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1 Introduction

This paper presents an analysis of the existence and the computation of solutions to asset-

pricing models that feature long-run risk. We provide a formal existence theorem for the basic

Bansal and Yaron (2004) long-run risk model. We then show numerically that the model

solutions are potentially very nonlinear, and that for many plausible choices of parameters

and exogenous processes the errors introduced by linearization are economically significant. In

fact, for very persistent processes the approximation errors in model moments can be as large

as 50%, and can get such basic facts wrong as the direction of the yield curve. The increasing

complexity of state-of-the-art asset-pricing models leads to complex nonlinear equilibrium

functions with considerable curvature which in turn can have sizable economic implications.

Therefore, these models require numerical solution methods, such as the projection methods

employed in this paper, that can adequately describe the higher-order equilibrium features.

Asset-pricing models have become increasingly complex over the last three decades. The

first generation of such models, developed in the 1980s (Grossman and Shiller (1981), Hansen

and Singleton (1982), Mehra and Prescott (1985)), proved inadequate in explaining large-

scale features of financial markets, such as the high equity premium and the low risk-free

rate. As the literature on asset-pricing evolved and matured over time, researchers added

more and more complex features to their models with, among others, incomplete markets in

form of uninsurable income risks, frictions such as borrowing or collateral constraints, time-

varying risk aversion, and heterogeneous expectations. While these additional features had

varying degrees of success, recently the new generation of long-run risks models (e.g. Bansal

and Yaron (2004) or Hansen, Heaton, and Li (2008)) with their interplay of long-run risks,

stochastic volatility, and recursive preferences have had considerably more success in resolving

long-standing asset pricing puzzles.

An important part of the appeal of the long-run risk model is that Bansal and Yaron

(2004) introduce a simple linearized solution method based on the Campbell and Shiller (1988)

present-value relation. Long-run risk models feature both highly nonlinear preference struc-

tures as well as complex specifications for the exogenous driving forces of the economy. To

handle the complexity, researchers must resort to some sort of numerical approximation pro-

cedure to make their models tractable. Bansal and Yaron showed that for their original model

the log price-dividend ratio could be well-approximated by a linear function of the under-

lying shocks. The linearized Campbell-Shiller solution, which adjusts for the impact of risk

on the average price-dividend ratio, is a considerable advance over the traditional method of

log-linearizing around the deterministic steady state, which is known to provide a poor ap-

proximation for Epstein-Zin preferences (e.g. Caldara, Fernandez-Villaverde, Rubio-Ramirez,

and Yao (2012), Juillard (2011) or de Groot (2013)).

2



But time marches on, and researchers have moved with it. By its very nature, a log-linear

approximation will miss higher-order effects. Can we always safely ignore these higher-order

effects? To answer this question, we examine higher-order dynamics in five additional recent

studies, the newly calibrated version of the Bansal and Yaron (2004) model by Bansal, Kiku,

and Yaron (2012a), the extensive calibration study of Schorfheide, Song, and Yaron (2014),

the volatility-of-volatility model of Bollerslev, Xu, and Zhou (2015) and the work on real and

nominal bonds of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) and Bansal and

Shaliastovich (2013).

We show that the errors introduced by the Campbell-Shiller approximation can be large

and economically significant. For example, Bansal, Kiku, and Yaron (2012a) recalibrate the

original Bansal and Yaron (2004) model to have more persistent shocks to stochastic volatility.

We find that for this calibration the log-linearization introduces approximation errors as large

as 22% for key quantities such as the equity premium or the volatility of price-dividend ratio.

Schorfheide, Song, and Yaron (2014) perform a Bayesian estimation of the model using the

same approximation, and find evidence for a higher persistence for long-run risk. In this case

we find approximation errors as large as 50% for some key model moments. In general, highly

persistent processes lead to solutions that are highly nonlinear, and thus economically relevant

approximation errors. Log-linearization can even introduce errors in qualitative conclusions.

For example, under high persistence log-linearization can actually invert the slope of the yield

curve in the nominal bond models of Bansal and Shaliastovich (2013) and Koijen, Lustig,

Van Nieuwerburgh, and Verdelhan (2010).

As an alternative solution procedure, we use the projection method to solve the nonlinear

fixed-point equation for the wealth portfolio. It is known (Atkinson (1992)) that if the fixed-

point equation has a solution, then under weak conditions the projection method will converge

to a solution. This leads us to consider the question of the existence of a solution. Marinacci

and Montrucchio (2010) and Hansen and Scheinkman (2012) prove general theorems about the

existence of solutions, but for the types of models considered by the long-run risk literature, the

existence of a solution is quite delicate, and depends on specific values of both the preference

and exogenous process parameters. We prove a simple relative result – if the model has a

solution under CRRA preferences for a particular exogenous process specification, then it has

a solution for an investor that prefers early resolution for the same specification. For investors

that prefer late resolution, the implication goes the other way. We then adapt the results in

de Groot (2015) to show that the CRRA version of the long-run risk model has a solution,

from which existence for Bansal and Yaron (2004) follows.

Summarizing, by construction, log-linearizing the model as it is commonly done in the

asset pricing literature misses higher-order dynamics by construction. If the driving factors of

the economy are of low persistence or the risk aversion of the representative agent is low, these
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dynamics will have a negligible influence on equilibrium outcomes. However, the combination

of highly persistent processes, together with recursive preferences and a risk aversion signifi-

cantly larger than one, can introduce strong non-linear dynamics to the model. We show that

these errors have a large impact on key financial statistics in many recent asset pricing studies

and introduce a bias to the model parameters when it comes to estimation or calibration of

the model. Therefore, in the future more sophisticated solution methods should be used, as

for example projection methods, that can account for higher-order dynamics.

The paper is organized as follows. Section 2 describes the general model framework that

is used throughout the paper. In Section 3 we provide a formal theorem for the existence of

solution in the economy and analyze the key factors determining existence. Afterwards we

examine the effect of higher-order dynamics in six recent asset pricing studies in Section 4.

Section 5 concludes.

2 Model Framework

We consider a standard asset-pricing model with a representative agent and recursive pref-

erences as in Epstein and Zin (1989) and Weil (1990). Indirect utility at time t, Vt, is given

recursively as

Vt =
[
(1− δ)C

1−γ
θ

t + δ
[
Et
(
V 1−γ
t+1

)] 1
θ

] θ
1−γ

. (1)

In this parametrization, Ct is consumption, δ is the time discount factor, γ determines the

level of relative risk aversion, θ = 1−γ
1− 1

ψ

, where ψ is the elasticity of intertemporal substitution

(EIS). γ and ψ are required to satisfy 0 < γ, ψ, and ψ 6= 1. For θ = 1 the agent has standard

CRRA preferences, while θ < 1 indicates a preference for the early resolution of risk and θ > 1

indicates a preference for late resolution. The general asset pricing equation to price any asset

i with ex-dividend price Pi,t and dividend Di,t is given by

Et [Mt+1Ri,t+1] = 1 (2)

where Ri,t+1 =
Pi,t+1+Di,t+1

Pi,t
. For recursive preferences, the stochastic discount factor Mt+1 is

given by

Mt+1 = δ

(
Ct+1

Ct

)− 1
ψ

 Vt+1[
Et
(
V 1−γ
t+1

)] 1
1−γ

 1
ψ
−γ

. (3)
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Epstein and Zin (1989) show that the (unobserved) value of the aggregate wealth, Wt, can be

expressed in terms of the value function,

Wt =
V

1−1/ψ
t

(1− δ)C−1/ψ
t

. (4)

This expression in turn permits expressing Mt+1 in terms of the gross return to the claim on

aggregate consumption Rw,t+1,

Mt+1 = δθ
(
Ct+1

Ct

)− θ
ψ

Rθ−1
w,t+1 (5)

where Rw,t+1 = Wt+1

Wt−Ct . As equation (2) has to hold for all assets, it must also hold for the

return of the aggregate consumption claim. Thus, Rw,t+1 is determined by the wealth-Euler

equation

Et

[
δθ
(
Ct+1

Ct

)− θ
ψ

Rθ
w,t+1

]
= 1. (6)

Throughout the paper we consider a general setup for the specification of log consumption

growth, ∆ct+1, that allows for long-run risk, xt, and separate stochastic volatility processes,

σc,t and σx,t,

∆ct+1 = µc + xt + φcσc,tηc,t+1

xt+1 = ρxt + φxσx,tηx,t+1 (7)

where ηc,t+1 and ηx,t+1 are random shocks. In the remainder of the paper we consider varia-

tions of this setup that include different specifications for the stochastic volatility processes

as well as additional state processes such as volatility of volatility or inflation.

Before we analyze the model we must answer two fundamental questions. First, does a

solution for the model exist? Secondly, if a solution exists, how can we reliably compute it?

To the best of our knowledge there are no closed-form solutions for the general model. So

the common solution approach used in the finance literature is to log-linearize the model, see

Segal, Shaliastovich, and Yaron (2015), Bansal, Kiku, and Yaron (2010), Bansal, Kiku, and

Yaron (2012a), Bollerslev, Tauchen, and Zhou (2009), Kaltenbrunner and Lochstoer (2010),

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010), Drechsler and Yaron (2011), Bansal

and Shaliastovich (2013), Constantinides and Ghosh (2011), Bansal, Kiku, Shaliastovich, and

Yaron (2014) or Beeler and Campbell (2012), among others. However, log-linearization misses

by construction the influence of higher order dynamics; that is, the approach does not attempt
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to approximate nonlinear features of the exact solution. But what if these features matter

qualitatively for the existence of solutions and quantitatively for equilibrium outcomes? Does

log-linearization still deliver sufficiently accurate approximations of the exact solution?

We address these two critical issues in the next section of this paper. We first develop

a formal existence criterion for the general model. Once we have established theoretical

conditions, we can examine whether the log-linearized solution is in line with the formal

existence results. For this task we need a different solution method that accurately accounts for

higher-order dynamics and yields robust solutions. A convenient choice are projection methods

that allow us to choose the approximation degree as well as the size of the approximation

interval in order to be able to capture higher-order elements. While the projection methods

require more computational effort, they are capable of correctly capturing higher-order features

of the asset returns. For example Caldara, Fernandez-Villaverde, Rubio-Ramirez, and Yao

(2012, p. 189) find that for a stochastic growth model with Epstein-Zin utility projection

methods “provide a terrific level of accuracy with reasonable computational burden.” We

compare the solutions obtained by log-linearization and projection and check whether the

log-linearized solution provides reasonably accurate approximations.1

3 Existence and Computation of Solutions

Marinacci and Montrucchio (2010) and Hansen and Scheinkman (2012) consider the existence

of solutions for the fixed-point equation for the value function for general process specifications.

Applying these results to the Bansal-Yaron model has proven delicate. For example, de Groot

(2015) considers the existence of solutions for growth economies with stochastic volatility

under CRRA preferences, and finds that existence is a complex nonlinear function of the

process.

To prove existence, we sidestep the challenge of proving a general result, but instead provide

a simple relative result. We show that if the model has a solution for CRRA preferences

(θ = 1), then it has a solution when investors have a preference for early resolution of risk

(θ < 1), which includes most models in the literature. Interestingly, if investors have a

preference for late resolution of uncertainty (θ > 1), the implication is reversed.

This relative result allows us to leverage the extensive literature proving existence for

CRRA utility for growth economies. The initial contribution of Burnside (1998) provides

both a closed-form solution and characterization for existence when log-consumption growth

follows a simple AR(1) process with Gaussian shocks. This result has been extended in

various ways. Bidarkota and McCulloch (2003) and Tsionas (2003) generalize the result by

1Appendix B provides detailed descriptions of the two solution methods. Appendix C demonstrates the high
accuracy of projection methods.
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relaxing the assumption of normal shocks to any stable shock distribution and to shocks

with well-defined moment generating functions, respectively. Collard, Féve, and Ghattassi

(2006) show how to generalize Burnside (1998) to the case of habit formation. Calin, Chen,

Cosimano, and Himonas (2005) derive closed-form solutions for asset pricing models with one

state variable as long as the utility function and the price-dividend function are analytic.

Chen, Cosimano, and Himonas (2008) use this method to analyze existence of solution in the

habit model of Campbell and Cochrane (1999) and show how to generalize the approach to

multi-dimensional state spaces. Most directly relevant to our application, de Groot (2015)

shows how to generalize the result to processes that feature stochastic volatility. In an online

appendix, deGroot also provides a closed-form solution for both long-run risk and stochastic

volatility, as in the specification of Bansal and Yaron (2004). (The results can be generalized

further to specifications featuring, for example, volatility of volatility or inflation.)

3.1 Existence for Epstein-Zin Utility

For the proof of a formal existence theorem for the general model, we first state a special

fixed-point result. Subsequently, we present an existence theorem. Appendix A contains the

proofs of all formal statements.

3.1.1 A Fixed-Point Result

Marinacci and Montrucchio (2010) apply Tarski’s Fixed-Point Theorem, Tarski (1955), to es-

tablish the existence of solutions to general nonlinear stochastic equations which encompass,

as special cases, many of those arising in stochastic dynamic programming. Here we use a sim-

ilar fixed-point argument, such as in the proof of Proposition 1 in Marinacci and Montrucchio

(2010, Section 4), in a key step towards proving the existence of solutions to the asset-pricing

equation for Epstein-Zin utility.

Let st be a real vector-valued Markov process with elements in S ⊂ Rl, l ≥ 1, with

conditional probability density p(s′|s). Let V be the set of all Lebesgue-measurable functions

f : S → R+, such that ∫
f(s′)max(1,θ)p(s′|s) <∞.

This set is the space of all candidate solutions to the fixed-point problems addressed in the

lemmata below. We write f ≥ g if f(s) ≥ g(s) for almost all s. This introduces a partial order

on V . With this partial order, for any given g∗ ∈ V , the interval [0, g∗] ≡ {f ∈ V : 0 ≤ f ≤ g∗}
is a complete lattice.

Now consider a functional T : V → V . The functional T is monotone, or order-preserving,

iff f ≤ g implies Tf ≤ Tg for any pair f, g ∈ V . Further suppose that T maps [0, g∗] to itself
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for some g∗ ∈ V , so T ([0, g∗]) ⊆ [0, g∗]. Then the Tarski Fixed-Point Theorem, Tarski (1955),

implies that T has a fixed point in [0, g∗]; in fact, the set of fixed points is also a complete

lattice. This theorem implies the following lemma.

Lemma 1. Let T, U : V → V, such that for any pair f, g ∈ V with f ≤ g it holds that

Tf ≤ Tg ≤ Ug.

Further suppose g∗ is a fixed point of U . Then T has a fixed point in [0, g∗].

We also need the following lemma.

Lemma 2. Let β ∈ [0, 1), λ ∈ R, and 0 6= θ ≤ 1. Furthermore, let C, f ∈ V. Let T be the

operator

Tf = (1− β)Cλ + β
[
E(f θ|s)

]1/θ
and U be the operator

Uf = (1− β)Cλ + βE(f |s).

Then T and U preserve V. In addition,

(A) Let 0 6= θ ≤ 1. Then for any f, g ∈ V with f ≤ g implies Tf ≤ Tg ≤ Ug.

(B) Let θ > 1. Then for any f, g ∈ V with f ≤ g implies Uf ≤ Ug ≤ Tg.

Applying Lemma 1 to the operators in Lemma 2 leads to our final conclusion in this

section.

Lemma 3. For the two operators in Lemma 2(A), if U has a fixed point, so does T . For the

two operators in Lemma 2(B), if T has a fixed point, so does U .

This lemma enables us to obtain an existence result for the model with Epstein-Zin (EZ)

preferences.

3.1.2 CRRA vs. EZ

Recall the value function recursion (1) for Epstein-Zin utility,

Vt =
[
(1− δ)C

1−γ
θ

t + δ
[
Et
(
V 1−γ
t+1

)] 1
θ

] θ
1−γ
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with 0 < γ, ψ 6= 1, and θ = 1−γ
1− 1

ψ

. The value θ = 1 yields CRRA utility as a special case.

Define λ = 1− 1
ψ

and V̂ = V λ to obtain

V λ
t = (1− δ)Cλ

t + δ
[
Et

(
(V λ

t+1)
1−γ
λ

)]1/θ

⇐⇒ V̂t = (1− δ)Cλ
t + δ

[
Et

(
V̂ θ
t+1

)]1/θ

. (8)

The following theorem relates solutions for the model with CRRA utility (θ = 1) to solutions

for the general model with θ 6= 1.

Theorem 1. Let 0 < ψ 6= 1 be given. Suppose consumption C is a positive function of a real

vector-valued Markov process.

(A) If the asset-pricing model characterized by equations (1)–(6) has a solution for CRRA

utility, γ = 1
ψ

, then it also has a solution for Epstein-Zin utility with 0 6= θ < 1; that is,

for 1 6= γ > 1
ψ

if ψ > 1 and 1 6= γ < 1
ψ

if ψ < 1.

(B) If the asset-pricing model characterized by equations (1)–(6) has a solution for Epstein-

Zin utility with θ > 1, that is, for γ < 1
ψ

if ψ > 1 and γ > 1
ψ

if ψ < 1, then it also has

a solution for CRRA utility with γ = 1
ψ

.

Theorem 1(A) enables us to use existence results for the CRRA case that can be derived for

various state-process specifications (see, among others, Burnside (1998) or de Groot (2015))

to determine regions for the parameters ψ and γ for which a solution also exists for EZ utility.

The contrapositive of Theorem 1(B) enables us to use the CRRA non-existence results of this

literature to determine regions for the parameters ψ and γ for which no solution exists for EZ

utility. Since under Epstein-Zin utility, by equation (4),

Wt =
V̂

(1− δ)C−1/ψ
t

,

the bound on V̂ translate immediately to a bound on wealth, and the wealth-consumption

ratio. We will see in our numerical results that this bound is satisfied by the numerical

approximations.

Theorem 1 allows for a general consumption process. Next we consider the special state-

process specification of Bansal and Yaron (2004). We consider this special specification since

it has received much attention in the finance literature. We first analyze the model with

CRRA utility and subsequently analyze the implications for general Epstein-Zin preferences

using the statements of Theorem 1.
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3.2 Existence in the Long-Run Risk Model: CRRA Utility

Bansal and Yaron (2004) use the state processes as in equation (7) with Gaussian shocks and

assume that the stochastic volatility in the economy is captured by a single volatility process

(σc,t = σx,t = σt):

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσωt+1, (9)

with ηc,t+1, ηx,t+1, ωt+1 ∼ i.i.d. N(0, 1).2 The following theorem states a formal condition that

ensures a finite wealth-consumption ratio and hence the existence of a solution for the model

with CRRA utility (θ = 1). Appendix A outlines a proof which closely follows the arguments

in de Groot (2015).

Theorem 2. There exists a solution to model (1)–(7) with θ = 1 and a single volatility process

as specified in equation (9) if and only if

δ exp

 B︸︷︷︸
Constant

+ Bcσ̄
2︸ ︷︷ ︸

Consumption Shock

+ Bxφ
2
x︸ ︷︷ ︸

LRR Shock

+ Bσφ
2
σ︸ ︷︷ ︸

SV Shock

 < 1, (10)

with the following coefficients B = (B,Bc, Bx, Bσ),

B = µc

(
1− 1

ψ

)
,

Bc = 0.5

(
1− 1

ψ

)2

,

Bx = 0.5

(
1− 1

ψ

1− ρ

)2

σ̄2,

Bσ =
1

8



(

1− 1
ψ

)2

φ2
x

(1− ρ)(1− ν)


2

+ 2


(

1− 1
ψ

)2

φx

(1− ρ)(1− ν)


2

+


(

1− 1
ψ

)2

(1− ν)


2 ,

(11)

which only depend on the parameters of the state processes and the intertemporal elasticity of

substitution, ψ.

Expression (10) shows that the existence of solutions depends on the size of the subjective

discount factor δ and a constant part B. In addition, each shock in the model, ηc,t+1, ηx,t+1

2The assumption of normal shocks is not necessary in general for the derivation of closed-form solutions; it
suffices that the moment generating function of the shocks exists. For example, de Groot (2015) also provides
solutions for a truncated normal and a gamma distribution. These distributions offer the great advantage that
the variance process remains positive. However, most of the research following the seminal work by Bansal
and Yaron (2004) adopts the normal assumption, which motivates our focus on the existence of solutions for
this model class.
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and ησ,t+1, adds a new term to the existence requirement.3 The presence of each type of shock

makes the existence requirement more demanding since the three coefficients Bc, Bx, and Bσ

are all positive. In the following, we decompose expression (10) to analyze the influence of

the three different factors on the existence of solutions. Rewriting the inequality yields

B +Bcσ̄
2 +Bxφ

2
x +Bσφ

2
σ < − ln δ. (12)

For the baseline calibration of Bansal and Yaron (2004) with a value of δ = 0.998, the sum

over the four components on the left-hand side must be smaller than 0.002. For a larger

discount factor δ, as, for example, in the study of Schorfheide, Song, and Yaron (2014) with a

value of 0.9996, the condition becomes more stringent with a right-hand side of only 0.0004.

Observe that ∂Bxφ2x
∂ρ

> 0, ∂Bxφ2x
∂φx

> 0, ∂Bσφ2σ
∂ν

> 0 and ∂Bσφ2σ
∂φσ

> 0.4 Thus the higher the

volatility and persistence of the state processes, the more stringent becomes the condition for

existence. Table 1 reports the magnitudes of the four terms on the left-hand side of (12) for

two different parameterizations. In particular, we provide values for a conservative calibration

for the long-run risk process and the stochastic volatility channel and a calibration that takes

the more extreme values found in the literature. (Compare Table 2 in Section 4 for the

parameter values from six recent studies in the finance literature.)

For a monthly time interval µc ≈ 0.0015 and the long-run risk literature argues in favor

of ψ ≈ 1.5. These estimates yield a constant term of B = 0.0005. For ψ > 1, the constant B

increases in ψ making the existence condition more stringent as ψ increases. For example, for

a value of ψ = 2, B becomes 0.0075. Among others, Campbell (1996), Attanasio and Weber

(1995) and Yogo (2004) argue for an elasticity of substitution below one. In that case, the

constant B becomes negative and hence relaxes the existence condition.

For the conservative parameter range, Table 1 shows that the sum of the four terms on the

left-hand side of condition (12) is always (clearly) below 1e-3. Therefore, as long as δ < 0.999,

condition (12) easily holds and the model has a solution. For the high parameters estimates

the influence of the consumption shock Bcσ̄
2 is still very small. The influence of the long-run

risk process, Bxφ
2
x, strongly increases and assumes values between 0.00013 and 0.02 depending

on the EIS ψ. In light of the condition (12), we observe that adding long-run risk to the model

can have strong effects on the existence of solutions. The influence of the stochastic volatility

shock Bσφ
2
σ remains rather insignificant for an EIS larger than one, but increases strongly as

3Note that in this model specification stochastic volatility influences not only shocks to consumption but also
shocks to long-run risk. In a more parsimonious setup, with stochastic volatility only entering the shocks to
consumption, where the long-run risk factor is a standard AR(1) process (σx,t = 1, ∀t) the coefficients simplify

to Bx = 0.5
(

1− 1
ψ

1−ρ

)2
and Bσ = 1

8

(1− 1
ψ )

4

(1−ν)2 and so there is no interaction between the separate terms.

4Note that, since stochastic volatility also affects the long-run risk factor, it holds that
∂Bσφ

2
σ

∂ρ > 0 and
∂Bσφ

2
σ

∂φx
>

0, making the conditions for existence more stringent as ρ and φx increase.
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Table 1: Existence in the Long-Run Risk Model of Bansal and Yaron (2004)

Conservative Estimates

B Bcσ̄
2 Bxφ

2
x Bσφ

2
σ Sum

ψ = 2 0.00075 6.5e-6 1.5e-5 1.2e-10 0.00077
ψ = 1.5 0.00050 2.9e-6 6.7e-6 2.4e-11 0.00051
ψ = 0.5 -0.00150 2.6e-5 6.0e-5 1.9e-9 -0.00141
ψ = 0.2 -0.00600 4.1e-4 9.6e-4 4.9e-7 -0.00462

High Estimates

B Bcσ̄
2 Bxφ

2
x Bσφ

2
σ Sum

ψ = 2 0.00075 7.6e-6 0.00030 4.9e-6 0.00106
ψ = 1.5 0.00050 3.4e-6 0.00013 9.7e-7 0.00064
ψ = 0.5 -0.00150 3.0e-5 0.00120 7.8e-5 -0.00019
ψ = 0.2 -0.00600 4.9e-4 0.01923 0.0201 0.03381

The table displays values for the four terms in condition (12) which determine the existence of
solutions in the model of Bansal and Yaron (2004) for two sets of parameter calibrations. The
conservative parameters are given by σ̄ = 0.0072, ρ = 0.975, φx = 0.038, ν = 0.956, φσ = 2.3e-6. The
high estimates are σ̄ = 0.0078, ρ = 0.993, φx = 0.044, ν = 0.999, φσ = 2.8e-6. For both cases we use
µc = 0.0015.

an EIS less than one decreases further. In particular, we observe that for ψ = 0.2 the model

has no solution for δ > e−0.03381 ≈ 0.9668.

This completes our discussion of existence in the long-run risk model with CRRA pref-

erences. We now combine the insights from Theorems 1 and 2 to analyze the existence of

solutions for the model with Epstein-Zin utility.

3.3 Existence in the Long-Run Risk Model: EZ Utility

While there is much debate5 in the economics and finance literature whether the elasticity

of substitution is larger or smaller than one, there appears to be widespread agreement on

parameters that satisfy γ > 1/ψ. Thus, we now restrict attention to models with such

preferences. Recall from Theorem 1(A) that, if the model has a solution for CRRA preferences

with ψ > 1, it also has a solution for recursive preferences with γ > 1/ψ. And so, for cases

such as ψ = 1.5 and ψ = 2, which we consider in the following, the model with recursive

preference with γ > 1/ψ has a solution for any exogenous consumption specification satisfying

5Table 2 in Section 4 displays EIS values from six recent studies in the asset pricing literature, namely those
of Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012a), Bollerslev, Xu, and Zhou (2015), Schorfheide,
Song, and Yaron (2014) and Bansal and Shaliastovich (2013). These studies estimate the long-run risk model
by trying to match (asset pricing) moments and obtain values between 1.5 and 2. On the contrary, Yogo (2004)
provides estimates below 0.2 using a linearized Euler equation and matching the interest rate. Attanasio and
Weber (1995) reports estimates of 0.67 and smaller depending on the data set.
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condition (12) in Theorem 2. On the contrary, the contrapositive of Theorem 1(B) shows that,

if there is no solution for CRRA preferences with ψ < 1, then the model with γ > 1/ψ also

cannot have a solution. And so, for cases such as ψ = 0.2 and ψ = 0.5, which we consider

in the following as well, the model with recursive preference with γ > 1/ψ does not have a

solution for any exogenous consumption specification violating condition (12) in Theorem 2.

In the following we illustrate these implications of the two parts of Theorem 1. We first

analyze the effects of long-run risk and stochastic volatility on the existence of solutions

separately. Subsequently, we examine the existence properties in the full calibrated long-run

risk model of Bansal and Yaron (2004).

3.3.1 Long-Run Risk without Stochastic Volatility

To obtain an impression of the isolated effect of long-run risk on the existence of solution with

recursive utility, we “shut off” stochastic volatility by setting σc,t = σx,t = σ̄. Since there is a

large debate in the asset pricing literature about the right calibration of the persistence ρ and

volatility φx of the long-run risk process (see for example Bansal, Kiku, and Yaron (2012a),

Beeler and Campbell (2012), Schorfheide, Song, and Yaron (2014) and Bollerslev, Xu, and

Zhou (2015)), we provide solutions for a range of parameters. Figure 1 shows convergence

properties as well as the mean wealth-consumption ratio obtained by the log-linearization and

the projection method for a 10× 10 grid of values for φx and ρ. For the case of CRRA utility

there are closed-form solutions for the model (see de Groot (2015)) and Theorem 2 shows

the formal existence condition. For the case of recursive utility we compute highly accurate

solutions using the projection approach.6 A (green) circle indicates for CRRA utility that the

convergence condition of Theorem 2 is satisfied; for EZ utility the circle indicates that both

methods produce a solution. A (black) star indicates for CRRA utility that no solution exists

and for EZ utility that the projection method does not converge. The lower (blue) values in

the figure show the mean wealth-consumption ratio for the log-linearization and the upper

(black) values for the projection approach. The entry “Inf” indicates that a method did not

find a solution.7

6A formal analysis of the accuracy of the projection approach is conducted in Appendix C. To compute accurate
solutions with the projection method we increase the approximation interval and the polynomial approximation
degree until the solutions no longer change and the polynomial coefficients for the highest degree polynomial
are close to zero. By this approach we make sure, that we capture the higher-order dynamics introduced by
the tails of the state processes. For the case with CRRA utility we obtain the same solution as the closed-form
expressions derived by de Groot (2015) (up to some tiny error). For the cases where there don’t exist closed-
form solutions we double-checked the accuracy of our computations by using the discretization technique of
Tauchen and Hussey (1991) with a very large number of discretization nodes.

7Both solution methods ultimately require us to solve a nonlinear system of equations. If the solver cannot
solve the system for the log-linearization approach, then, as a robustness check, we attempt to find a solution
by setting up a grid of 1000 starting points for the linearization constant. Only if the solver still cannot find
a solution, do we report “Inf” for the log-linearization method. If the solver cannot solve the system for the
projection method, then we first attempt to compute a solution for a very small state space and a small degree
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Figure 1: Influence of Long-Run Risk on Existence and Higher-Order Dynamics
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(b) ψ = 2, γ = 10
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(c) ψ = 0.5, γ = 2
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(d) ψ = 0.5, γ = 10
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The graph shows the convergence properties as well as the mean wealth-consumption ratio for
model (7) with constant volatility σc,t = σx,t = σ̄ and i.i.d. normal shocks ηc,t+1 and ηx,t+1. The
results are reported for a range of persistence parameters ρ and volatility parameters φx. Panels (a)
and (c) depict the cases of CRRA utility with ψ = 2 and ψ = 0.5 respectively, while panels (b) and
(d) depict the corresponding cases with EZ utility and γ = 10. Green circles denote convergence
of both, the projection and the log-linearization approach. In the case of CRRA preferences the
formal existence condition (10) is also satisfied. Black stars denote cases in which both methods
don’t converge and the model also doesn’t have a solution in the case of CRRA preferences. Black
numbers show the mean wealth-consumption ratio obtained by the projection approach and blue
numbers show the values obtained by the log-linearization. The remaining model parameters are
given by δ = 0.9989, µ = 0.0015, σ̄ = 0.0078.
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Panel (a) of Figure 1 shows that the model has a solution for CRRA preferences with

ψ = 2 for sufficiently low values of the volatility parameter and the persistence. In line with

Theorem 2, the convergence condition becomes more stringent the larger the persistence, ρ,

or the larger the volatility, φx, and there is no convergence for high-volatility high-persistence

combinations. Panel (b) displays the corresponding results for recursive utility with ψ = 2,

γ = 10. We find that there is convergence for all parameter combinations on the selected

grid. This finding is in line with Theorem 1(A) that, if there exists a solution for the CRRA

utility case with ψ > 1, there also exists a solution for the model with recursive preferences

and γ > 1/ψ. Put differently, for ψ > 1 increasing the risk aversion parameter γ leads to a

less stringent existence condition.

Panel (c) of Figure 1 depicts the case of CRRA preferences but with ψ = 0.5. Again

the model is well behaved in the region of low volatility and low persistence region and the

convergence condition becomes more stringent the higher the persistence ρ or the higher the

volatility φx. However, for the corresponding case with recursive preferences and γ = 10

(Panel (d)), there is no convergence for a much larger set of parameters. Hence, in the case of

ψ < 1 increasing the coefficient γ makes the existence condition more stringent. This finding

is consistent with Theorem 1(B) which shows that the existence condition is more demanding

for ψ < 1 and γ > 1/ψ compared to the respective CRRA case.

3.3.2 Stochastic Volatility without Long-Run Risk

Figure 2 shows the results for the model with stochastic volatility but without long-run risk

(xt = 0 ∀t). Recall from Table 1 that the influence of the stochastic volatility channel is

especially strong for low values of the EIS. Therefore, Panel (a) displays solutions for the

CRRA case with an EIS of ψ = 0.2 and Panel (b) for the corresponding EZ case with γ = 10

for a 10× 10 grid of values for the parameters φσ and ν. We now observe a new phenomenon

which we represent by (red) diamonds in the figure. For the CRRA case, the diamonds

depict parameter combinations for which the model does not have a solution, the condition in

Theorem 2 is violated, but the log-linearization approach yields a finite wealth-consumption

ratio and incorrectly indicates existence. Simply put, the log-linearization approach delivers a

model solution even though the model does not have a(n exact) solution. On the contrary, the

projection method correctly indicates nonexistence for all these cases. For the specification

with Epstein-Zin utility in panel (b), the diamonds indicate parameter combinations for which

the projection method indicates nonexistence while the log-linearization approach indicates

of the approximating polynomial. Subsequently we increase the state space and the polynomial degree. As
initial guesses we use solutions from model specifications where we found a solution. While a complete failure
of many repeated attempts with the projection method to find a solution are not a proof of non-existence,
they give us a high degree of confidence that indeed no solution exists. Also, in the case of CRRA preferences,
this approach yields exactly the same convergence results as obtained by the formal Theorem 2.
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Figure 2: Influence of Stochastic Volatility on Existence and Higher-Order Dynamics
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(b) ψ = 0.2, γ = 10
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The graph shows the convergence properties as well as the mean wealth-consumption ratio for
model (7) with no long-run risk (xt = 0 ∀t) and a single stochastic volatility process given by equation
(9). The results are reported for a range of persistence parameters ν and volatility parameters φσ.
Panel (a) depicts the cases of CRRA utility with ψ = 0.2 while panels (b) depicts the corresponding
cases with EZ utility and γ = 10. Green circles denote convergence of both, the projection and the
log-linearization approach. In the case of CRRA preferences the formal existence condition (10) is
also satisfied. Black stars denote cases in which both methods don’t converge and the model also
doesn’t have a solution in the case of CRRA preferences. Red diamonds denote the cases in which
the model doesn’t have a solution, but the log-linearization gives a finite wealth-consumption ratio.
Black numbers show the mean wealth-consumption ratio obtained by the projection approach and
blue numbers show the values obtained by the log-linearization. The remaining model parameters
are given by δ = 0.9989, µ = 0.0015, σ̄ = 0.0072.
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existence.

What is the reason for the failure of the log-linearization approach? Whenever the model

does not have a solution, the wealth-consumption ratio is in fact infinite. As we see from

the reported values for the mean wealth-consumption ratio in Figure 2, the log-linearization

systematically underestimates the wealth-consumption ratio. This underestimation becomes

especially strong in the regions close to non-existence leading to fundamentally wrong model

outcomes in this parameter region. In addition to this qualitative effect, we also observe a

strongly related quantitative effect. For fixed persistence ν of the volatility process, the degree

of underestimation increases in the volatility parameter φσ. That is, the numerical error of

the log-linearization result increases in φσ (until it eventually becomes infinitely large).

3.3.3 The Long-run Risk Model Calibration of Bansal and Yaron (2004)

In the third and final step of our numerical existence analysis, we show the simultaneous

effects of long-run risk and stochastic volatility on the existence of solutions for the long-run

risk model of Bansal and Yaron (2004). Figure 3 depicts the convergence properties and the

mean wealth-consumption ratios for a grid of values for the persistence parameters of the

long run risk process, ρ, and the stochastic volatility, ν. Panel (a) shows results for CRRA

utility, while Panel (b) shows results for the utility parameters of Bansal and Yaron (2004).

With the exception of models with very high values of the persistence ρ of the long-run risk

factor and CRRA utility, the models have a solution. In accordance with Theorem 1(A),

increasing the risk aversion to γ = 10 increases the region of convergence because ψ > 1.

In line with the results reported in Table 1 in Section 3.2, the stochastic volatility channel

does not significantly affect the existence region (the non-existence region does not grow

(significantly) with ν) due to its relatively low volatility in the calibration of Bansal and

Yaron (2004). Put differently, the additional feature of stochastic volatility in long run risk

models has a negligible influence on the qualitative existence issue of solutions. However, the

stochastic volatility does have a strong quantitative effect on the approximation errors of the

log-linear solution of the model, particularly in Panel (b) which shows the results for the utility

parameters of Bansal and Yaron (2004), ψ = 1.5, γ = 10. We observe that both the absolute

and the relative difference between the log-linearized and the true model solution increases

substantially with both persistence parameters ρ and ν of the long run risk and the stochastic

volatility, respectively. Apparently, adding another state process to the model introduces new

non-linearities which depend strongly on the persistence of the process.

We emphasize that our analysis of models with very high values for the persistence parame-

ters is not an artificial exercise. In fact, as we report in Table 2 in the next section, recent work

on asset pricing models regularly uses highly persistent processes for the exogenous model in-
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Figure 3: Existence and Higher-Order Dynamics in the Long-Run Risk Model
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The graph shows the convergence properties as well as the mean wealth-consumption ratio for the
long-run risk model of Bansal and Yaron (2004). The results are reported for a range of persistence
parameters of the long run risk process ρ and the stochastic volatility process ν. Panels (a) depicts
the cases of CRRA utility with ψ = 1.5, while panel (b) depicts the corresponding cases with EZ
utility and γ = 10. Green circles denote convergence of both, the projection and the log-linearization
approach. In the case of CRRA preferences the formal existence condition (10) is also satisfied. Black
stars denote cases in which both methods don’t converge and the model also doesn’t have a solution
in the case of CRRA preferences. Black numbers show the mean wealth-consumption ratio obtained
by the projection approach and blue numbers show the values obtained by the log-linearization. The
remaining model parameters are given by δ = 0.9989, µ = 0.0015, σ̄ = 0.0078, φx = 0.044, φσ =
2.3e-6.
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puts. The stochastic volatility and the long-run risk process in Bansal and Yaron (2004), the

inflation processes in Bansal and Shaliastovich (2013) and Koijen, Lustig, Van Nieuwerburgh,

and Verdelhan (2010) or the different volatility processes in Schorfheide, Song, and Yaron

(2014) are a few examples of such processes. In all those papers, log-linearization techniques

have been used to analyze equilibrium quantities. But as we have demonstrated above, solving

highly persistent models using log-linearization can introduce large approximation errors in

the mean wealth-consumption ratio. Naturally now the question arises whether these errors

also matter for the model predictions of economically relevant quantities such as, for example,

the equity premium, the risk free rate, or return volatilities; or whether perhaps these errors

have only small effects on these quantities and so log-linearization remains a reliable solution

approach for such model predictions. We answer this question for a number of prominent

asset pricing models in the next section.

4 Higher-Order Dynamics in Asset Pricing Models with

Recursive Preferences

In this section we compare the implications of the solutions of the log-linearization approach

and the projection method for a number of economically relevant quantities. Specifically, we

perform this comparison for six different studies from the asset pricing literature on long run

risk. The six models are the seminal long-run risk model of Bansal and Yaron (2004), the re-

calibrated version of the model by Bansal, Kiku, and Yaron (2012a), the extensive estimation

study of Schorfheide, Song, and Yaron (2014), the volatility-of-volatility models of Bollerslev,

Tauchen, and Zhou (2009) and Bollerslev, Xu, and Zhou (2015), and the two studies study

of real and nominal bonds of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) and

Bansal and Shaliastovich (2013). Common to all these studies is the methodological attempt

to match several key statistics on financial markets such as the high equity premium, a low

risk-free rate, volatile stock prices, real and nominal bond prices, the volatility premium or

patterns in return predictability. Obviously, in order to determine a reasonable calibration of

the model it is essential to solve the model without significant errors in the approximation of

those key statistics since such errors could potentially bias the calibration.

In the previous section, we have seen that the log-linearization approach produces sizable

approximation errors for the mean wealth-consumption ratio in the long-run risk model of

Bansal and Yaron (2004). Now we show that these errors carry forward to substantial errors

in the first and second moments of asset returns. In fact, we demonstrate that making use of

the log-linearization approach has a strong impact on the financial market statistics implied

by the models.
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4.1 Six Model Specifications

The models share the same basic model setup (7) augmented with a process for log dividend

growth ∆dt+1 that is potentially correlated with consumption,

∆ct+1 = µc + xt + φcσc,tηc,t+1

xt+1 = ρxt + φxσx,tηx,t+1

∆dt+1 = µd + Φxt + φdσd,tηd,t+1 + φd,cσc,tηc,t+1

ηc,t+1, ηx,t+1, ηd,t+1 ∼ i.i.d. N(0, 1).

(13)

Bansal and Yaron (2004) and Bansal, Kiku, and Yaron (2012a) assume that there is a single

volatility process that drives uncertainty in the economy σc,t = σx,t = σd,t = σt with

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσωt+1 ωt+1 ∼ i.i.d. N(0, 1). (14)

Schorfheide, Song, and Yaron (2014) relax this assumption by allowing for three separate

volatility processes. The two volatility processes for consumption growth and the long-run

risk factor are required to account for the weak correlation between the risk-free rate and

consumption growth. As shown in their estimation study, the volatility dynamics of dividends

differs significantly from the other two processes. Therefore, a third process is required to

model the stochastic volatility of dividends. Schorfheide, Song, and Yaron (2014) assume that

the logarithm of the volatility process is normal to ensure that the standard deviation of the

shocks remains positive,

σi,t = ϕiσ̄ exp(hi,t)

hi,t+1 = νihi,t + σhi

√
1− ν2

i ωi,t+1, i ∈ {c, x, d}

ωi,t+1 ∼ i.i.d. N(0, 1).

(15)

In order to derive analytical solutions for the log-linearization coefficients that are needed for

their estimation study, Schorfheide, Song, and Yaron (2014) use a linear approximation of the

volatility dynamics that follows Gaussian dynamics,

σ2
i,t ≈ 2(ϕiσ̄)2hi,t + (ϕiσ̄)2 (16)

which in turn yields

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1

with φσi = 2σ̄2
i σhi

√
1− ν2

i and σ̄i = ϕiσ̄.8

8We proceed in the same way as Schorfheide, Song, and Yaron (2014) by solving the model using the linearized
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The fourth model stems from the estimation study of Bollerslev, Xu, and Zhou (2015). In a

standard long-run risk model with stochastic volatility many long-standing puzzling behaviors

on financial markets such as a high equity risk premium together with a low risk-free rate,

volatile price dynamics or predictability of stock returns can be explained. However, the most

recent research has gone one step further by showing that the standard model is not able to

generate a time-varying variance risk premium that has predictive power for stock returns.

Fortunately, the literature has also suggested a possible solution for this puzzle by including

time-varying volatility of volatility (vol-of-vol) to the model, see, for example, Bollerslev,

Tauchen, and Zhou (2009), Tauchen (2011), Drechsler and Yaron (2011), Bollerslev, Xu, and

Zhou (2015) or Dew-Becker, Giglio, Le, and Rodriguez (2015). Bollerslev, Xu, and Zhou

(2015) consider a slight variation of the long-run risk factor compared to the baseline model

(13) where the vol-of-vol factor qt drives the volatility,9

σ2
t+1 = σ̄2(1− ν) + νσ2

t + φσ
√
qtωσ,t+1

qt+1 = µq(1− ρq) + ρqqt + φq
√
qtωq,t+1

xt+1 = ρxt + φx
√
qtηx,t+1

ηx,t+1, ωσ,t+1, ωq,t+1 ∼ i.i.d. N(0, 1).

(17)

The vol-of-vol factor qt follows a square root process. This process specification has also been

used, for example, in Tauchen (2011) or the seminal work on volatility of volatility in this

model class by Bollerslev, Tauchen, and Zhou (2009). However, a square root process poses

a new challenge to the model, as the process can become complex when qt becomes negative.

This problem is usually circumvented by assuming a reflecting boundary at zero to ensure

positivity. (In fact, this approach has also been used for the stochastic volatility process in

the original Bansal and Yaron (2004) study and many subsequent papers in the long-run risk

literature.) However, for a simple computation of model solutions, the assumption of a non-

truncated distribution for the log-linearization is commonly used. In Appendix D we analyze

in more detail how the square-root process specification and the issue of complexity affects the

log-linearized solution. In particular we find that for the calibration in Bollerslev, Tauchen,

and Zhou (2009) equilibrium model solutions are not real numbers but instead are complex

numbers. For the parameters in Bollerslev, Xu, and Zhou (2015) the process is centered well

above zero and the standard log-linearization technique yields a real solution. Therefore, we

version of the volatility dynamics to obtain quasi-closed form solutions for the linearization coefficients; for the
inference of moments we use the original specification to ensure that the volatility of the model stays positive.

9Drechsler and Yaron (2011) use a similar model where the volatility of xt is driven by σt instead of qt, see their
2007 working paper version. However, Bollerslev, Xu, and Zhou (2015) provide evidence for a better empirical
match for their model specification. The estimation study of Bollerslev, Xu, and Zhou (2015) also models
cross-correlations between the shocks of the state processes. For the analysis of the non-linear dynamics of
the model we keep the model as parsimonious as possible and drop the cross-correlations.
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concentrate on this calibration in the main text.

The fifth study under consideration is the work on real and nominal bonds and the size of

the martingale component in the stochastic discount factor by Koijen, Lustig, Van Nieuwer-

burgh, and Verdelhan (2010). They add inflation πt with a stochastic growth rate xπ,t to the

standard model (13) and price nominal bonds10

πt+1 = µπ + xπ,t + φπ,cσc,tηc,t+1 + φπ,xσx,tηx,t+1 + σπηπ,t+1

xπ,t+1 = µxπ(1− ρπ) + ρπxπ,t + ρπ,xxt

+ φxπ ,cσc,tηc,t+1 + φxπ ,xσx,tηx,t+1 + σxπηπ,t+1

ηπ,t+1 ∼ i.i.d. N(0, 1).

(18)

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) assume that there are two stochastic

volatility processes for consumption growth and the long-run risk component (σd,t = σc,t)

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {c, d},

and inflation, the stochastic growth rate of inflation and dividends have loadings on these two

volatility channels.

The sixth and last study under consideration is the subsequent work on nominal and

real bonds of Bansal and Shaliastovich (2013). The setup is very similar to Koijen, Lustig,

Van Nieuwerburgh, and Verdelhan (2010) but they assume that xπ,t enters the real stochastic

growth rate of consumption xt to model the non-neutral effect of expected inflation on future

expected growth,

πt+1 = µπ + xπ,t + σπηπ,t+1

xπ,t+1 = ρπxπ,t + σπt eπ,t+1

xt+1 = ρxt + ρxπxπ,t + σxt ex,t+1

ηπ,t+1, eπ,t+1, ex,t+1 ∼ i.i.d. N(0, 1).

(19)

Also they assume that there is a separate AR(1) process for the volatility of the stochastic

growth rate of inflation σπt and the volatility of consumption growth is constant (σc,t = σ̄c):

σ2
i,t+1 = σ̄2

i (1− νi) + νiσ
2
i,t + φσiωi,t+1, i ∈ {x, π}.

As the focus of Bansal and Shaliastovich (2013) is on bond markets, they do not include a

process for dividends.

Table 2 lists the parameter values of the six studies.11 While the parameters in Bansal

10The model setup is the same as in the 2008 version of Bansal and Shaliastovich (2013). In the paper they
write π̄t for xπ,t.

11For the model of Bollerslev, Xu, and Zhou (2015) we use the parameters estimates in the study for ρ, ν and
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Table 2: Model Parameters

BY (2004) BKY (2012) SSY (2014) BS (2013) KLVV (2010) BXZ (2015)

Preferences
γ 10 10 10.84 20.90 8 10
ψ 1.5 1.5 1.7 1.81 1.5 1.5
δ 0.998 0.9989 0.9996 0.994 0.9987 0.999

Consumption

µc 0.0015 0.0015 0.0016 0.0049 0.0016 0.0015
φc 1 1 1 1 1 0.00546
ρ 0.979 0.975 0.993 0.81 0.991 0.988
φx 0.044 0.038 1 1 1 3.12e–4
ρxπ – – – –0.047 0 –

Volatility

νc 0.987 0.999 0.956 0 0.85 0.64
νx – – 0.99 0.994 0.996 –
νd – – 0.94 – - –
νπ – – – 0.979 - –
φσc 2.3e–6 2.8e–6 8.8e–6 0 1.15e–6 1
φσx – – 6.0e–9 1.85e–7 4.19e–9 –
φσd – – 2.3e–4 – - –
φσπ – – – 1.81e–7 - –
σ̄c 0.0078 0.0072 0.005 4.6e–3 0.004 1
σ̄x – – 2.0e–4 1.09e–3 1.60e–5 –
σ̄d – – 0.0273 – - –
σ̄π – – – 1.11e–3 - –

Dividends

µd 0.0015 0.0015 0.001 – 0.0015 0.0015
Φ 3.0 2.5 3.2 – 1.5 3.0
φd 4.5 5.96 1 – 6 0.0246
φd,c 0 2.6 1.17 – 0.6 0

Inflation
µπ – – – 0.0090 0 –
µxπ – – – 0 0.0032 –
σπ – – – 0.0055 0.0035 –
σxπ – – – 0 4e–6 –
φπ,c – – – 0 0 –
φπ,x – – – 0 -2 –
φxπ,c – – – 0 0 –
φxπ,x – – – 0 -1 –
ρπ – – – 0.988 0.83 –
ρπ,x – – – 0 -0.35 –

Vol–of–Vol
µq – – – – 0.211
φq – – – – 0.632
ρq – – – – 0.46

Parameter values as reported in the studies of Bansal and Yaron (2004), Bansal, Kiku, and Yaron
(2012a), Schorfheide, Song, and Yaron (2014), Bansal and Shaliastovich (2013), Koijen, Lustig,
Van Nieuwerburgh, and Verdelhan (2010), and Bollerslev, Xu, and Zhou (2015).
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and Yaron (2004) and Bansal, Kiku, and Yaron (2012a) are calibrated, Schorfheide, Song,

and Yaron (2014), Bollerslev, Xu, and Zhou (2015) and Bansal and Shaliastovich (2013)

estimate the model parameters to match annual financial market characteristics. In the first

five models the investor has a monthly decision interval, while Bansal and Shaliastovich (2013)

use quarterly intervals. This distinction explains, for example, the considerable difference in

the level parameters. The main difference between the sets of parameter of the original Bansal

and Yaron (2004) calibration and the new calibration of Bansal, Kiku, and Yaron (2012a) is

that in the new calibration, the persistence of the volatility shock, νc, is higher and that

shocks to dividends are correlated with short-run shocks to consumption growth (φd,c = 2.6 in

the new calibration compared to φd,c = 0 in the original calibration). These changes increase

the influence of the volatility channel compared to the long-run risks channel of the model.

The adjustment is needed to get rid of some implications of the original calibration that are

inconsistent with the data. In particular, as, for example, Zhou and Zhu (2015) or Beeler and

Campbell (2012) point out for the original 2004 calibration, the log price-dividend ratio has

predictive power for future consumption growth, while this relationship is not present in the

data. By increasing the influence of the volatility channel, this predictability vanishes.

Schorfheide, Song, and Yaron (2014) provide further evidence for a highly persistent

stochastic growth rate ρ = 0.993 with a 90% confidence interval of {0.989, 0.994}. In line

with the calibrated values in Bansal, Kiku, and Yaron (2012a), they also find a highly persis-

tent volatility process for the long-run risk component, while the estimates for consumption

and dividend volatility are slightly smaller.

4.2 Moments and Errors

Table 3 reports annualized summary statistics and numerical errors for the five models that

include a dividend process. The reported financial statistics are the mean and standard

deviation of the price-dividend ratio, the averages of the market excess return and the risk-

free return, and the volatilities of the excess return and the risk-free rate.12 The table reports

these statistics for both the solution of the log-linearization approach and the projection

ρq. As they do not report values for the remaining parameters, we use the calibration as reported in the 2007
working paper version of Drechsler and Yaron (2011).

12We solve the model for the return of the wealth portfolio, zw, the market portfolio, zm, and the risk-free rate,
zrf . To compute the annualized moments, we simulate 1,000,000 years of artificial data. Beeler and Campbell
(2012) provide a detailed description of how to compute the annual moments from the monthly observations.
A significant issue in the model is that the variance process σ2

t can, in fact, become negative. To overcome
this problem, Bansal and Yaron (2004) replace all negative realizations with very small but positive values.
We proceed in the same way for both methods to achieve consistent results. For the approximation interval
of the projection methods we choose the interval to be slightly larger than the maximum observation range
of the long simulations. As in the previous section, we increase the polynomial degree until the coefficients
of the highest-order polynomial are close to zero. We double-check the accuracy of the solution by increasing
the approximation interval until the solutions do not change.
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approach; in addition, it states the relative errors induced by the linearization.

Table 3: Annualized Moments and Errors

E (pt − dt) σ (pt − dt) E
(
rmt − r

f
t

)
E
(
rft

)
σ (rmt ) σ

(
rft

)
Bansal and Yaron (2004)

Log-Lin 3.1749 0.2012 4.61 1.46 17.05 1.31
Projection 3.2056 0.1990 4.48 1.46 16.97 1.31
Error 0.96 % 1.12% 2.93% 0.08% 0.50% 0.05%

Bansal, Kiku, and Yaron (2012a)

Log-Lin 3.0473 0.2910 5.73 0.99 21.27 1.28
Projection 3.2413 0.2389 4.69 1.10 21.00 1.27
Error 5.98% 21.81% 22.26% 10.21% 1.28% 1.45%

Schorfheide, Song, and Yaron (2014)

Log-Lin 1.9394 0.3331 18.00 -1.80 20.43 1.56
Projection 2.3497 0.2892 12.00 -1.17 18.43 1.39
Error 17.46% 15.18 % 50.02% 54.54% 10.84% 12.29%

Bollerslev, Xu, and Zhou (2015)

Log-Lin 2.7479 0.2485 7.27 1.16 16.28 1.36
Projection 2.8225 0.2399 6.78 1.17 15.91 1.35
Error 2.64% 3.58% 7.26% 0.72% 2.35% 0.40%

Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)

Log-Lin 3.1102 0.1782 4.85 1.64 11.53 1.17
Projection 3.3468 0.1465 3.56 1.32 10.58 1.14
Error 7.07% 21.66% 36.29% 19.43% 9.07% 2.52%

The table shows the mean and the standard deviation of the annualized log price-dividend ratio,
the annualized market over the risk-free return and the risk-free return. Results obtained by the
log-linearization and the projection method as well as the relative error of the log-linearization are
shown for the models of Bansal and Yaron (2004), Bansal, Kiku, and Yaron (2012a), Schorfheide,
Song, and Yaron (2014), Bollerslev, Xu, and Zhou (2015) and Koijen, Lustig, Van Nieuwerburgh,
and Verdelhan (2010). All returns are shown in percent, so a value of 1.5 is a 1.5% annualized figure.

We observe that the log-linearization does a reasonably good job for the parameters in

Bansal and Yaron (2004) with a maximal error of 2.93% for the equity premium. For the

parameter set of Bansal, Kiku, and Yaron (2012a) the results are considerably worse. The

log-linearization overstates the equity premium by more than 100 basis points; and it predicts a

volatility of the log price-dividend ratio of 0.2910 instead of 0.2389. These values correspond

to relative errors of about 22%. Simply put, the log-linearization falsely produces a large

equity premium and volatile log price-dividend ratio even though the true model solution is

significantly smaller.
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For the model of Schorfheide, Song, and Yaron (2014) approximation errors become even

larger. For the equity premium and the risk-free rate the errors exceed 50% and also the

errors in the other four key statistics exceed 10%.13 In Section 4.4 below, we carve out

the source for these large numerical errors. It is the interplay of the highly persistent state

processes that introduces substantial non-linearities to the model solutions; as a result, even

a slight increase in the persistence parameter of the long-run risk channel can dramatically

increase the approximation errors of the log-linearized solution. Schorfheide, Song, and Yaron

(2014) estimate a persistence of ρ = 0.993 compared to ρ = 0.975 in the calibration of

Bansal, Kiku, and Yaron (2012a) which explains the large approximations errors. Hence,

using the log-linearized solution to estimate models featuring highly persistent state processes

can potentially introduce a large bias to the implied model moments and so, in turn, biases

the estimation results for the model parameters.

This finding is in line with the results for the model of Bollerslev, Xu, and Zhou (2015). The

model only features a highly persistent long-run risk process ρ = 0.988 while the persistence

parameters of the stochastic volatility and vol-of-vol factors are rather low (ν = 0.64 and

ρq = 0.46). Consequently the approximation errors are rather small with a maximum error of

7.26% for the equity premium. This result is not surprising as the authors mention in their

estimation that the stochastic volatility and the vol-of-vol factors only influence the variance

premium and have a negligible influence on the price and return dynamics. Concordantly, we

obtain almost the same results when setting the volatility of the two factors to zero (φσ =

φq = 0).

For the study of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) we also find

large errors with a maximum error in the equity premium of 36.29%. An overestimation of

the premium of more than 100 basis points. Their calibration features a highly persistent long-

run risk process ρ = 0.991 and highly persistent stochastic volatility of long-run risk νx = 0.996

that introduce the large non-linearities to the model. Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan (2010) not only analyze equity markets but also price real and nominal bonds to

analyze the martingale component in the stochastic discount factor. In Figure 4 we show the

real and nominal yield curve for their model.

We find that the differences between the yield curve obtained by linearizing the model and

solving it accurately using the projection approach are small in absolute values. However, the

nominal yield curve from the linearized model differs in its shape. While the true nominal yield

13Note that the results are very sensitive to changes in the model parameters. Here we show model outcomes for
the median estimates of Schorfheide, Song, and Yaron (2014), while in the original study they draw parameter
values from the estimated distributions of the model parameters and report the median for a large number
of draws. For example, for the 5% quantile estimates the model yields an equity premium of 2.4% with a
risk-free rate of 2.3%. This explains why the values reported here differ from the values shown in Table 4 of
the study of Schorfheide, Song, and Yaron (2014).
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Figure 4: Real and Nominal Yield Curve in the Model of Koijen, Lustig, Van Nieuwerburgh,
and Verdelhan (2010)
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(b) Nominal YC

0 20 40 60 80 100 120
Maturity in Months

0.05

0.055

0.06

0.065

0.07

0.075

0.08

N
o

m
in

a
l 
B

o
n

d
 Y

ie
ld

Collocation
Log-Linearization

(c) Nominal YC (1-20)
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The graph shows the yield curves for real and nominal bonds in the model of Koijen, Lustig,
Van Nieuwerburgh, and Verdelhan (2010). Panel (c) shows the yield curve for 1-20 months bonds.

curve is downwards sloping in the short run and upwards sloping in the long run, this pattern

does not occur when using log-linearization. So linearizing the model potentially affects the

shape of the real curve.

The work of Bansal and Shaliastovich (2013) provides further insights to this finding. In

Figure 5 we show the nominal yield curve in their model.

Figure 5: Nominal Yield Curve in the Model of Bansal and Shaliastovich (2013)
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(b) ρ = 0.9
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(c) ρ = 0.975
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The graph shows the yield curve for nominal bonds in the model of Bansal and Shaliastovich (2013).

Panel (a) shows the yield curve for the parameters in the original study. We observe that

the difference between the log-linearized solution and the projection solution is negligible with

very small errors and also the shape of the yield curve is correct. As Bansal and Shaliastovich

(2013) use bond data to estimate the model, they find a very low persistence in the long-run

risk component with ρ = 0.81. This comparably low amount of persistence makes it difficult

to match key moments for equity markets. For example the annualized equity premium for

their parameter estimates is only 1.69%.14 Therefore we increase ρ in panels (b) and (c) to 0.9

14The published version of Bansal and Shaliastovich (2013) does not provide a process for dividend growth. For
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and 0.975 correspondingly to increase the premium paid for long-run consumption risk.15 We

find that the errors in the yield curve grow significantly as ρ approaches the value 1. In fact,

for ρ = 0.975 the log-linearization predicts a downward sloping nominal yield curve (dashed

line) even though the model actually produces an upward sloping curve (solid line). Hence,

relying on the log-linearization to solve the model can lead to false conclusions not only about

the magnitude of bond yields but even about the shape of the yield curve.

In sum, we observe that while the log-linearization approach produces satisfactory so-

lutions for an analysis of the models in Bansal and Yaron (2004) and Bollerslev, Xu, and

Zhou (2015), the method performs rather poorly for the models in Bansal, Kiku, and Yaron

(2012a), Schorfheide, Song, and Yaron (2014), and Koijen, Lustig, Van Nieuwerburgh, and

Verdelhan (2010). For these latter models, the poor approximations have a strong effect on

the model predictions for key financial statistics. Our observations motivate the next step in

our analysis. We want to understand which model characteristics affect the performance of the

log-linearization approach; simply put, when can we trust the results of such an approach and

when can we not? And related to this question, we also want to understand which properties

of the exact solution lead to a poor performance of a linear method; that is, what exactly goes

wrong with the linearized solution?

4.3 The Interplay of the State Processes

The log-linearization approach assumes that, on the state space of the model, the first deriva-

tives of the solution are approximately constant and the second derivatives are approximately

zero. We now show numerically that this assumption fails to hold for models with more

than one highly persistent state process. We demonstrate that for solutions of such models

the second derivatives can be very large, the interplay of state process leads to highly non-

linear solutions; and so higher-order effects matter for the predictions of such models. The

sizable deviations from linearity in the models’ solutions is the cause for the failure of the

log-linearization approach.

For the purpose of making these points, we concentrate on the two fundamental factors

of long-run risk and stochastic volatility. We use the calibration of Bansal, Kiku, and Yaron

(2012a) (see equations (13)-(14)). Figure 6 shows isolines for the absolute errors in the log

wealth-consumption ratio (left panel) and the log price-dividend ratio (right panel) of the

log-linearization as a function of the states x and σ2 (black solid lines). For example along

the purposes of comparison, we consider the specification that appears in the 2007 working paper of their
paper. The process for ∆dt+1 is the same as in Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010)
(see equation 18). As the 2007 working paper assumes a monthly decision interval and the published version
from 2013 has a quarterly interval, we adjust the volatility of dividends φd to match the volatility of dividend
growth in the data of approximately 11% annualized.

15For ρ = 0.9 we obtain an equity premium of 4.48% and for ρ = 0.97 a premium of 10.57%.
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a line marked with ‘0.1’, the absolute error of the log-linearization is 0.1. The figure also

shows the regions into which 50%, 90% and 100% of the observations fall. These regions show

the subsets of the state space that the model actually visits and in which regions it “spends

most of its time” during long simulations. Corresponding errors for the first derivatives with

respect to the state variables are shown in Figure 7 and for the second derivative in Figure 8.

Figure 6: Approximation Errors in the log Wealth-Consumption and log Price-Dividend Ratio
of the Log-Linearization
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The graph shows isolines for the absolute errors in the log wealth-consumption ratio (left panel) and
the log price-dividend ratio (right panel) of the log-linearization as a function of the states x and σ2

(black solid lines). The (grey) dotted, dashed and solid lines mark the respective areas into which
100%, 90% and 50% of the observations from 106 simulated data points fall. The parameter values
are from the calibration of Bansal, Kiku, and Yaron (2012a), see Table 2.

We find that the errors in the log wealth-consumption are rather small with maximum

values of about 0.16 within the observation range. For the log price-dividend ratio, the errors

are also small in the area close to the long-run mean of the processes, but they increase

significantly with σ2 and reach values of up to 0.3 in the 90% observation range, see Figure 6.

Put differently, the price dividend ratio obtained by the log-linearization is off by a factor of

e0.3 ≈ 1.35 for almost 10% of the time and can be off by a factor larger than 2 for extreme

values reached in the simulations.

The errors in the first derivatives show similar patterns. Again the errors in the derivatives

of the price-dividend ratio are significantly larger than the errors in the derivatives of the

wealth-consumption ratio and the errors increase monotonically with σ2 for the BKY (2012)
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Figure 7: Approximation Errors in the First Derivatives of the log Wealth-Consumption and
log Price-Dividend Ratio of the Log-Linearization
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The graph shows isolines for the absolute errors in the first derivative of the log wealth-consumption
ratio (left panel) and the log price-dividend ratio (right panel) with respect to the states x and σ2 of
the log-linearization (black solid lines). The (grey) dotted, dashed and solid lines mark the respective
areas into which 100%, 90% and 50% of the observations from 106 simulated data points fall. The
parameter values are from the calibration of Bansal, Kiku, and Yaron (2012a), see Table 2.
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calibration. We observe in Figure 7 that the errors in the derivatives with respect to σ2 are

especially large, with errors up to 3000 for the price-dividend ratio. As mentioned above, the

main purpose of the BKY (2012) calibration is to amplify the role of the stochastic volatility

channel by increasing its persistence. But as demonstrated in the figures, this effect introduces

large non-linearities to the model that cannot be captured by the log-linearization and hence

causes large approximation errors. Figure 8 shows that the second derivatives in the model

are substantially different from 0 (which is the value assumed by the log-linearization) and

they are especially large (more than 105!) for the second derivative with respect to σ2 which

is another reason for the large approximation errors reported in Table 3.

In general, the figures show that the stochastic volatility channel highly influences the

nonlinear aspects of the model. But is it only the stochastic volatility that matters? Caldara,

Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012) analyze the accuracy of several solution

methods in a neoclassical growth model with Epstein-Zin preferences and stochastic volatility.

They report that higher-order approximations are needed to capture the non-linearities of the

model. Bansal, Kiku, and Yaron (2012b) report approximation errors for the long-run risks

model in their estimation study by comparing the results of the log-linearization to the results

obtained by the discretization method of Tauchen and Hussey (1991) (see Table A.1 of their

paper). Unfortunately, for their exercise, they use a simplified version of their model that only

features long-run risks (and no stochastic volatility). They find rather small approximation

errors. But in the long-run risk model, there are two sources of non-linearities: the stochastic

volatility channel and the long-run risk channel. Hence when solving the model, it is essential

to understand whether and how the interplay of the two components drives the non-linearities.

To obtain such an understanding, we analyze the approximation errors implied by the

log-linearization for each of the two state variables of the model separately. In particular we

first fix the stochastic volatility to its long-run mean, σt = σ̄2 ∀ t, and secondly we solve

the model without long-run risk, xt = 0 ∀ t. Table 4 shows the corresponding errors in

the unconditional mean and standard deviation of the log wealth-consumption and log price-

dividend ratio for the two cases. We find that, in line with the test results from Bansal, Kiku,

and Yaron (2012b), for the one-dimensional model with only long-run risks the approximation

errors are very small with a maximum error of 0.21%). For the second case, without long-run

risks and only stochastic volatility, the errors are slightly larger but still remain below 7.1%.

However, for the full model with long-run risk and stochastic volatility approximation errors

increase dramatically with a maximum error of 26.9% for the volatility of the log price-dividend

ratio. This finding suggests that neither the stochastic volatility alone nor the long-run risks

component alone introduces the non-linearities in the model; instead it is the simultaneous

presence and interplay of the two features which makes the model so difficult to solve.
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Figure 8: Approximation Errors in the Second Derivatives of the log Wealth-Consumption
and Price-Dividend Ratio
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The graph shows isolines for the absolute errors in the second derivative of the log wealth-consumption
ratio (left panel) and the log price-dividend ratio (right panel) with respect to the states x and σ2 of
the log-linearization (black solid lines). The (grey) dotted, dashed and solid lines mark the respective
areas into which 100%, 90% and 50% of the observations from 106 simulated data points fall. The
parameter values are from the calibration of Bansal, Kiku, and Yaron (2012a), see Table 2.
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Table 4: Approximation Errors for Each State of the Long-Run Risks Model Separately

E (wt − ct) σ (wt − ct) E (pt − dt) σ (pt − dt)

State: xt 0.003% 0.024% 0.084% 0.21%
State: σ2

t 0.14% 4.49% 2.62% 7.05%
Both States: 1.05% 12.25% 3.15% 26.90%

The table shows approximation errors in the unconditional mean and standard deviation of the log
wealth-consumption and log price-dividend ratio induced by the log-linearization in the long-run risk
model for each of the two state variables xt and σt separately. For the case with only xt, the state σt
is simply set constant at its long-run mean σ̄2 (or equivalently ν = σw = 0). For the case with only
σt, xt is set to 0 (or equivalently ρ = φx = Φ = 0). The parameter values are from the calibration of
Bansal, Kiku, and Yaron (2012a), see Table 2.

4.4 Sensitivity of the Approximation Errors

As the previous results have shown, the non-linearities of the long-run risk model are highly

dependent on its parameters. Therefore, in Figures 9 and 10 we analyze the approximation

errors implied by the log-linearization with regard to changes in the parameters. In particular,

we consider those parameters that are the main driving forces of the model, namely the risk

aversion, γ, the intertemporal elasticity of substitution, ψ, the serial correlation in the long-run

risk channel, ρ, and the stochastic volatility channel, ν.

We find that, for this particular calibration, for a risk aversion of approximately 5, the log-

linearized solution basically coincides with the solution from the projection approach, which

suggests that a linear solution gives a reasonable approximation to the model. However, for

this calibration also the implied model moments collapse with an equity premium below 1%

and a sharp decrease in the volatility of the log price dividend ratio. When increasing the risk

aversion the errors in the equity premium and the volatility of the log price-dividend ratio

increase significantly, with a large overestimate of both quantities. Furthermore, in line with

the previous results, the accuracy depends highly on the persistence of the processes for both

the long-run risk and the stochastic volatility. We observe that even very small changes can

dramatically increase approximation errors. For example, in the original calibration with a

persistence in the long-run risk of ρ = 0.975 the overestimation of the equity premium is about

100 basis points (see Table 3). By slightly increasing ρ to 0.98, however, the difference doubles

with an overestimation of 200 basis points. This very strong dependence on the persistence

parameters also explains the large approximation errors in the estimation study of Schorfheide,

Song, and Yaron (2014) (see Table 3) that finds a serial correlation in the long-run risk channel

of ρ = 0.993. For the persistence in the conditional variance, ν, even a change of 0.0005, from

0.999 to 0.9995, increases the overestimation to 200 basis points. The figures also show that
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Figure 9: Sensitivity of the Approximation Errors for the Equity Premium in the Long-Run
Risks Model
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The figure shows the equity premium obtained by the log-linearization (dashed line) as well as the
premium obtained by the collocation projection (solid line) as a function of the model parameters
γ, ψ, ρ and ν, respectively, assuming that the other parameters are kept constant. The results are
computed for the calibration of Bansal, Kiku, and Yaron (2012a), see Table 2, and in each panel,
the dotted vertical line denotes the estimate used in original calibration.
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Figure 10: Sensitivity of the Approximation Errors for the Volatility of Price-Dividend Ratio
in the Long-Run Risks Model
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The figure shows the volatility of the log price-dividend ratio obtained by the log-linearization (dashed
line) as well as the volatility obtained by the collocation projection (solid line) as a function of the
model parameters γ, ψ, ρ and ν, respectively, assuming that the other parameters are kept constant.
The results are computed for the calibration of Bansal, Kiku, and Yaron (2012a), see Table 2, and
in each panel, the dotted vertical line denotes the estimate used in original calibration.
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lowering the persistence parameters significantly decreases approximation errors. For example

for ν = 0.99 the approximation error becomes close to zero. However, for this calibration also

the implied model moments collapse. Therefore it is especially important to pay attention to

accurately solving the model as small changes to the parameters can have large impacts on the

higher-order dynamics and hence introduce large approximation errors when using log-linear

approximations; thus further applications of this class of models, require robust and accurate

solution methods like the projection method presented in this paper.

5 Conclusion

We have investigated the existence of solutions for long-run risk models and the accuracy

of the Campbell-Shiller log-linear approximation to those solutions. For existence, we have

provided a relative existence result – if the model has a solution for CRRA preferences, then it

has a solution for investors with a preference for an early resolution of uncertainty. Existence

can be proven for the Bansal and Yaron (2004) model with CRRA preferences, so existence

for early resolution follows.

To evaluate the quality of the log-linear solutions, we consider six recent models in the

long-run risk literature: the original Bansal and Yaron (2004) model and the new calibration

of Bansal, Kiku, and Yaron (2012a), the estimation of Schorfheide, Song, and Yaron (2014),

the volatility-of-volatility model of Bollerslev, Xu, and Zhou (2015) and the work on real

and nominal bonds of Koijen, Lustig, Van Nieuwerburgh, and Verdelhan (2010) and Bansal

and Shaliastovich (2013). We find for very persistent underlying processes the approximation

errors in log-linearization can be large and economically significant. For example, in the most

recent calibration of the Bansal-Yaron long-run risk model (see Bansal, Kiku, and Yaron

(2012a)), the approximation errors in the volatility of the log-price dividend ratio and the

equity premium exceed 22% and become as large as 50% in the estimation study of Schorfheide,

Song, and Yaron (2014). Models with lower persistence, such as the original Bansal and Yaron

(2004) model or Bollerslev, Xu, and Zhou (2015), have much smaller approximation errors.

The results for nominal bonds as in Bansal and Shaliastovich (2013) and Koijen, Lustig,

Van Nieuwerburgh, and Verdelhan (2010) are particularly interesting – for the high level of

persistence necessary to explain the equity premium, the log-linear approximation can actually

produce an downward sloping yield curve, when the true yield curve is upward sloping.

Given the importance of long-run risk model in asset pricing, our results suggest that more

sophisticated solution methods, such as projection methods, should be used when it comes to

asset pricing models with highly persistent state processes.
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Appendix

A Proofs for Section 3

Proof of Lemma 1. If f ≤ g∗, then Tf ≤ Tg∗ ≤ Ug∗ = g∗. So, T maps (0, g∗] into itself. By

assumption, T is monotone. And so Tarski’s (1955) Fixed-Point Theorem implies that T has

a fixed point in the complete lattice (0, g∗].

Proof of Lemma 2. If θ < 1, then by Jensen’s inequality if E(f |s) is finite, then E(f θ|s) is

finite. If θ > 1, then again by Jensen’s inequality if E(f θ|s) is finite then E(f |s) is finite. In

both cases, T and U preserve V .

(A) Let 0 6= θ ≤ 1. If θ > 0, then xθ is increasing in x ∈ R++. The monotonicity of the

expected value operator implies for f ≤ g that

E(f θ|s) ≤ E(gθ|s),[
E(f θ|s)

]1/θ ≤ [
E(gθ|s)

]1/θ
,

and thus Tf ≤ Tg. If θ < 0, then xθ is decreasing in x ∈ R++. Now we obtain

E(f θ|s) ≥ E(gθ|s),[
E(f θ|s)

]1/θ ≤ [
E(gθ|s)

]1/θ
,

and thus Tf ≤ Tg in this case as well. Trivially, 1/θ ≥ 1 for 0 < θ ≤ 1 and 1/θ < 0 for

θ < 0. In both cases, x1/θ is convex for x ∈ R++. Therefore, by Jensen’s inequality

E(X|s) = E((Xθ)1/θ|s) ≥
[
E(Xθ|s)

]1/θ
.

Thus, for 0 6= θ ≤ 1 it holds that Tg ≤ Ug.

(B) Let θ > 1. The monotonicity of the expected value operator implies for f ≤ g that

Uf ≤ Ug. Trivially, 1/θ < 1 and so x1/θ is now concave for x ∈ R++. Therefore, by

Jensen’s inequality

E(X|s) = E((Xθ)1/θ|s) ≤
[
E(Xθ|s)

]1/θ
.

Hence, any pair f, g ∈ V with f ≤ g satisfies Uf ≤ Ug ≤ Tg.
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Proof of Theorem 1.

(A) The asset-pricing model characterized by equations (1)–(6) has a solution for CRRA

utility if and only if equation (8) has a solution V̂t = V̂t+1 = V̂ ∗ for θ = 1. Lemma 3

implies that the equation also must have a solution for 0 6= θ < 1, that is, for Epstein-Zin

utility. Since λ and thus ψ are fixed, the conditions on γ follow.

(B) The asset-pricing model characterized by equations (1)–(6) has a solution for Epstein-

Zin utility if and only if equation (8) has a solution V̂t = V̂t+1 = V̂ ∗ for θ 6= 1. If θ > 1,

then Lemma 3 implies that the equation also must have a solution for θ = 1, that is, for

CRRA utility. Since λ and thus ψ are fixed, the conditions on γ follow.

Sketch of Proof of Theorem 2. The following lines are closely related to the work in de Groot

(2015). In the online appendix de Groot (2015) shows how to derives closed-form solutions for

the price-dividend ratio of the market portfolio in the model of Bansal and Yaron (2004) with

CRRA preferences. He also presents a formal convergence theorem for the model without the

long-run risk factor. Unfortunately he doesn’t provide a convergence theorem for the pricing

of the consumption claim for the full long-run risk model, which is needed for the existence

of solutions for recursive preferences analyzed in this study. The following lines fill this gap.

Following Section B.4.2 in de Groot (2015) the solution of the wealth-consumption ratio

Zw,t = exp(zw,t) is of the form16

Zw,t =
∞∑
i=1

δi exp
(
A1,i + A2,iσ̄

2 + A3,ixt + A4,iφ
2
x + A5,i(σ̄t

2 − σ̄2) + A6,iφ
2
σ

)
.

The coefficients for the wealth-consumption ratio can be obtained in the same way as con-

ducted by de Groot (2015) for the price-dividend ratio. To save space we do not state the

full coefficients here. Please contact the authors for the detailed derivation of the coefficients.

Define

Zi
w ≡ δi exp

(
A1,i + A2,iσ̄

2 + A3,ixt + A4,iφ
2
x + A5,i(σ̄t

2 − σ̄2) + A6,iφ
2
σ

)
.

Zw,t is finite if

lim
i→∞

∣∣∣∣Zi+1
w

Zi
w

∣∣∣∣ < 1. (20)

16Note that the notation is slightly different from the specification in de Groot (2015). While de Groot (2015)
summarizes the constant terms A2,i and A4,i in one term called CBYi in the paper, we separate the two terms
as the first term captures the influence of the short term shock to consumption growth, while the second term
captures the influence of shock to the long-run growth rate.
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Inserting the solutions for the coefficients we obtain

lim
i→∞

A1,i+1 − A1,i = µc

(
1− 1

ψ

)
≡ B

lim
i→∞

A2,i+1 − A2,i = 0.5

(
1− 1

ψ

)2

≡ Bc

lim
i→∞

A3,i+1 − A3,i = 0

lim
i→∞

A4,i+1 − A4,i = 0.5

(
1− 1

ψ

1− ρ

)2

σ̄2 ≡ Bx

lim
i→∞

A5,i+1 − A5,i = 0

lim
i→∞

A6,i+1 − A6,i =
1

8



(

1− 1
ψ

)2

φ2
x

(1− ρ)(1− ν)


2

+ 2


(

1− 1
ψ

)2

φx

(1− ρ)(1− ν)


2

+


(

1− 1
ψ

)2

(1− ν)


2 ≡ Bσ

Hence there exists a solution for the wealth-consumption ratio Zw,t if and only if

δ exp
(
B +Bcσ̄

2 +Bxφ
2
x +Bσφ

2
σ

)
< 1. (21)

B Computational Methods for Asset Pricing Models

with Recursive Preferences

The common approach to solve for equilibrium dynamics is to log-linearize the model around

its steady state. A discussion of log-linearization methods requires careful attention to sev-

eral important differences among some well-known approaches. Standard log-linearization

methods as in Judd (1996) or Collard and Juillard (2001) linearize around the deterministic

steady state of the model. In a deterministic model, recursive preferences collapse to the

case of CRRA preferences and hence the risk aversion has no influence (as there is no risk).

But if the risk aversion has significant influence in the stochastic model, linearizing around

the deterministic steady state might not be the best choice. Therefore new techniques have

been developed that linearize around the risky steady state of the model (see, for example,

Juillard (2011), de Groot (2013) or Meyer-Gohde (2014)).17 Another drawback of the stan-

dard log-linearization is that the policies are independent of the volatility of the model (see

Caldara, Fernandez-Villaverde, Rubio-Ramirez, and Yao (2012)). But as Bansal and Yaron

17These authors define the risky steady state as the state where, in absence of shocks in the current period, the
agent decides to stay at the current state while expecting shocks in the future and knowing their probability
distribution.
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(2004) point out, stochastic volatility is one of the key features of the long-run risk model

and essential for asset-pricing dynamics. Hence a log-linear approximation for asset-pricing

models with recursive preferences and stochastic volatility must account for both features,

the risk-adjustment of the steady state and the effects of volatility. Bansal and Yaron (2004)

use a linearization technique based on the Campbell and Shiller (1988) return approximation

that meets these requirements which, therefore, has been used extensively for solving asset-

pricing models with recursive preferences (Segal, Shaliastovich, and Yaron (2015), Bansal,

Kiku, and Yaron (2010), Bansal, Kiku, and Yaron (2012a), Bollerslev, Tauchen, and Zhou

(2009), Kaltenbrunner and Lochstoer (2010), Koijen, Lustig, Van Nieuwerburgh, and Verdel-

han (2010), Drechsler and Yaron (2011), Bansal and Shaliastovich (2013), Constantinides and

Ghosh (2011), Bansal, Kiku, Shaliastovich, and Yaron (2014) or Beeler and Campbell (2012),

among others).18 One reason for its popularity is, that it allows for quasi-closed form solutions

for many different model specifications, for example when shocks to the economy are normal.

The log-linearization technique to solve asset pricing models with recursive preferences is

described in Section B.1.

This study analyzes the log-linearized model solution with regard to existence properties

and the influence of higher order dynamics on equilibrium outcomes that can, by construction,

not be captured by the log-linear approximation described below. For CRRA preferences

closed-form solutions for various model specifications can be computed. Unfortunately, for the

case of recursive preferences, there are no such solutions. Therefore we need a highly accurate

solution method which is capable to correctly capture higher-order features of the asset returns.

A convenient choice are projection methods that allow to choose the approximation degree

as well as the size of the approximation interval in order to be able to capture higher-order

dynamics that are driven by the tails of the distribution. Projection methods are a general-

purpose tool for solving functional equations. They were first introduced by physicists and

engineers to solve partial differential equations, but they can be used to solve the types of

fixed-point equations that arise in economics. (See Judd (1992) for an introduction or Chen,

Cosimano, and Himonas (2014) for a brief overview how to apply projection methods to asset

pricing models.) A detailed description of projection methods and how they can applied to

solve the equilibrium conditions (2) and (6) is given in Appendix B.2.

18Another approach, proposed by Kogan and Uppal (2001) and used for example in Hansen, Heaton, Lee, and
Roussanov (2007) and Hansen, Heaton, and Li (2008) is to linearize around the special case of unit elasticity
of substitution ψ = 1 where the wealth-consumption ratio is constant. However most of the follow-up work
in the long-run risk literature has focused on the log-linearization used in Bansal and Yaron (2004), which is
why we concentrate on this approximation.
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B.1 Log-Linearization Applied to Asset Pricing Models with Re-

cursive Preferences

Here we provide a short sketch of the linearization method. For a general description of

the method see Eraker (2008) and Eraker and Shaliastovich (2008). Assume that the log

price-dividend ratio of asset i, zi,t is a linear function of the state variables

zi,t = A0,i + Aiyt (22)

where yt ∈ Rl is the state vector describing the economy and A0,i ∈ R1 and Ai ∈ Rl are

the unknown linearization coefficients. The log return of the asset i, ri,t+1 is then defined as

ri,t+1 = log (ezi,t+1 + 1)− zi,t + ∆di,t+1 (23)

where ∆di,t+1 is the log growth rate of dividends. Making use of the Campbell and Shiller

(1988) return approximation one gets

ri,t+1 ≈ κi,0 + κi,1zi,t+1 − zi,t + ∆di,t+1 (24)

with the linearizing constants

κi,1 =
ez̄i

1 + ez̄i
(25)

κi,0 = − log
(
(1− κi,1)1−κi,1κ

κi,1
i,1

)
(26)

that only depend on the model implied mean price-dividend ratio z̄i = A0,i+AiE(yt). Plugging

the return approximation for the return on wealth (24) into the equilibrium condition (6) yields

Et

[
eθ log δ+(θ− θ

ψ
)∆ct+1+θ(κw,0+κw,1zw,t+1−zw,t)

]
= 1. (27)

The equilibrium condition now only depends on the state of the economy and the lineariza-

tion coefficients A0,i and Ai. As the equilibrium equation has to hold for any realization of

the state of the economy, one can collect the terms for each state to obtain a square system

of l + 1 equations. Once we have solved for the return on wealth one can apply the lineariza-

tion approach to the general pricing equation (2) to solve for the log price-dividend ratio of

any asset i. For certain state processes the expectation can be evaluated analytically, as for

example for processes with normal innovations as in Bansal and Yaron (2004) or Bollerslev,

Tauchen, and Zhou (2009). This allows for quasi closed-form solutions for the linearization

coefficients that only depend on the linearization constants κi,0 and κi,1. Eraker (2008), Eraker

and Shaliastovich (2008) and Drechsler and Yaron (2011) show how to generalize the approach
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to include general affine processes and jumps.

B.2 Projection Methods for Functional Equations

Projection methods (see Judd (1992) for an introduction or Chen, Cosimano, and Himonas

(2014) for a brief overview) are a general tool to solve functional equations of the form

(Gz)(x) = 0, (28)

where the variable x resides in a (state) space X ⊂ Rl, l ≥ 1, and z is an unknown solution

function with domain X, so z : X → Rm. The given operator G is a continuous mapping

between two function spaces. Note that solving equation (28) requires finding an element z

in a function space–that is, in an infinite-dimensional vector space.

The first central step of a projection method is to approximate the unknown function

z on its domain X by a linear combination of basis functions. For the applications in this

paper, it suffices to assume that the domain X is bounded and that the basis functions are

polynomials.19 For a set {Λk}k∈{0,1,...,n} of chosen basis functions the approximation ẑ of z is

ẑ(x;α) =
n∑
k=0

αkΛk(x), (29)

where α = [α0, α1, . . . , αn] are unknown coefficients. Replacing the function z in equation (28)

by its approximation ẑ, we can define the residual function F̂ (x;α) as the error in the original

equation,

F̂ (x;α) = (Gẑ)(x;α). (30)

Instead of solving equation (28) for the unknown function z, we now attempt to choose

coefficients α to make the residual F̂ (x;α) zero. Note that instead of finding an element in

an infinite-dimensional vector space we are now looking for a vector in Rn+1. Obviously, this

approximation step greatly simplifies the mathematical problem.

This problem is unlikely to have an exact solution, so the second central step of a projection

method is to impose certain conditions on the residual function, the so-called “projection”

conditions, to make the problem solvable. In other words, the purpose of the projection

conditions is to establish a set of requirements that the coefficients α must satisfy. For a

formulation of the projection conditions, define a “weight function” (term) w(x) and a set

of “test” functions {gk(x)}nk=0. We can then define an inner product between the residual

19In addition to polynomial approximations, approximations using cubic splines or B-splines are often very
useful.
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function F̂ and the test function gk,∫
X

F̂ (x;α)gk(x)w(x)dx.

This inner product induces a norm on the function space X. Natural restrictions for the

coefficient vector α are now the projection conditions,∫
X

F̂ (x;α)gk(x)w(x)dx = 0, k = 0, 1, . . . , n. (31)

Observe that this system of equations imposes n + 1 conditions on the (n + 1)-dimensional

vector α. Different projection methods vary in the choice of the weight function and the set

of test functions. In this paper we describe two different projections, the collocation and the

Galerkin method.

A collocation method chooses n+ 1 distinct nodes in the domain, {xk}nk=0, and defines the

test functions gk by

gk(x) =

{
0 if x 6= xk

1 if x = xk.

With a weight term w(x) ≡ 1, the projection conditions (31) simplify to

F̂ (xk;α) = 0, k = 0, 1, . . . , n. (32)

Simply put, the collocation method determines the coefficients in the approximation (29) by

solving the square system (32) of nonlinear equations.

The Galerkin method uses the fact that Chebyshev polynomials are orthogonal on [−1, 1]

with respect to the inner product using the weight function w(x) ≡ 1√
1−x2 . Hence the Galerkin

method uses the basis functions as the test functions, gk(x) = Λk(x) and the projection

conditions (31) become∫
X

F̂ (x;α)Λk(x)
1√

1− x2
dx = 0, k = 0, 1, . . . , n. (33)

Next we show how to apply the general projection approach to solve the equilibrium pricing

equations (6) and (2).

B.2.1 Projection Methods Applied to Asset-Pricing Models

To apply a projection method to the asset-pricing model, we express the equilibrium conditions

as a functional equation of the type (28). For this purpose, we need to choose an appropriate

state space and perform the usual transformation from an equilibrium described by infinite
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sequences (with a time index t) to the equilibrium being described by functions of some state

variables(s) x on a state space X. We denote the current state of the economy by x and

the subsequent state in the next period by x′. (For example in the original model by Mehra

and Prescott (1985), the state x is log consumption growth and X ⊂ R1; in the model of

Bansal and Yaron (2004), the state x consists of the long-run mean of consumption growth

(denoted by xt in that paper) and the variance of consumption growth (denoted by σ2
t ), so

X ⊂ R2.) We assume that the probability distribution of next period’s state x′ conditional

on the current state x is defined by a density fx.

First note that we solve the model in two steps. In the first step, we use the projection

method to solve the wealth-Euler equation (6) to obtain the return on wealth. Once the return

on wealth is known, then, in a second step, we can solve for any asset return by applying the

projection approach to equation (2). For the first step, write equation (6) in state-space

representation

E

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + θrw(x′|x)

) ∣∣∣∣x] = 1, ∀x, (34)

where lower case letters denote logs of variables and ∆c(x′|x) = c(x′) − c(x). We write

the model in logs, because the function we solve for is the log wealth-consumption ratio

zw(x) = log
(
W (x)
C(x)

)
. Next, write the state-dependent log return of the aggregate consumption

claim as

rw(x′|x) = log

(
W (x′)

W (x)− C(x)

)
= log

( W (x′)
C(x′)

W (x)
C(x)
− 1
× C(x′)

C(x)

)
= zw(x′)− log

(
ezw(x) − 1

)
+ ∆c(x′|x). (35)

Inserting the last term in equation (34) yields

E

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + zw(x′)− log

(
ezw(x) − 1

)))
− 1

∣∣∣∣x] = 0, ∀x. (36)

Equivalently,

0 =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + zw(x′)− log

(
ezw(x) − 1

)))
− 1

]
dfx (37)

which is a functional equation of the form (28) and allows us to apply the projection approach.

The unknown solution function to this equilibrium condition, zw, is an element of a function

space which is an infinite-dimensional vector space. A key feature of every projection method

is to approximate the solution function zw by an element from a finite-dimensional space.
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Specifically, we use the approximation ẑw(x;αw) =
∑n

k=0 αw,kΛk(x), where {Λk}k∈{0,1,...,n} is a

set of chosen (known) basis functions and αw = [αw,0, αw,1, . . . , αw,n] are unknown coefficients.

Replacing the exact solution zw(x) by the approximation ẑw(x;αw) leads us to the residual

function F̂w for the rearranged wealth-Euler equation (37), which is defined by

F̂w(x;αw) =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + ẑw(x′)− log

(
eẑw(x) − 1

)))
− 1

]
dfx.

(38)

We can determine values for the unknown solution coefficients αw by imposing a projection

condition on the residual term F̂w(x;αw). In this paper we employ two different such pro-

jection conditions, the collocation and the Galerkin method, see Appendix B.2. The values

for the coefficients αw determine the state-dependent wealth-consumption ratio ẑw(x;αw)

which in turn leads to the (approximate) return function of the aggregate consumption claim,

r̂w(x′|x;αw) = ẑw(x′;αw)− log
(
eẑw(x;αw) − 1

)
+ ∆c(x′|x).

With r̂w(x′|x;αw) at hand, we can now develop an approach to compute the return of

any asset i using equation (2). Analogous to the first step, we solve for the log price-dividend

ratio zi(x) = log
(
P (x)
D(x)

)
and rewrite the state-dependent log return of asset i as

ri(x
′|x) = log

(
Pi(x

′) +Di(x
′)

Pi(x)

)
= log

( Pi(x
′)

Di(x′)
+ 1

Pi(x)
Di(x)

× Di(x
′)

Di(x)

)
= log

(
ezi(x

′) + 1
)
− zi(x) + ∆di(x

′|x). (39)

Writing the Euler equation (2) in state-space representation and formulating it in logs yields

E

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)rw(x′|x) + ri(x

′|x)

) ∣∣∣∣x] = 1. (40)

Substituting the return expressions (35) and (39) into this equations and replacing the log

price-dividend ratio zi(x) = pi(x) − di(x) by its approximation ẑi(x;αi) =
∑n

k=0 αi,kΛk(x)

leads to the residual function

F̂i(x;αi) =

∫
X

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log
(
eẑi(x

′;αi) + 1
)
− ẑi(x;αi) + ∆di(x

′|x)

)
− 1

]
dfx (41)

Recall that the coefficients αw and thus the function r̂w(x′|x;αw) have been computed previ-

ously. Therefore, we can now apply one of the projection conditions to solve for the unknown

vector αi.

In sum, we apply the projection method twice. In the first step, we approximate the
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log wealth-consumption ratio ẑw(x;αw) by applying the projections on the residual function

of the wealth-Euler equation (38). Once αw is known, the projections can be applied to

equation (41) to solve for the price-dividend ratio ẑi(x;αi) of any asset i. Formally, the

algorithm can be described as follows.

Algorithm Solving Asset-Pricing Models with Recursive Preferences.

Initialization. Define the state space X ⊂ Rl; choose the functional forms for ẑw(x;αw)

and ẑi(x;αi) as well as the projection method.

Step 1. Use the wealth-Euler equation (6) together with the approximated log wealth-

consumption ratio ẑw(x;αw) and the definition of the return equation (35) to derive the

residual function for the return on wealth

F̂w(x;αw) =

∫
X

[
exp

(
θ

(
log δ + (1− 1

ψ
)∆c(x′|x) + ẑw(x′)− log

(
eẑw(x) − 1

)))
− 1

]
dfx.

Compute the unknown solution coefficients αw by imposing the projections on F̂w(x;αw).

Step 2. Use the solution for the wealth-consumption ratio ẑw(x;αw) and the Euler equa-

tion (2) for asset i together with the approximated log price-dividend ratio ẑi(x;αi) and

the definition of the return equation (39) to derive the residual function for asset i,

F̂i(x;αi) =

∫
X

[
exp

(
θ log δ − θ

ψ
∆c(x′|x) + (θ − 1)r̂w(x′|x;αw)

+ log
(
eẑi(x

′;αi) + 1
)
− ẑi(x;αi) + ∆di(x

′|x)

)
− 1

]
dfx

Compute the unknown solution coefficients αi by imposing the projections on F̂i(x;αi).

Evaluation. Choose a set of evaluation nodes Xe = {xej : 1 ≤ j ≤ me} ⊂ X and com-

pute approximation errors in the residual function of the wealth portfolio and the residual

function of asset i. If the errors do not satisfy a predefined error bound, start over at

Initialization and change the number of approximation nodes or the degree of the basis

functions.

To actually implement the algorithm, we need to specify additional algorithmic details

such as the choices for basis functions and the integration technique.
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B.2.2 Algorithmic Ingredients

In the Initialization step, we need to choose a set of basis functions for the polynomial

approximation, a projection method and a set of nodes. To simplify the presentation, we

describe the necessary choices for a one-dimensional state space approximated over an interval

X = [xmin, xmax]. We approximate the solution functions zw and zi by Chebyshev polynomials

(of the first kind), see Judd (1998). We obtain the Chebyshev polynomials via the recursive

relationship

T0(ξ) = 1, T1(ξ) = ξ, Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ),

with Tk : [−1, 1] → R. Since we need to approximate functions on the domain X and the

Chebyshev polynomials are defined on the interval [−1, 1], we need to transform the argument

for the polynomials. The basis functions for the approximate solutions ẑw(x;αw) and ẑi(x;αi)

are given by

Λk(x) = Tk

(
2

(
x− xmin

xmax − xmin

)
− 1

)
(42)

for k = 0, 1, . . . , n.

In this paper we only show the results using the collocation method but we verified the

solutions using the Galerkin approach. The application of a projection method requires a set

of nodes, X = {xj : 0 ≤ j ≤ m} ⊂ X; we choose the m+ 1 zeros of the Chebyshev polynomial

Tm+1. These points are called Chebyshev nodes,

ξj = cos

(
2j + 1

2m+ 2
π

)
, j = 0, 1, . . . ,m.

Since all Chebyshev nodes are in the interval [−1, 1], we need to transform them to obtain

nodes in the state space X. This transformation is

xj = xmin +
xmax − xmin

2
(1 + ξj), j = 0, 1, . . . ,m.

For the collocation method, the number of basis functions, n + 1, must be identical to the

number of approximation nodes, m+1, and so m = n. In Step 1 (and Step 2, if applicable),

we must solve the projection conditions involving the residual function. The residual functions

defined in equations (38) and (41) contain a conditional expectations operator, which also

requires numerical calculations. The underlying exogenous processes in the models we consider

are normally distributed, and so we apply Gauss-Hermite quadrature to calculate expectations.

The collocation approach leads to a square system of nonlinear equations, see Appendix B.2,

which can be solved with a standard nonlinear equation solver. The Galerkin projection is

slightly more complex, and uses integral operators as projection conditions; these in turn can
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be accurately approximated by Gauss-Chebyshev quadrature.

For the Evaluation step we useme >> m equally spaced evaluation nodes inX to evaluate

the errors in the residual function. In particular, for asset i we compute the root mean squared

errors (RMSE) and maximum absolute errors (MAE) in the residual function (41); these errors

are

RMSEi =

√√√√ 1

me

me∑
j=1

F̂i(xej |αi)2, (43)

MAEi = max
j=1,2,...,me

|F̂i(xej |αi)|, (44)

respectively, with

xej = xmin +
xmax − xmin
me − 1

(j − 1), j = 1, . . . ,me. (45)

C Accuracy of the Projection Method

Table 5 demonstrates the accuracy of the projection approach. We consider the long-run

risk model of Bansal and Yaron (2004) with constant volatility where there exist closed form

solutions for the case of CRRA preferences. In the case of recursive preferences we determine

the accurate solution using the projection approach with a very large degree and state space.

(We use nσ = 50 and increase the degree until the highest order coefficient is close to zero.

We double check the solution by using the discretization method of Tauchen and Hussey

(1991) with a very large number of discretization nodes). We find that for the calibration

with ρ = 0.95 already a first order approximation with an approximation interval of nσ = 1

standard deviation around the unconditional mean of xt provides a very accurate solution

with an approximation error of 1.51e-5 for the case with recursive utility and γ = 10. For the

high persistence case with ρ = 0.99 a larger degree is required and the degree four polynomial

is sufficient to compute a highly accurate solution. Overall we observe, that the projection

method provides highly accurate solutions for all specifications considered in this example.

We report the results when solving the Euler equation for wealth. Alternatively we could

solve the fixed-point equation for utility. The results this way are almost identical – the

coefficients differ by less than 10−12.

D The Volatility of Volatility Factor

This section analyzes how log-linearization affects model outcomes when the model dynamics

are described by a square-root process as for example in Bollerslev, Tauchen, and Zhou (2009),
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Table 5: Accuracy of the Projection Method

Closed-F. Log-Lin Projection Discretization

n = 1 n = 4 n = 16 nD = 5 nD = 10 nD = 50
nσ = 1 nσ = 4 nσ = 32

ψ = 1.5, γ = 1/ψ

ρ = 0.95

E(W
C

) 1681.20 1681.16 1681.18 1681.20 1681.20 1669.99 1670.75 1671.00
Error 0 2.11e-5 1.19e-5 2.61e-8 2.60e-8 0.0067 0.0062 0.0060

ρ = 0.99

E(W
C

) 1868.36 1862.93 1865.54 1868.36 1868.36 3404.73 2121.64 1852.27
Error 0 0.0029 0.0015 1.21e-7 7.65e-11 0.8223 0.1356 0.0086

ψ = 1.5, γ = 10

ρ = 0.95

E(W
C

) - 1314.39 1314.59 1314.61 1314.61 1532.25 1514.25 1508.08
Error - 1.66e-4 1.51e-5 4.37e-11 2.12e-12 0.1655 0.1518 0.1472

ρ = 0.99

E(W
C

) - 517.13 518.97 529.39 529.39 869.23 653.99 570.65
Error - 0.0231 0.0196 1.43e-9 4.91e-11 0.6419 0.2353 0.0779

The table shows the mean wealth-consumption ratio for the long-run risk model of Bansal and
Yaron (2004) with constant volatility (Equations (7) with σc,t = σx,t = σ̄ and ηc,t+1, ηx,t+1 i.i.d.
normal.). Results are shown for the log-linearization, the projection as well as the discretization
by Tauchen and Hussey (1991) with the extension of Floden (2007) that performs better for highly
persistent processes. For the projection method solutions with three different degrees n where the
approximation interval is set up nσ standard deviations around the unconditional mean of the long-
run risk process xt are provided. For the discretization results are shown for three different numbers
of approximation nodes nD. The table also shows the relative error of the solutions, where in the
case of γ = 1/ψ the closed form solution is taken from de Groot (2015) and in the case of γ 6= 1/ψ
we compute the accurate solution by solving the model using the discretization method with a very
large number of discretization nodes or equivalently the projection with a very large degree and state
space. We use the same calibration as in Section 3.3 with δ = 0.9989, µc = 0.0015, σ̄2 = 0.00782 and
φx = 0.044.
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Tauchen (2011) or Bollerslev, Xu, and Zhou (2015). For this purpose we use the parsimonious

model formulation as in Bollerslev, Tauchen, and Zhou (2009) who take the basic model setup

(7) without the long-run risk factor φx = 0 and add vol-of vol modeled by a square root

process qt:

σ2
t+1 = σ̄2(1− ν) + νσ2

t +
√
qtησ,t+1

qt+1 = µq(1− ρq) + ρqqt + φq
√
qtηq,t+1

ησ,t+1, ηq,t+1 ∼ i.i.d. N(0, 1). (46)

As Tauchen (2011) notes, care is needed, as qt can become negative in simulations if the

volatility is too large compared to the mean of the process. The common approach in the

literature is to assume a reflecting barrier at zero by replacing negative values with very

small positive values to ensures positivity of the process (this approach has also been used

for the stochastic volatility process in the original Bansal and Yaron (2004) study and many

following papers). However, to compute model solutions, the assumption of a non-truncated

distribution for the log-linearization is commonly used.

Take, for example, the calibration of Bollerslev, Tauchen, and Zhou (2009) given by δ =

0.997, γ = 10, ψ = 1.5, µc = 0.0015, ν = 0.978, σ̄2 = 0.00782 and µq = 1e-6. Figure 11 shows

model outcomes for CRRA preferences with ψ = 1.5 (Panel (a)) and the corresponding EZ

case with γ = 10 (Panel (b)) for various persistence and volatility parameters of the vol-

of-vol process ρq and φq. The black numbers show the true mean wealth-consumption ratio

under the assumption of a reflecting boundary for qt at zero. Blue values are the results

from log-linearization under the assumption of a standard non-truncated normal distribution.

Green circles denote convergence of both, the projection and the log-linearization approach.

Red diamonds denote cases in which the log-linearization yields a complex solution, while the

model solution using a truncated normal distribution is real. We find that, depending on the

risk aversion, using the standard log-linearization technique can lead to complex solutions.

This is for example the case for the calibration in Bollerslev, Tauchen, and Zhou (2009) with

ρq = 0.8 and φq = 1e-3.20

So what are the determinants of the complexity of the linearized solution? The square-

root specification of qt implies that the coefficient for qt is determined by a quadratic equation

and hence may have more than one solution. The log-linear approximation of the log wealth-

20Bollerslev, Tauchen, and Zhou (2009) provide a real solution by assuming a fixed value for the linearization
constant κ = 0.9. However this approach doesn’t give a solution to the model but ex ante fixes the mean value
of the price dividend ratio and hence significantly biases the model outcome.
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Figure 11: Sensitivity Analysis and Existence Results in the Vol-of-Vol Model
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(b) ψ = 1.5, γ = 10
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The graph shows the convergence properties as well as the mean wealth-consumption ratio for the
vol-of-vol model of Bollerslev, Tauchen, and Zhou (2009). The results are reported for a range of
persistence parameters ρq and volatility parameters φq. Panel (a) depicts the case of CRRA utility
with ψ = 1.5, while panel (b) depicts the corresponding cases with recursive utility and γ = 10.
Black numbers show the mean wealth-consumption ratio obtained by the projection approach using a
reflecting barrier at zero and blue numbers show the values obtained by the standard log-linearization
with normal shocks. Green circles denote convergence of both, the projection and the log-linearization
approach. Red diamonds denote cases in which the log-linearization yields a complex solution, while
the model solution using a truncated normal distribution is real. The model parameters are given
by δ = 0.997, µc = 0.0015, ν = 0.978, σ̄2 = 0.00782 and µq = 1e-6.
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consumption ratio zw,t has the following form

zw,t = A0 + Aσσ
2
t + Aqqt (47)

with the linearization coefficients (see Appendix B.1 for the derivation) given by

Aσ =
(1− γ)2

2θ(1− k1ν)

A0 =
log δ + (1− 1

ψ
)µc + k0 + k1

[
Aσσ̄

2(1− ν) + Aqµq(1− ρq)
]

(1− k1)

Aq =
1− k1ρq±

√
(1− k1ρq)2 − θ2k4

1φ
2
qA

2
σ

θk2
1φ

2
q

(48)

We find that the coefficient for the vol-of-vol factor Aq has indeed two solutions. As Bollerslev,

Tauchen, and Zhou (2009) show in their paper by the no arbitrage argument, the minus term

is the economically meaningful root and the positive solution can be neglected. Complexity

of the solution is determined by the term inside the square root in equation (48) given by

(1− k1ρq)
2 − θ2k4

1φ
2
qA

2
σ. So how does this term depend on the model parameters? Figure 12

shows the values of the square root term as a function of the risk aversion γ. In line with

Figure 12: Analysis of Square-Root Term in the Vol-of-Vol Model
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The graph shows the real and complex part of the square root term that determines Aq as a function
of the risk aversion γ for the vol-of-vol model of Bollerslev, Tauchen, and Zhou (2009). The model
parameters are given by δ = 0.997, µc = 0.0015, ν = 0.978, σ̄2 = 0.00782, µq = 1e-6, ρq = 0.8 and
φq = 1× 10−3.
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the results above, we find that for small γ the solution is well behaved with only a real and

no imaginary part. However if we increase γ, θ becomes significantly larger (it goes from -3

for γ = 2 to -27 for γ = 10) and hence the real part of the term decreases. For a certain

threshold (about 4.4 in this example) the term hits zero and the solution thereafter consists of

a significant imaginary part. Also Panel (b) in Figure 11 shows, that the larger the persistence

or the larger the volatility of the vol-of-vol process solutions become complex. Summarizing,

using standard log-linearization with normal shocks to solve models with a large risk aversion

and a persistent square-root process can yield complex solutions, even if real solutions under

the assumption of a reflecting barrier exist. Hence when solving such models, either log-

linearization with the assumption of a truncated normal distribution or more sophisticated

methods like the projection approach described in this paper should be used.
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