directly

from Arrow-Pratt as their theorems do not specify the scale, and thus also apply when using the

value function scale.

9. Discussion

We presented fully ordinal definitions of risk aversion, based entirely on the internal structure

of preferences of the decision maker; independent of money or any other units. The first definition

equates risk aversion with a policy that, in the long run, necessarily leads to an inferior outcome.

The second definition, which is that of Richard [25], equates risk aversion with a preference for

hedging bets. We show that when cast in numerical terms, both these ordinal definitions coincide

with the Arrow-Pratt definition, once the latter is defined with respect to the Debreu value function

associated with the decision maker’s preferences over the sure outcomes. This, we suggest, provides

the missing conceptual justification for the use of the arithmetic mean as the basis for defining risk

aversion, and, at the same time, establishes the appropriate scale to use.

Inter-Commodity and Intra-Commodity Risk Aversion. We should stress that risk-aversion, as con-

sidered in this paper, does not relate only to gambles involving multiple commodities or times, but

also to gambles within a single commodity/time. It may be seen that, given the multi-commodity

certainty preferences, inter-commodity lottery preferences determine intra-commodity lottery pref-

erences, and vice versa. Thus, inter-commodity and intra-commodity risk attitudes are one and

the same. We use the inter-commodity setting as it provides an Archimedean vantage point from

which the risk-attitude can be disentangled from the risk-free preferences. Once defined, however, it

applies to all manifestations of risk. This is highlighted by the quantitative form using the Debreu

function. The multi-commodity setting merely provides us with the appropriate scale with which

to measure risk aversion, both inter and intra-commodity.

9.1. Disentangling Risk Aversion from Diminishing Marginal Utility. It is well known that

under the classical definition, risk aversion and diminishing marginal utility are forever entangled.

On a conceptual level, however, the two notions are distinct. Indeed, disentangling diminishing

marginal utility from risk aversion is one of the earliest motivations for the non-expected utility

literature, as Yaari [29] writes: “Two reasons have prompted me to look for an alternative to

expected utility theory. The first reason is methodological: In expected utility theory, the agent’s

attitude towards risk and the agent’s attitude towards wealth are forever bonded together. At the

level of fundamental principles, risk aversion and diminishing marginal utility of wealth, which are

synonyms under expected utility theory, are horses of different colors.” Using the concepts of this

work, it is possible disentangle the two within the expected utility framework. In our scheme, the

curvature of the NM utility function with respect to money is decomposed into two components:

the curvature of the Debreu value function with respect to money, and the curvature of the NM

utility function with respect to the Debrue value function. With this decomposition, the former may
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naturally be associated with diminishing marginal utility, while the latter - we argue - represents

the risk aversion component.

This disentangling may have implications for the language we use to describe (and hence com-

prehend) key economic behavior. Consider, for example, an aging, retired individual, comfortably

living off her savings, who is offered a 50-50 gamble between tripling her savings and losing them

all. Common sense has it that rejecting the gamble is a perfectly rational choice for all but the most

risk loving individuals. Classical economic language, however, would have to deem such a rejection

“risk aversion”. The framework of this paper provides us with a more refined language, that allows

us to give a more convincing interpretation of the behavior. When measured in terms of the Debreu

value function, which reflects the relative benefits provided by each of the possible outcomes, the

50-50 gamble may well be actuarially inferior to the existing state. So, by our definition, the gamble

should be rejected by risk neutral (or even some risk loving) individuals.

9.2. CARA and CRRA. Arrow and Pratt defined two concrete measures of risk aversion: the

coefficient of absolute risk aversion at x, and the coefficient of relative risk aversion at x (defined

as −x·u′′(x)
u′(x) ). The measure of absolute risk aversion can naturally be converted to our definition of

risk aversion, by simply considering the utility function with respect to the Debreu value function,

as discussed in Section 8. The notion of relative-risk-aversion w.r.t. the value function, however,

is not well defined, as the definition of relative risk aversion requires a well-defined zero point, and

the value function is only defined up to an additive constant.18

In Section 8 we proved that once considered w.r.t. the value function, constant-absolute-risk-

aversion (CARA) has a simple and intuitive meaning. A preference order is CARA w.r.t. the value

function if and only if the preferences over lotteries in each individual factor are well defined and

independent of the state in the other factors; preferences over apple lotteries are independent of the

available amount of oranges and preferences over orange lotteries are independent of the available

amount of apples (this is termed utility independence in [25, 4, 19]).

In the economic literature, CRRA (constant relative risk aversion) rather than CARA, is the

more prevalent model. CRRA, however, is assumed w.r.t. money. Once considered in terms of

the value function, the observed CRRA w.r.t. money may actually reflect a combination of an

underlying CARA ordinal risk attitude superimposed on a value function that is logarithmic w.r.t.

money. This combination yields exactly the known CRRA family of functions:

• ordinal risk aversion: u(x) = −e−γ ln(x) = −x−γ (γ > 0),

• ordinal risk neutrality: u(x) = ln(x),

• ordinal risk loving: u(x) = eγ ln(x) = xγ (γ > 0).

18Indeed, we would argue that determining the zero point is a big problem, mostly overlooked, also when defining

relative risk aversion w.r.t. money. What is the right zero point? no money in the bank? no material possessions

(no house, no clothes, no food)? no money left after selling a kidney? Choosing any of these zero points results in

very different relative risk aversion coefficients.
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Interestingly, this means that the utility functions ln(x) and xγ actually correspond to risk neutrality

and risk loving under our definitions, not risk aversion.

9.3. Additive Utility. Under the definitions of this paper the standard intertemporal model,

wherein NM utility is additive across time periods, corresponds to risk neutrality. To obtain risk

aversion we must venture out of the additive model. This may seem problematic at first, but we note

that, irrespective of how one defines risk aversion, restricting the NM utility to an additive form

necessarily means that the preferences on lotteries (-
∆

) are uniquely determined by the certainty

preferences (-); that is, all agents that agree on the preferences on the sure outcomes, must also

agree on the preferences over risky one (see Appendix C for a formal statement and proof). This,

we find, strips the notion of “risk aversion” from any semantic meaning, as the attitude towards

risk plays no role in the determining the preferences - it is all determined by the preferences over

the risk free outcomes. So, if we want to allow for varying risk attitudes, we must venture beyond

additive utility. In a fascinating work, Bommier [5] shows how it is possible to allow for such

non-additive models, while retaining both stationarity and consistency, and remaining within the

expected utility framework.

9.4. Repeated Games. The theory of (infinitely) repeated games assumes that the utility in the

repeated game is additive, in one way or another, in the utilities of the individual stage games [3,

26, 14]. By our definition, this corresponds to an assumption of risk neutrality. Accordingly, in a

sequel work [?], we consider a theory of repeated games without this additivity assumption. We

show that when players are risk averse - according to our ordinal definitions - new equilibria emerge,

unaccounted for by the classical theory. Also, in two person matching pennies games, if one player

is risk averse and the other risk loving, then the resulting pure strategy equilibria are biased in

favor of the risk loving player. Such biased equilibria are not possible in the classic theory.

9.5. Strength of Preference and Relative Risk Aversion. Dyer and Sarin [11] and Bell and

Raiffa [4] have suggested measuring risk aversion with respect to the strength of preference function,

rather than money. It is out of the scope of this paper to review the strength-of-preference theory,

but generally speaking this theory assumes that not only do decision makers have a well defined

preference order over sure states and lotteries, but also that they have a preference order over

differences between states; that is, the decision maker can state that she prefers the transition

x1 7−→ x2 over the the transition y1 7−→ y2 (where x1, x2, y1, y2 are states). Assuming such

preferences exist (and some additional technical conditions), the theory establishes that there exists

a function f (termed measurable value function [10]) that represents these preferences, in the sense

that f(x2) − f(x1) > f(y2) − f(y1) if and only if the transition x1 7−→ x2 is preferred over the

transition y1 7−→ y2. Given such a function, Dyer and Sarin [11] define the notion of relative risk
20



aversion19 as the concavity of the NM utility function u with respect to the measurable value

function f . Bell and Raiffa [4] similarly define the notion of intrinsic risk aversion.

Bell and Raiffa [4] also show how the strength-of-preference function (assuming it exists) can

be deduced and identified with a multi-attribute (Debreu) value function (see also [11, Theorem

1]). Thus, Theorem 8 establishes that technically the ordinal of R risk aversion coincides with the

Dyer and Sarin notion of relative risk aversion, if a Debreu value function exists and relative risk

aversion is computed with respect to this function. Conceptually, however, our approach is totally

different from that of [11] and [4]. First, we do not suppose, technically or conceptually, any form of

preferences over differences. Rather, we only use the standard preferences on bundles and lotteries

thereof. Second, conceptually [11] and [4] follow the Arrow-Pratt framework, taking it as given that

the “natural value” of a gamble “should be” its expectation. They differ from Arrow-Pratt only in

using a different scale. Our approach is the opposite. Our starting point, and all core definitions,

are fully ordinal. The numerical representation is then mathematically derived from this ordinal

theory.
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Appendix A. Proofs

For readability, all theorems and propositions are restated in this appendix.

Proofs for Section 4. The proofs in this section follow certain conventions that simplify the

presentation:

• x, y, are real number, α, β, δ - with or without indices or primes - are positive reals.

• ai, bi, and ci are points in Ti.
• Li is a lottery over Ti and `i is the realization of Li.

• Variables not explicitly quantified are taken to be universally quantified, it being understood

that the expressions in which they appear are defined.

Proposition 4.1. There exist Debreu value functions vTi : Ti → R, i = 1, 2, . . ., such that for all

n, vn =
∑n

i=1 v
Ti represents -n.

Proof. Consider Hn for n ≥ 3. By assumption, any product of the Ti’s is independent. Hence,

there exist value functions vT1n , . . . , v
Tn
n , with

∑n
i=1 v

Ti
n representing -n. We now show that there is

actually a single function vTi , for each i, that works for all the Hn’s.

For i = 1, 2, 3, set vTi := vTi3 . Suppose vTi has been defined for all i < n; we inductively define

vTn . By the induction hypothesis,
∑n−1

i=1 v
Ti represents -n−1. By independence of Hn−1 in -n,

the function
∑n−1

i=1 v
Ti
n also represents -n−1. So, by uniqueness of the value functions, there exist

constants β > 0, ξi, such that vTi = βvTin + ξi, for i = 1, . . . , n− 1. So, setting vTn = βvTnn , we have

that
n∑
i=1

vTi =
n−1∑
i=1

(βvTin + ξi) + βvTnn = β
n∑
i=1

vin + constant,

which represents -n, as required. �

From now on we assume w.l.o.g. that the factors are already represented in units of the respective

value functions; that is, vTi(ai) = ai for all i and ai ∈ Ti. Then un, the NM utility function

representing -
∆ n

, is actually only a function of the sum of its arguments; i.e. un(a1, . . . , an) =

un(b1, . . . , bn) whenever a1 + · · · + an = b1 + · · · + bn. Recall that ûn is the function such that

un(a1, . . . , an) = ûn(a1 + · · ·+ an). Note that ûn = un ◦ (vn)−1. Thus, un is concave with respect

to vn if and only if ûn is concave.

Let (φ2, φ3, . . .) be the presumed future. By assumption (φ2, φ3, . . .) is internal.20 So, there exists

s > 0 with φi ± s ∈ Ti, for all i.

20More precisely, (φ2, φ3, . . .) is a presumed future that is internal, if there are several presumed futures.
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Proofs for Section 4.2.1.

Lemma A.1. Let X1, X2, . . . be an infinite sequence of independent uniformly bounded random

variables,21 with E(Xi) = 0 for all i. Set Sn =
∑n

i=1Xi. Then

Pr[Sn ≥ 0 infinitely often] > 0.(5)

Proof. Denote vi = Var(Xi), and Vn =
∑n

i=1 vi. The Xi’s are independent, so Vn = Var(Sn). Now,

either Vn →∞ or not. We consider each case separately.

If Vn → ∞, applying the central limit theorem for uniformly bounded random variables (e.g.

[16], Theorem 9.5) we obtain that

lim
n→∞

Pr[
Sn√
Vn
≥ 0] =

1√
2π

∫ ∞
0

e−x
2/2dx =

1

2
.

In particular, Pr[Sn ≥ 0 infinitely often] > 0.

Next, suppose that Vn does not go to infinity. Each vi is non-negative. Hence, the Vi’s form

a monotonically non-decreasing and bounded sequence, and hence converge. Thus, for any δ > 0

there exists an Nδ with
∑∞

i=Nδ
vi < δ. If all the Xi are identically 0 there is nothing to prove.

Otherwise, w.l.o.g. X1 is not identically 0. Thus there exists an x > 0 with Pr(X1 ≥ x) = qx > 0.

Choose δ < x2. Then by the Chebyshev inequality, for all n > Nδ,

Pr[
n∑

i=Nδ

Xi < −x] <
Var(

∑n
i=Nδ

Xi)

x2
≤ δ

x2
< 1.

Clearly, there is some probability p+ for which Pr[maxn=2,...,Nδ{Sn −X1} ≥ 0] ≥ p+. So for all n,

Pr[Sn ≥ 0] ≥ Pr[X1 ≥ x] · Pr[ max
n=2,...,Nδ

(Sn −X1) ≥ 0] · Pr[

n∑
i=Nδ

Xi ≥ −x] ≥

qx · p+ · (1− δ

x2
) > 0.

So, again, in particular, Pr[Sn ≥ 0 infinitely often] > 0. �

Theorem 1. -
∆

is weakly risk averse if and only if un is concave with respect to vn for all n.

Proof. -
∆

is weakly risk averse ⇒ all ûn are concave: Contrariwise, suppose that ûk is not concave,

for some k. So, ûk is not concave on some interval of size ≤ s. So, there exist x, ε ≤ s and 0 < β < ε

with

ûk(x+ β) =
1

2
(ûk(x− ε) + ûk(x+ ε)) .

So, by definition of the presumed future also for any m > k,

ûm(x+ φk+1 + · · ·+ φm + β) =

=
1

2
(ûm(x+ φk+1 + · · ·+ φm − ε) + ûm(x+ φk+1 + · · ·+ φm + ε)) .

(6)

21that is, the support of all the random variables is included in a real interval [b, b], with b, b finite.
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We construct a recurring lottery sequence L that is ultimately inferior to its repeated certainty

equivalent. By definition, x = b1 + · · · + bk, for some (b1, . . . , bk) ∈ Hk. The sequence L =

(L1, L2, . . .) is defined as follows:

• for i = 1, . . . , k: Li = bi;

• for j odd: Lk+j = 〈(φk+j − ε), (φk+j + ε)〉;
• for j even: Lk+j = φk+j − β.

We now inductively determine the repeated certainty equivalent of L = (L1, L2, . . .), which we

denote (c1, c2, . . .). For i = 1, . . . , k, ci = bi. Consider the lottery at time k + 1. The (degenerate)

lotteries in the previous times have brought us to the point x = b1 + · · ·+bk, and the lottery at time

k+ 1 is Lk+1 = 〈(φk+1 − ε), (φk+1 + ε)〉. So, by (6), its certainty equivalent is β above the average;

that is, ck+1 = φk+1 +β. The next lottery, at time k+2, is the degenerate lottery Lk+2 = φk+2−β,

with certainty equivalent ck+2 = φk+2 − β. Hence, having chosen the certainty equivalent at all

times, after time k + 2 we are at point x + ck+1 + ck+2 = x + φk+1 + φk+2. So again (6) applies

to the lottery at time k + 3, which is Lk+3 = 〈(φk+1 − ε), (φk+1 + ε)〉. So ck+3 = φk+3 + β. This

process repeats again and again. So, ck+j = φk+j + β for j odd and ck+j = φk+j − β for j even.

Now, assume w.l.o.g. that E(Li) = 0 for all i. Then, for j odd, Lk+j is a ±ε lottery and ck+j = β.

For all other i’s, `i is a degenerate lottery and ci = 0. Let `i be the realization of Li. Then,

Pr[(c1, . . . , cn) � (`1, . . . , `n) from some n on] = Pr[
n− k

2
β >

n∑
i=1

`i from some n on] = 1,

where the last equality is by the law of large numbers. So, (c1, c2, . . .) is ultimately superior to

(L1, L2, . . .) .

All ûn are concave ⇒ -∆ is weakly risk averse: Consider a lottery sequence L = (L1, L2, . . .). W.l.o.g.

E(Li) = 0 for all i. Denote by c = (c1, c2, . . .) the repeated certainty equivalent of L. Since all ûn’s

are concave, also all the functions un are concave in each of their arguments. So, ci ≤ 0 for all i.

So, for any n,

Pr[(`1, . . . , `n) ≺n (c1, . . . , cn)] ≤ Pr[
n∑
i=1

`i < 0].

So,

Pr[(`1, . . . , `n) ≺n (c1, . . . , cn) from some n on] ≤ (1− Pr[
n∑
i=1

`i ≥ 0 infinitely often]) < 1.

where the last inequality is by Lemma A.1. So, (c1, c2, . . .) is not ultimately superior to (L1, L2, . . .).

�
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Proofs for Section 4.2.2. Theorem 2 follows directly from Theorem 3 (a) and Proposition 4.2. So,

proceed to prove this theorem and proposition.

For α > 0 let caraα be the function caraα(x) = −e−αx. It is well known that Acaraα(x) = α for

all x. For a real-valued lottery L and NM utility function f let risk-premf (x, L) be the risk-premium

according to f of the lottery L applied at wealth x.

Lemma A.2. RPû(ε) = Ω(ε2) as ε→ 0 if and only if there exists an α such that

risk-premûn(x, L) ≥ risk-premcaraα(x, L)(7)

for all n, x and L.

Proof. Suppose that RPû(ε) = Ω(ε2). Then there exists ε0 and α > 0 with

risk-premûn(x,±ε) ≥ αε2(8)

for all n, x and ε ≤ ε0.

For the function caraα, using the Taylor expansion of eε around 0,

caraα(ε) + caraα(−ε)
2

=
−e−α·ε − eα·ε

2

= −1

2
(1− αε+

α2ε2

2
+ 1 + αε+

α2ε2

2
+O(ε3))(9)

= −(1 +
α2ε2

2
+O(ε3))

So, for ε sufficiently small

caraα(ε) + caraα(−ε)
2

> −(1 +
2α2ε2

3
) > −e−α(−2αε2/3) = caraα(−2αε2/3).

So,

risk-premcaraα(0,±ε) < 2

3
αε2.

For the function caraα the risk premium is independent of x, and hence,

risk-premcaraα(x,±ε) < 2

3
αε2,(10)

for all x.

So, combining (8) and (10)

risk-premûn(x,±ε) > risk-premcaraα(x,±ε),(11)

for ε sufficiently small. But then, by Pratt [24], (11) holds for any lottery L.

Conversely, if risk-premûn(x,±ε) ≥ risk-premcaraα(x,±ε) then by (9)

risk-premûn(x,±ε) ≥ αε2

2
+O(ε3),

so RPû(ε) = Ω(ε2). �
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The following simple lemma establishes that any risk premium exhibited by ûk, for some k, is

(re)exhibited by all subsequent ûm, for m > k.

Lemma A.3. For any m > k,

risk-premûm(x+ φk+1 + . . . , φm,±ε) = risk-premûk
(x,±ε).

Proof. Set β = risk-premûk
(x,±ε). By definition

ûk(x− β) =
1

2
(ûk(x− ε) + ûk(x+ ε)).

Let a+ε,a−ε,a−β ∈ Hk be such that vk(a+ε) = x+ ε, vk(a−ε) = x− ε, and vk(a−β) = x− β. So,

(a−β)∼∆ k 〈a−ε,a+ε〉 .

By assumption, -
∆ k

and -
∆ m

agree on the preferences over ∆(Hk) when fixing the state in Tk+1 ×
· · · × Tm to the presumed future (φk+1, . . . , φm). So,

(a−β, φk+1, . . . , φm)∼∆ m 〈(a−ε, φk+1, . . . , φm), (a+ε, φk+1, . . . , φm)〉 .

Hence,

ûm(x− β + φk+1 + · · ·+ φm) =

1

2
(ûm(x− ε+ φk+1 + · · ·+ φm) + ûm(x+ ε+ φk+1 + · · ·+ φm)).

�

The following lemma establishes that if ûk exhibits some risk premium, at some point x, then

not only is this risk premium re-exhibited by all subsequent utility functions ûm, but also that it

is “reachable” from any state y, of any period K.

Lemma A.4. For any k,K, x, y, with x in the domain of ûk and y in the domain of ûK , there

exist m ≥ max{k,K} and bK+1, . . . , bm, bi ∈ Ti, with

risk-premûm(y + bK+1 + · · ·+ bm,±ε) = risk-premûk
(x,±ε).

Proof. Set K ′ = max{k,K}. If K < k then for i = K + 1, . . . , k, let bi be any point in Ti and set

y′ = y + bK+1 + · · ·+ bk. Otherwise (K ≥ k) set y′ = y.

Let δ = y′ − x, j = dδ/se, and m = K ′ + j. For i = K ′ + 1, . . . ,m, set bi = φi + δ/j. Then,

m > max{k,K}, and x + φk+1 + · · · + φm = y + bK+1 + · · · + bm. The result then follows from

Lemma A.3 . �
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The following Theorem is from Alon and Spencer [1].

Theorem A.5 ([1], Theorem A.1.19). For every C > 0 and γ > 0 there exists a δ > 0 so that the

following holds: Let Xi, 1 ≤ i ≤ n, n arbitrary, be independent random variables with E[Xi] = 0,

|Xi| ≤ C, and Var(Xi) = σ2
i . Set Sn =

∑n
i=1Xi and Σ2

n =
∑n

i=1 σ
2
i , so that Var(Sn) = Σ2

n. Then,

for 0 < a ≤ δ · Σn

Pr[Sn > aΣn] < e−
a2

2
(1−γ).(12)

Lemma A.6. Let X1, X2, . . ., be independent random variables with E[Xi] = 0, |Xi| ≤ C, and

Var(Xi) = σ2
i . Set Sn, σ

2
i and Σ2

n as above. If Σn →∞, then for any α > 0

Pr[Sn > αΣ2
n infinitely often] = 0.

Proof. Denote by n(i) the least n such that Σ2
n ≥ i. Since Σn →∞, for any i there exists an n(i).

Since |Xi| ≤ C, i ≤ Σ2
n(i) ≤ i+ C2.

Denote by Ak the event that there exists i, n(k) < i ≤ n(k+ 1), for which Si > αΣ2
i . We bound

Pr[Ak].

Set γ = 0.5, and let δ be that provided by Theorem A.5. Set β = min{δ, α/2}. Then, considering

n(k), by Theorem A.5, setting a = βΣn(k)

Pr[Sn(k) > βΣn(k) · Σn(k)] < e−
β2Σ2

n(k)
2

(1−γ) ≤ e−
β2k

4(13)

Now consider the random variables Xi for i = n(k) + 1, . . . , n(k + 1). Set Dj =
∑j

i=n(k)+1Xi.

Then,

Var((Dn(k+1)) = Σ2
n(k+1) − Σ2

n(k) ≤ (k + 1 + C2)− k = 1 + C2.

So, by the Kolmogorov inequality

Pr[ max
n(k)<j≤n(k+1)

{Dj} ≥ βΣ2
n(k)] ≤

Var(Dn(k+1))

(βΣ2
n(k))

2
≤ 1 + C2

β2k2
.(14)

Combining (13)-(14), for any k

Pr[Ak] = Pr[∃i, n(k) < i ≤ n(k + 1), Si > αΣ2
i ]

≤ Pr[Sn(k) ≥ βΣ2
n(k)] + Pr[ max

n(k)<j≤n(k+1)
{Dj} ≥ βΣ2

n(k)]

≤ e−
β2k

4 +
1 + C2

β2k2
.

So,
∑∞

k=1 Pr[Ak] <∞. So, by the Borel Cantelli lemma

Pr[Ak occurs infinitely often] = 0.

For any k there is only a finite number of i’s with n(k) < i ≤ n(k + 1). So, Si > αΣ2
i infinitely

often only if Ak occurs infinitely often, and the result follows. �

28



Theorem 3.

(a) If RPû(ε) = Ω(ε2) as ε→ 0 then -
∆

is risk averse.22

(b) If RPû(ε) = O(ε2+β) as ε→ 0, for some β > 0, then -
∆

is not risk averse.

Proof. (a): Suppose that RPû(ε) = Ω(ε2) as ε→ 0.

Let L = (L1, L2, . . .) be a bounded, non-vanishing lottery sequence. W.l.o.g. E(Li) = 0 for all i.

Set σ2
i = Var(Li), Sn =

∑n
i=1 Li and Σ2

n = Var(Sn) =
∑n

i=1 σ
2
i . Since L is non-vanishing Σn →∞.

Since L is bounded, there exists a C such that |Li| ≤ C for all i.

By the Taylor expansion,

caraα(ε) = −e−αε = −1 + αε− α2ε2

2
+O(α3ε3).(15)

Let α1 be such that the O(α3ε3) term in (15) is small for |ε| ≤ C; that is,

caraα1(ε) ≈ −1 + α1ε−
α2

1ε
2

2
,(16)

for |ε| ≤ C.

Let (c1, c2, . . .) be the repeated certainty equivalent of L. Let α0 be that provided by Lemma

A.2. Then, for any α < α0

ci < −risk-premcaraα(0, Li).

Set α = min{α0, α1}. Suppose that Li gets values xi1, . . . , x
i
m with probabilities p1, . . . , pm, respec-

tively. Then,

ci < −risk-premcaraα(0, Li) =cara−1
α

 m∑
j=1

caraα(xij)pj


≈cara−1

α

 m∑
j=1

(−1 + αxij −
α2(xij)

2

2
)pj


=cara−1

α

 m∑
j=1

(−1)pj + α

m∑
j=1

xijpj −
m∑
j=1

α2(xij)
2

2
pj


=cara−1

α

(
−1 + 0− α2σ2

i

2

)
≈cara−1

α

(
−e−α(−ασ2

i /2)
)
< −ασ2

i .

So,

[
−α · (Σn)2 < Sn

]
⇒

[
n∑
i=1

ci < Sn

]
⇒ [(c1, . . . , cn) ≺ (`1, . . . , `n)] .(17)

22recall that g(y) = Ω(h(y)) as y → 0 if there exists a constant M and y0 such that g(y) > M ·h(y) for all y < y0.
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So, it is sufficient to prove that

Pr[Sn > −α(Σn)2 from some n on] = 1.

which is equivalent to saying that

Pr[Sn < −α(Σn)2 infinitely often] = 0,(18)

which is provided by Lemma A.6 (by symmetry).

(b): Suppose that RPû(ε) = O(ε2+β) as ε→ 0, with β > 0. So, there exists α and ε0 such that for

any ε < ε0, there exists an i and x with

risk-premûi(x,±ε) ≤ α · ε
2+β.(19)

Set ε1 = min{ε20, s2}. For j = 1, 2, . . ., set aj as follows:

aj =

{ √
ε1 if j = 3k

2
for some integral k

√
ε1

1√
j

otherwise

So, by (19), for any j there exists ij and xj with

risk-premûij
(xj ,±aj) ≤ α · a2+β

j .(20)

We construct a bounded, non-vanishing lottery sequence L = (L1, L2, . . .) that is not ultimately

superior to its repeated certainty equivalent, which we denote by (c1, c2, . . .). The construction of

L is inductive, wherein the lotteries are defined in chunks. For each j, the j-th chunk consists of

a sequence of degenerate lotteries, followed by a single ±aj lottery, with which the chunk ends.

We denote by n(j) the index of the last lottery in the j-th chunk. The chunks are constructed as

follows. Set n(0) = 0. Suppose L1, . . . , Ln(j−1) have been defined, and that their repeated certainty

equivalent is c1, . . . , cn(j−1). Let ij , xj be as in (20). Set yn(j−1) = c1 + · · · + cn(j−1). By Lemma

A.4 and (20), there exists m > max{n(j − 1), ij} and bn(j−1)+1, . . . , bm, with

risk-premûm(yn(j−1) + bn(j−1)+1 + · · ·+ bm,±aj) ≤ αa2+β
j .

Hence also (moving to m+ 1)23,

risk-premûm+1
(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1,±aj) ≤ αa2+β

j ,

which means that

ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 − (αa2+β
j )) ≤

≤1

2
(ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 − aj) + ûm+1(yn(j−1) + bn(j−1)+1 + · · ·+ bm + φm+1 + aj)).

23We move to m+ 1 with φm+1 to guarantee sufficient distance from the boundaries to allow a ±aj lottery.
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Accordingly, set Li = bi, for i = n(j − 1) + 1, . . . ,m and Lm+1 = 〈(φm+1 − aj), (φm+1 + aj)〉. By

construction, ci = bi for i = n(j − 1) + 1, . . . ,m, and

cm+1 ≥ φm+1 − αa2+β
j .(21)

Denote n(j) = m+ 1; that is, n(j) is the index of the ±aj lottery.

We now show that (c1, c2, . . .), is not ultimately inferior to (L1, L2, . . .). W.l.o.g. E(Li) = 0 for

all i. So, we have that Li = 〈(−σi), (σi)〉 with

σi =


√
ε1 if i = n(j) with j = 3k

2
for some integral k

√
ε1

1√
j

if i = n(j) for other j’s

0 otherwise

and

ci ≥


−α(ε1)1+β/2 if i = n(j) with j = 3k

2
for some integral k

−α(ε1)1+β/2 · 1
j1+β/2 if i = n(j) for other j’s

0 otherwise

Let Sn =
∑n

i=1 Li. So, Var(Sn) =
∑n

i=1 σ
2
i . So, for n = n(3k

2
),

Var(S
n(3k2 )

) ≥
3k

2∑
j=1

ε1
j
>

ek
2∑

j=1

ε1
j
> ε1 · k2.

On the other hand,

n(3k
2
)∑

i=1

ci ≥ −α(ε1)1+β/2

 3k
2∑

j=1

1

j1+β/2
+ k

 > −α(ε1)1+β/2 (D + k) ,

for D =
∑∞

j=1
1

j1+β/2 <∞.
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Set γ = α(ε1)1+β/2. Then, for k sufficiently large

Pr[(`1, . . . , `n(3k2 )
) - (c1, . . . , cn(3k2 )

)] = Pr

Sn(3k2 )
≤

n(3k
2
)∑

i=1

ci

 ≥
≥Pr

[
S
n(3k2 )

≤ −γ (D + k)
]

=

= Pr

[
S
n(3k2 )

Var(S
n(3k2 )

)1/2
≤ −γ (D + k)

Var(S
n(3k2 )

)1/2

]
≥

≥Pr

[
S
n(3k2 )

Var(S
n(3k2 )

)1/2
≤ −γ (D + k)

√
ε1 · k

]
≥

≥Pr

[
S
n(3k2 )

Var(S
n(ek2 )

)1/2
≤ −γ · 2

√
ε1

]
≈

≈ 1√
2π

∫ −2γε
−1/2
1

−∞
e−x

2/2dx = p > 0,

for some constant p. In particular, (`1, . . . , `n(3k2 )
) - (c1, . . . , cn(3k2 )

) for infinitely many k’s, with

probability 1. �

Proposition 4.2. RPû(ε) = Ω(ε2) as ε → 0, if and only if Aûn(x) is bounded away from 0,

uniformly for all n and x (assuming ûn is twice differentiable for all n).

Proof. Follows directly from Lemma A.2 and the fact that Acaraα(x) = α for all x. �

Theorem 4. For vn, un, and û as in Theorems 1 and 3

(a) Weak risk loving: -
∆

is weakly risk loving if and only if un is convex with respect to vn for

all n.

(b) Risk loving

• If (−RPû(ε)) = Ω(ε2) as ε→ 0 then -
∆

is risk loving.

• If (−RPû(ε)) = O(ε2+β) as ε→ 0 (for some β > 0) then -
∆

is not risk loving.

(c) Risk Neutral: -
∆

is risk neutral if and only if un is a linear transformation of vn for all n.

Proof. The proofs of (a) and (b) are analogous to those of Theorems 3 and 1. (c) follows from

combining Theorems 3 and 4. �

Proofs for Sections 5 and 6. Many of the claims of Section 5 become easier to analyze and

prove with the aid of the value function introduced in Section 6. Hence, we first provide the proofs

for Section 6 and then come back and prove those of Section 5.

Throughout, the following notation is used:

• v denotes a Debreu value function on S , and vTi a Debreu value function on the factor Ti.
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• u denotes an NM utility function on S . An NM utility for S necessarily exists since the

NM axioms are assumed to hold, and we consider only lotteries with finite support (see

Fishburn [13, Theorem 8.2]).

Preliminaries

Lemma A.7. u is continuous.

Proof. It suffices to prove that the pre-images of the open rays (−∞, r) and (r,∞) are open, for all r

(these open rays constitute a subbase for the standard topology on the line). Consider (−∞, r) (the

other case is analogous). If u(s) ≥ r for all s ∈ S then u−1(−∞, r) = ∅, which is open. Similarly,

if u(s) < r for all s ∈ S then u−1(−∞, r) = S , which is open. Otherwise, there exist s1 < r ≤ s2

and ŝ1, ŝ2 ∈ S , with u(ŝ1) = s1, u(ŝ2) = s2. Set p̂ = (r − s1)/(s2 − s1). Then, r = p̂s1 + (1− p̂)s2.

Since -
∆

is continuous the set

u−1(−∞, r) = {s : u(s) < r} = {s : s≺∆ 〈ŝ1, ŝ2 : p̂, (1− p̂)〉}

is open, by definition (where 〈ŝ1, ŝ2 : p̂, (1− p̂)〉 is the lottery with value ŝ1 with probability p̂ and

ŝ2 with probability 1− p̂). �

Proofs for Section 6.

Each factor T = Ti is a product of some set of commodity spaces, that is T =
∏
j∈T Ci, for some

index set T . For factors T =
∏
j∈T Cj and R =

∏
j∈R Cj , by a slight abuse of notation, we write

T ∩R for
∏
j∈T∩R Cj , T −R for

∏
j∈T−R Cj , and T ⊆ R if T ⊆ R. We say that T and R overlap

if T ∩R 6= ∅ and neither is contained in the other; the factor T is non-degenerate if T 6= ∅.

Lemma A.8. If there exist two non-identical independent partitions S = A × B and S = C × D,

then there exist value functions vA, vB, vC , and vD (for A,B, C,D), such that

(1) vA + vB and vC + vD both represent -,

(2) vA + vB = vC + vD,

(3) if v̂A, v̂B are value functions for A,B, and v̂C , v̂D, are value functions for C,D, then v̂A+ v̂B

is a positive affine transformation of v̂C + v̂D.

Proof. Gorman [15, Theorem 1] proves that if two independent factors E and F overlap then

E ∪ F , E ∩ F , E − F ,F − E , and E4F = (E − F) ∪ (F − E) are all independent.

Set W = A ∩ C,X = A ∩ D,Y = B ∩ C, and Z = B ∩ D. Then, by Gorman’s theorem,

W ,X ,Y ,Z are independent, as is any product thereof. Since the partitions are not identical, at

least three out of W ,X ,Y ,Z are non-degenerate. So, S = W × X × Y × Z is an independent

partition with at least 3 factors. So, by Debreu [7], there are value functions vW , vX , vY , and vZ ,

with vW + vX + vY + vZ representing -. So, the pair of functions vA = vW + vX and vB = vY + vZ

are value functions for the independent partition S = A×B. Similarly, the functions vC = vW+vY ,

and vD = vX + vZ are value functions for the independent partition S = C × D, proving (1) and

(2). Finally, (3) follows from (2) by the uniqueness of value functions. �
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Theorem 7. For any S, all (aggregate) Debreu value functions for S are identical up to positive

affine transformations.

Proof. Suppose S has two different independent partitions S = A1 × · · · ×An and S = C1 × · · · ×
Cm, with value functions vA1 , . . . , vAn and vC1 , . . . , vCm , respectively. Since the two partitions are

different, there must be some Ai for which there is no j with Cj = Ai. W.l.o.g. this is A1. Set

B = A2× · · · ×An and vB =
∑n

i=2 v
Ai . Similarly, set D = C2× · · · × Cj and vD =

∑j
i=2 v

Ci . Then,

vA1 + vB represents -, as does vC1 + vD. So, by Lemma A.8-(3),
∑n

i=1 v
Ai = vA1 + vB is an affine

transformation of
∑m

i=1 v
Ci = vC1 + vD. �

Theorem 8 is essentially a direct corollary of Theorem 4(a) of Epstein and Tanny[?], which states

the following (the notations and wording have been modified to match those of this paper):

Theorem A.9 ([12], Theorem 4(a)). Let X = X1 × X2, (with X1,X2 ⊆ R), be an independent

partition. Let -
∆ X

be a preference order on ∆(X ), with NM utility u(x1, x2). If uX (x1, x2) =

φ(α1x1 + α2x2), for some function φ, and constants α1, α2 > 0, then -
∆ X

is weakly R risk averse,

weakly R risk loving, or R risk neutral according to whether φ is concave, convex or linear.

The theorem also holds for (strict) R risk aversion and strict concavity, as well as (strict) R risk

loving and strict convexity.

The following Lemma is essentially Theorem 8 only stated with respect to a specific partition

and specific pair therein.

Lemma A.10. Let -
∆

be an preference on ∆(S), and - the induced preference on S, with u an

NM utility representing -
∆

, and v a Debreu value function representing -. For any independent

partition S = T1×· · ·×Tn, and any pair of factors Ti, Tj, of the partition, the following holds: -
∆

is

R risk averse, (R weakly risk averse, R risk loving, R weakly risk loving, risk neutral) with respect

to the partition and the pair of factors, if and only if u is strictly concave (respectively, concave,

strictly convex, convex, linear) with respect to v.

Proof. We prove the claim for weak R risk aversion and concavity. The other claims are analogous.

Also, it suffices to prove for the pair of factors T1, T2.

Since there exists a value function v representing - (based on some independent partition), by

Lemma A.8, there exist value functions vTi for the Ti’s, with v =
∑n

t=1 v
Tt .

Let I1,2 be the image of T1 × T2 under vT1 + vT2 ; that is, I1,2 = {vT1(a1) + vT2(a2) : (a1, a2) ∈
T1 × T2}.

Let û be such that u(a1, . . . , an) = û(v(a1, . . . , an) (such a û exists since -
∆

and - agree on

the certainties). So, for any fixed c = (c3, . . . , cn), u(a1, a2, c) = û(vT1(a1) + vT2(a2) + xc), for

xc =
∑n

j=3 v
Tj (cj). So, Theorem A.9 applies, with X1 = vT1(T1) and X2 = vT2(T2). So, for each

fixed c, by Theorem A.9, û is concave on I1,2 + xc if and only if

〈(a1, a2, c), (b1, b2, c)〉-∆ 〈(a1, b2, c), (b1, a2, c)〉 .(22)
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for any a1 ≺ b1, a2 ≺ b2.

In particular, if û is concave throughout its domain, then (22) holds for any c.

Conversely, if (22) holds for any c, then û is concave on overlapping intervals covering its entire

range, so it is concave. �

Theorem 8. For NM utility u and Debreu value function v,

• Risk aversion:

◦ u is strictly concave with respect to v if and only if -
∆

is R risk averse.

◦ u is concave with respect to v if and only if -
∆

is weakly R risk averse.

• Risk loving:

◦ u is strictly convex with respect to v if and only if -
∆

is R risk loving.

◦ u is convex with respect to v if and only if -
∆

is weakly R risk loving.

• Risk neutrality: u is linear with respect to v if and only if -
∆

is R risk-neutral.

Proof. This is exactly Lemma A.10. �

Proofs for Sections 5.

Theorem 5. If -
∆

is R risk averse with respect to some independent partition S = T1×· · ·×Tn, and

some pair of factors Ti, Tj, then it is also R risk averse with respect to any independent partition,

and any pair therein. Similarly for weak R risk aversion.

Proof. If there is only one independent partition, with only two factors, then there is nothing to

prove. Otherwise, either there are two different partitions, or there are more than two factors in

the partition (or both). In either case, there exists a Debreu value function v representing -.

Suppose that -
∆

is R risk averse with respect to some partition and some pair. Then, by Lemma

A.10, u is concave with respect to v. So, again, by Lemma A.10, -
∆

is R risk averse with respect to

any other partition and any pair therein. Similarly for weak R risk aversion. �

Proof of Theorem 6.

As it turns out, the proof of Theorem 6 is the most involved in the section. The challenge arises

in the case that the partition is with only two factors, in which case a Debreu value function need

not exist, and the tools of Section 6 do not apply.

When considering a partition into two factors, we adopt the following notation, which is some-

what different from that used in the rest of the paper. The independent partition is denoted

S = A × B. We use a,A, with or without subscripts or superscripts, for points in A, and b, B for

points in B. By convention, a ≺ A and b ≺ B.

Let wA : A → R be a continuous real function representing -A, and similarly wB a continuous

real function representing -B (such function are exist by Debreu [6] since -A and -B are contin-

uous). Define w : A × B → R2 as w(a, b) = (wA(a), wB(b)). Let IA × IB ⊆ R2 be the image of

A × B under w.
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Lemma A.11. u◦w−1 : IA×IB → R is well defined, increasing in each coordinate, and continuous.

Proof. If w(a, b) = w(a′, b′) then (a, b) ∼ (a′, b′), and hence u(a, b) = u(a′, b′). Thus, u ◦ w−1 is

well defined. It is increasing is each coordinate as u and wA, wB agree on the certainty preference.

Denote û = u ◦w−1, and for x ∈ IA define ûBx : IB :→ R, by ûBx (y) = û(x, y). Then, the ûBx is

monotone. Also, ûBx (IB) = u((wA(x)−1,B) is an interval (since B is a finite product of connected

spaces and u continuous). So, ûBx is continuous for any x. Similarly, the function ûAy : IA :→ R,

defined by ûBy (x) = û(x, y) is continuous for any y.

To prove continuity of û, we prove that the pre-images of the open rays (−∞, r) and (r,∞) are

open, for all r. Consider (−∞, r) (the other case is analogous). Set Er = {(x, y) : û(x, y) < r}.
If Er = ∅ or Er = IA × IB then there is nothing to prove. Otherwise, consider (x∗, y∗) with

û(x∗, y∗) < r − ε, for some ε > 0. We show that there is a neighborhood of (x∗, y∗) fully contained

in Er. Suppose that x∗ is not maximal in IA and y∗ not maximal in IB (the proof for the case that

one of them is maximal is similar). The function ûBx∗ is continuous. So, there exists some y′ with

0 < ûBx∗(y
′)− ûBx∗(y∗) <

1

2
ε.(23)

Similarly, the function ûAy′ is continuous. Thus, there exists x′ with

0 < ûAy′(x
′)− ûAy′(x∗) <

1

2
ε.(24)

Combining (23) and (24), we obtain

û(x∗, y∗) < û(x′, y′) + ε < r.

Set δ = min{x′− x∗, y′− y∗}. Then, for any (x, y) if ‖(x, y)− (x∗, y∗)‖ < δ then x < x′ and y < y′.

So, by monotonicity of û, û(x, y) < û(x′, y′) < r. So, the entire ball of size δ around (x∗, y∗) is

contained in Er, as required. �

Lemma A.12. Let A × B be an independent partition and a ≺ A, b ≺ B. Set a0 = a, and while

(ai, B) - (A, b) let ai+1 be such that (ai+1, b) ∼ (ai, B) (such an ai+1 exists by continuity). Then,

there exists an ī such that (aī, B) % (A, b) (that is, the sequence a0, a1, . . . is finite).

Proof. Contrariwise, suppose there is no such ī. Then, for i = 1, 2, . . ., (ai, B) ≺ (A, b), and hence

ai ≺ A. Clearly, ai - ai+1. Thus, the sequence a1, a2, . . . , is an infinite monotone and bounded

sequence, and hence converges to a limit â. By definition, for each i

(ai, B) ∼ (ai+1, b).

Thus, by continuity,

(â, B) ∼ (â, b),

which is impossible since b ≺B B and - is strictly monotone in each factor. �

Theorem 6. -
∆

is R risk-averse if and only if it is perfect-R risk averse.
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Proof. R risk aversion ⇒ perfect-R risk aversion: The requirement of perfect-R risk aversion - (3)

- is identical to that of R risk aversion - (2) - only limited to perfectly hedges.

Perfect-R risk aversion ⇒ R risk aversion: Suppose that -
∆

is perfect-R risk averse. First, consider

the case that the independent partition is with three or more factors. That is, suppose that

S = T1 × · · · × Tn, n ≥ 3. Then, there are Debreu value functions for the partition. Let vTi

be the value function of Ti. By Theorem 8 u is concave with respect to v =
∑n

i=1 v
Ti . Consider

a1 ≺ b1, a2 ≺ b2, and c ∈ S−{1,2}. Set xi = vTi(ai), yi = vTi(bi) and z =
∑n

i=2 v
Ti(ci). W.l.o.g.

x1 = x2 = z = 0. Set λ = y1

y1+y2
. Then, since u is concave with respect to v

λ · u(a1, a2, c) + (1− λ)u(b1, b2, c) =λ · (u ◦ v−1)(0) + (1− λ)(u ◦ v−1)(y1 + y2) <

(25)

(u ◦ v−1)(λ · 0 + (1− λ)(y1 + y2)) = (u ◦ v−1)(y2) = u(a1, b2, c).(26)

Similarly,

(1− λ)u(a1, a2, c) + λ · u(b1, b2, c) < u(b1, a2, c).(27)

Combining (25) and (27)

u(a1, a2, c) + u(b1, b2, c) < u(a1, b2, c) + u(b1, a2, c),

and -
∆

is R risk averse.

Next, suppose that the partition has only two factors: S = A× B. Let a,A ∈ A, b, B ∈ B, with

a ≺ A and b ≺ B. We need to show that

〈(a, b), (A,B)〉≺∆ 〈(A, b), (a,B)〉 .(28)

If (a,B) ∼ (A, b) then they are perfectly hedged and (28) holds by the definition of perfect-R risk

aversion.

Otherwise, let u be an NM utility for -
∆

. set

diff = u(a, b) + u(A,B)− u(a,B)− u(A, b).

We show that diff < 0, which establishes (28).

Let wA be a continuous function representing -A and wB a continuous function representing

-B (the certainty preferences). In order to prove that diff < 0, we start out by proving that there

exists a 1
2
, A 1

2
, b 1

2
, B 1

2
, with

a - a 1
2
≺ A 1

2
- A, and b - b 1

2
≺ B 1

2
- B,

such that

wA(A 1
2
)− wA(a 1

2
) ≤ 1

2
(wA(A)− wA(a)) or

wB(B 1
2
)− wB(b 1

2
) ≤ 1

2
(wB(B)− wB(b))

(29)
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Figure 3. Illustration of the proof of Theorem 6. The values ai are calculated

left-to-right, starting at a = a0. Here ī = 2 and the point a2 is such that wA(a2) ≥
1
2(wA(A) + wA(a)) (assuming the picture is scaled according to wA).

and

diff < u(a 1
2
, b 1

2
) + u(A 1

2
, B 1

2
)− u(a 1

2
, B 1

2
)− u(A 1

2
, b 1

2
).(30)

W.l.o.g. we may assume that (a,B) ≺ (A, b); so (a, b) ≺ (a,B) ≺ (A, b). Thus, since -A is

continuous and A connected, there exists a ≺ a1 ≺ A with

(a1, b) ∼ (a,B).(31)

Figure 3 illustrates the following argument. Set a0 = a. Given ai, let ai+1 be such that (ai+1, b) ∼
(ai, B). Let ī be the first index with (aī, B) % (A, b); such an ī exists by Lemma A.12. Then,

(a,B) ≺ (A, b) - (aī, B). Thus, there exists A1, a ≺ A1 - aī, such that (A1, B) ∼ (A, b). Clearly,

aī - A. Thus, either

wA(A1) ≤ 1

2
(wA(a) + wA(A)),(32)

or

wA(aī) ≥ 1

2
(wA(a) + wA(A)).(33)

We consider each of these cases separately.

First, suppose that (32) holds. Then, by construction (A1, B) ∼ (A, b), and they are perfectly

hedged. Hence, by assumption,〈
(A1, b), (A,B)

〉
≺∆
〈
(A1, B), (A, b)

〉
.

So,

u(A1, b) + u(A,B)− u(A1, B)− u(A, b) < 0.
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Hence,

u(a, b) + u(A,B)− u(A, b)− u(a,B) =

u(a, b) + u(A1, B)− u(A1, b)− u(a,B) + u(A1, b) + u(A,B)− u(A1, B)− u(A, b) <

u(a, b) + u(A1, B)− u(A1, b)− u(a,B).(34)

Setting a 1
2

= a, A 1
2

= A1, b 1
2

= b and B 1
2

= B, by (32) and (34) we get (29) and (30).

Next, suppose that (33) holds. Then, by construction, for i = 1, . . . , ī, (ai−1, B) ∼ (ai, b), and

each such pair is perfectly hedged. Since -
∆

is ordinally risk averse,〈
(ai−1, b), (ai, B)

〉
≺∆
〈
(ai−1, B), (ai, b)

〉
,

for all i. So,

1

2̄i

ī∑
i=1

(
u(ai−1, b) + u(ai, B)

)
<

1

2̄i

ī∑
i=1

(
u(ai−1, B) + u(ai, b)

)
;(35)

and

u(a0, b) + u(aī, B) < u(aī, b) + u(a0, B);

so (as a0 = a)

u(a, b) + u(aī, B)− u(aī, b)− u(a,B) < 0 .

Hence,

u(a, b) + u(A,B)− u(A, b)− u(a,B) =

u(a, b) + u(aī, B)− u(aī, b)− u(a,B) + u(aī, b) + u(A,B)− u(aī, B)− u(A, b) <

u(aī, b) + u(A,B)− u(aī, B)− u(A, b).(36)

Setting a 1
2

= aī, A 1
2

= A, b 1
2

= b and B 1
2

= B, by (33) and (36) we get (29) and (30).

Thus, we have established (29) and (30), and we now return to complete the proof that diff < 0.

Set

diff 1
2

= u(a 1
2
, b 1

2
) + u(A 1

2
, B 1

2
)− u(a 1

2
, B 1

2
)− u(A 1

2
, b 1

2
).

Then,

diff < diff 1
2
.

Applying the above halving procedure repeatedly, we obtain that for any δ > 0 there exists

(aδ, bδ), (Aδ, Bδ), such that

wA(Aδ)− wA(aδ) ≤δ or(37)

wB(Bδ)− wB(bδ) ≤δ(38)

39



and

diff 1
2
<u(aδ, bδ) + u(Aδ, Bδ)− u(aδ, Bδ)− u(Aδ, bδ) =

(u(Aδ, Bδ)− u(aδ, Bδ)) + (u(aδ, bδ)− u(Aδ, bδ)) =(39)

(u(Aδ, Bδ)− u(Aδ, bδ)) + (u(aδ, bδ)− u(aδ, Bδ)) .(40)

By Lemma A.11 the function u ◦ (wA, wB)−1 is continuous. So it is uniformly continuous on the

rectangle [wA(a), wA(A)]× [wB(b), wB(B)]. That is, for any ε > 0, there exists a δ such that if

‖(wA(a′), wB(b′))− (wA(a′′), wB(b′′))‖ < δ

then

|u(a′, b′)− u(a′′, b′′)| < ε.

In particular, if (37) holds then (39) is ≤ 2ε, and if (38) holds then (40) is ≤ 2ε. Thus, diff 1
2
≤ 0,

so diff < 0. �

Proofs for Section 8.

Theorem 9. In the multi-commodity setting (with S = T1×· · ·×Tn an independent partition), the

NM utility function u has constant coefficient of absolute risk aversion when measured with respect

to the Debreu value function v if and only if for any i, lotteries L,L′ over Ti, and x,y ∈ Ω−{i}

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

Proof. Let u be an NM utility representing -
∆

. Meyer [22] (quoted in [25]) showed that all Ti’s are

utility independent if and only if there exist functions ui : Ti → R, β > 0 and α, such that one of

the following holds:

u(a1, . . . , an) =

n∑
i=1

ui(ai)(41)

u(a1, . . . , an) = α+ β

n∏
i=1

ui(ai) , with ui(ai) > 0(42)

u(a1, . . . , an) = α− β
n∏
i=1

(−ui(ai)) , with ui(ai) < 0.(43)

If (41) holds than the ui’s are Debreu value functions (since -
∆

agrees with -). So u is linear

with respect to v, and, in particular CARA.

If (42) holds than setting vi = ln(ui) we have that

v(a1, . . . , an) =

n∑
i=1

vi(ai) = ln(

n∏
i=1

ui(ai)),
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is a Debreu value function representing -. So,

u(a1, . . . , an) = α+ βev(a1,...,an),

is CARA w.r.t. v.

If (43) holds than setting vi = − ln(−ui) we have that

v(a1, . . . , an) = −
n∑
i=1

vi(ai) = − ln(
n∏
i=1

−ui(ai))

is a Debreu value function, and

u(a1, . . . , an) = α− βe−v(a1,...,an),

is CARA w.r.t. v. �

Proposition 8.1. Let - be an (additively separable) preference order on S = T1× · · · × Tn, and g

a real valued function on S. Suppose that the following holds for any NM utility function u:

• u has constant coefficient of absolute risk aversion when measured with respect to g if and

only if

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

for any L,L′ ∈ ∆(Ti), and x,y ∈ S−{i}.

Then g is a Debreu value function.

Proof. In the literature, the condition that

(L,x)-
∆

(L′,x) ⇐⇒ (L,y)-
∆

(L′,y).

for any L,L′ ∈ ∆(Ti), and x,y ∈ S−{i} is termed utility independence of Ti [19].

By assumption there exists a Debreu value function v for S with v =
∑n

i=1 v
Ti . So, for the NM

utility function u = v, it holds that each Ti is utility independent. So, by assumption this u is

CARA in g. So, v is CARA in g. If it is linear there is nothing to prove. Otherwise,

v = α+ βeγg,(44)

for some α, β, γ.

Now consider another NM utility u = ev. By Theorem 9 under this utility function each Ti
is utility independent. Hence, by assumption, this u must also be CARA in g. But, by (44),

u = ev = eα+βeγg , which is not CARA in g. �
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Appendix B. Unbounded Lottery Sequences

Here we show why in Definition 1 one needs to require that the lottery sequence be bounded.

Suppose that the conditions of Section 4 hold. We show that if we allow for unbounded lottery

sequences, then for any preference policy -
∆

= (-
∆ 1
,-

∆ 2
, . . .), there exists a lottery sequence that is

ultimately inferior to its repeated certainty equivalent.

Let vTi be the value function of Ti. W.l.o.g. suppose that Ti is already represented in terms of

vTi , that is vTi(ai) = ai for all ai ∈ Ti. Then, the certainty preferences -n are simply determined

by the sum of the coordinates.

Let un be a NM utility representing -
∆ n

. For each n, let bn be such that

2−n · un(0, . . . , 0, bn) +
(
1− 2−n

)
un(0, . . . , 0,−1) = un(0, . . . , 0).

Let Ln be the lottery obtaining the value bn with probability 2−n and the value −1 with probability

1− 2−n. Then, c1, c2, . . . , the repeated certainty equivalent of the lottery sequence L1, L2, . . ., has

cn = 0 for all n. However,
∞∑
n=1

Pr[`n > −1] =
∞∑
n=1

2−n <∞.

So, by the Borel Cantelli lemma

Pr[`n > −1 infinitely often] = 0.

So,

Pr[

n∑
i=1

`i < 0 from some n on] = 1,

and hence

Pr[

n∑
i=1

`i < 0 =

n∑
i=1

ci from some n on] = 1.

So, L1, L2, . . . is ultimately inferior to c1, c2, . . ..

Appendix C. Additive Utility Functions

In Section 9.3 we noted that if the NM utility must be additive, then the certainty preferences

uniquely determine the lottery preferences. Here, we make this statement precise, and prove it.

For a utility function u over ∆(S), we say that u is additively separable if there exists a partition

S = T1×· · ·×Tn, n ≥ 2, and non-constant functions uTi , i = 1, . . . , n, such that for ω = (a1, . . . , an),

u(ω) =
∑n

i=1 u
Ti(ai). Note that the definition of additively separable does not specify the partition.

So, two additively separable function may be so with respect to different partitions.

Theorem 10. Let - be a preference order on S. There exists at most one preference order -
∆

on

∆(S) that agrees with -, and for which the corresponding utility function u is additively separable.
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Proof. Let u be an additively separable utility function. Suppose that u agrees with - on the

certainties; that is, u represents - (if no such u exists then there is nothing to prove). By definition

u(ω) =
∑n

i=1 u
Ti(ai), for some partition. So, u is (also) a Debreu value function. So, by Theorem

7, u is unique up to positive affine transformations. �
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