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Abstract. Thought experiments are commonly used in the theory of behavior
in the presence of risk and uncertainty to test the plausibility of proposed

axiomatic postulates . The prototypical examples are the Allais experiments
and of the latter are the Ellsberg experiments. Although the lotteries from
the former have objectively specified probabilities, the participants in both

kinds of experiments may be susceptible to small deviations in their subjective
beliefs. These may result from a variety of factors that are difficult to check
in an experimental setting: including deviations in the understanding and
trust regarding the experiment, its instructions and its method. Intuitively,

an experiment is robust if it is tolerant to small deviations in subjective beliefs
in models that are in an appropriate way close to the modeler’s model. We
characterize robust experiments in a theoretical framework and give a number
of recipes for the robustification of experiments and their elicited preferences.

1. Introduction

The development of decision theory has been driven, in large measure, by thought
experiments questioning the core postulates of the expected utility model, axiom-
atized for choice under risk by von Neumann and Morgenstern (1944) and for
uncertainty by Savage (1954). The various forms of the expected utility model are
theories that summarize the psychological motivations and the behavior of individ-
uals by attributing to them axiomatic interpretations in the language of probability
theory.

The first thought experiment to present a serious challenge to expected utility
theory was the common consequence problem proposed by Allais (1953) and often
referred to as the Allais ‘paradox.’ The point of the common consequence problem
was to challenge the intuitive plausibility of axiomatic systems in which common
consequences occurring with equal probability could be disregarded in comparing
choices. This feature of the von Neuman- Morgenstern system was gradually formal-
ized as the ‘independence axiom’ (see Fishburn and Wakker (1995) for the history
of this process).

Similarly, Ellsberg (1961) proposed thought-experiments for which intuitively
plausible choices were inconsistent with the existence of any well-defined subjective
probabilities. Discussion of Ellsberg’s paradox has mostly focused on the idea of
ambiguity. However, the construction of the one-urn experiment can also be seen
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as a sharp test of Savage’s ‘sure-thing’ principle. The thought experiments of Allais
and Ellsberg are examples of a large class of choice problems designed to test certain
postulates on individual behavior in the presence of risk and uncertainty.

The criticisms of Allais and Ellsberg had little impact of the rise of expected
utility to theoretical dominance, largely displacing alternatives such as the mean-
variance theory of Markowitz (1952). Moreover, at the time the criticism was made,
experimental economics was in its infancy. The 1970s saw a revival of interest
in criticisms of expected utility theory, and of attempts to test its predictions in
laboratory experiments, most notably those of Kahneman and Tversky (1979).

In a typical experiment preferences over a finite number of uncertain bets are
elicited from participants. If a significant number of sampled preferences are anoma-
lous, that is, inconsistent with the postulates, then the analyst would like to con-
clude that these postulates need revision. The work of Kahneman and Tversky
(1979) supported by other early experimental results MacCrimmon and Larsson
(1979) gave influential support to this view.

It is necessary, however, to consider the alternative view that the postulates
are descriptively valid, and that the interpretation of stated preferences by the
analyst is subject to error. For example, it has been suggested that observed pref-
erences inconsistent with the predictions of expected utility theory may arise from
“mistakes, carelessness, slips, inattentiveness” (Hey (1995)), repetition-inconsistent
choices (Neugebauer and Schmidt (2007)), mistrust of the experimenter (Kadane
(1992), Quiggin (1993), pp42-43) or from inappropriate use of heuristics (Tversky
and Kahneman (1974), Al-Najjar and Weinstein (2009)).

Projecting these kinds of explanations to their extremes one may even conclude
that absent restrictions on the epistemic perspectives of participants, subjective ex-
pected utility theory is, in a Popperian sense, untestable. Indeed, we can rationalise
any elicited preference ordering in any experiment as arising from subjective ex-
pected utility preferences in a probability model that differs greatly from the model
anticipated by the experimental designer. These wild deviations from the modeler’s
model can even be articulated in terms of the Karni and Schmeilder (1991) notion
of conceivable states (Grabiszewski (2014)) to basically explain all preferences as
arising from expected utility maximization.

To obtain a testable version of expected utility it is necessary to impose some
restrictions on the extent to which elicited preferences may differ from what is
deemed an admissible expected utility preference ordering in the experiment.

Since the 1990s, this approach has been explored in numerous papers, with
conclusions more favourable to the ‘EU + error’ interpretation than those of earlier
work.

Hey and Orme (1994) used the Akaike information criterion for which expected
utility was ‘pipped-at-the-post’ by rank-dependent utility with overweighting of
extreme outcomes. Hey (1995) nonetheless concludes that:

It may be the case that these further explorations may alter the
conclusion to which I am increasingly being drawn: that one can
explain experimental analyses of decision making under risk better
(and simpler) as EU plus noise - rather than through some higher
level functional - as long as one specifies the noise appropriately.

Along similar lines Harrison (1994) argues that many experiments have proposed
tests which fail criteria for good experimental design, notably that that the rewards
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corresponding to the null hypothesis are “perceptibly and motivationally greater”
than the rewards corresponding to the alternative hypothesis.

In this paper we focus on a systematic analysis of this problem, arising in the
design of experimental tests based on thought experiments including those of Allais
and Ellsberg, and in more general experiments. Intuitively appealing experimen-
tal tests of theoretical postulates may be systematically fragile in the sense that
arbitrarily small errors may be sufficient to produce violations of those postulates.

The analyst models the experiment and anticipates the various possible sub-
jective perspectives of participants in the experiment. The exclusive prevailing
paradigm, in the sense of Gilboa et al. (2014), for all of this modeling is probability
theory and its associated logic. A well-conceived thought experiment, such as Ells-
berg’s, has associated with it a tractable (canonical) probability model usually de-
rived by means of classical Bernoulli-Laplace reasoning in which elementary events
are identified and presumed to have equal probability, thus making the probability
of any other event simply its cardinality divided by the total number of elementary
events. Although the analyst cannot rule out the possibility that participants may
have different probability models in mind, in a well-designed implementation of an
experiment the modeler can reasonably expect that the epistemic perspective of
participants in the experiment is closely related to the canonical probability model.
So the focus of the present paper is on well-conceived and well-designed experiments
in which one can reasonably anticipate that the perspective of participants remains
close in an appropriate sense to the modeler’s model of the experiment.

The main idea of the paper is that a robust challenge to a decision-theoretic
model arising from an experiment remains a challenge in any probability model
that is close to the canonical model. With this in mind, we see that many clas-
sic experiments such as the prototypical Allais and Ellsberg experiments and their
derivatives (Machina (2009)), although well-conceived, do not pose convincing chal-
lenges to expected utility theory. We show, however, how they can be modified to
overcome this problem and our expectation is that robustified versions of the Al-
lais and Ellsberg experiments will indeed pose challenges to expected utility theory
that, unlike the classic experiments, withstand the kinds of objections that we study
here. We also explain how experimental design methods used in Ellsberg type ex-
periments (Binmore et al. (2012)) can be understood as the robustification of the
experiment within our framework.

We set up a framework for studying the robustness of experiments. We intro-
duce three notions of robustness. The first is internal robustness in the results of
an experiment. These are robust to perturbations of beliefs within the canonical
model, that is, the probability model employed by the experimenter to interpret
the uncertainty. The second is robustly inadmissible preferences, which are elicited
preferences that challenge the theory being studied. These do so for any small
perturbations of beliefs in any probability model that is statistically equivalent to
the canonical model. Intuitively, two probability models are statistically equivalent
if a statistician observing outcomes of the models cannot distinguish between the
two. Finally, an experiment is robust if all its inadmissible preferences are robustly
inadmissible, or equivalently if it is internally robust for all the probability models
that are statistically equivalent to the canonical model.
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In crafting the specifics of our framework, we focus on two classes of experiments.
The first class, which includes the Ellsberg and Allais experiments, directly test ex-
pected utility theory. The second, which covers a much wider set of experiments in
the literature, maintains expected utility theory as a given and tests certain aspects
or properties of attitudes towards risk. Technically, they are testing properties of
the Bernoulli utility function. For instance testing whether particular populations
are predominantly risk averse, risk loving, or exhibit certain wealth effects such as
CARA, DARA or IRRA. One of the problems in this second class of experiments is
disentangling deviations in subjective beliefs from deviations in Bernoulli utility. In
these experiments it is the latter that is of interest to the experimenter. The results
of a robust experiment as defined here, are robust to small deviations in beliefs. De-
viations articulated in terms of anomalous preferences arise either from deviations
in the utility model or from large deviations in beliefs away from what is intended
by the experimental design. Thus in a well-designed robust experiment, from any
such anomalies we can infer that participant’s risk attitudes do not conform with
the model regarding Bernoulli utility.

The paper is organized as follows. Section 2 provides an articulation of the main
concepts, results and insights in terms of Ellsberg’s single-urn thought experiment.
The formal framework is set up in Section 3. Robust experiments are introduced
in Section 4 and a number of examples of non-robust experiments are studied in
Section 5.1 Section 6 outlines different methods for robustifying an experiment.

Unless otherwise specified, proofs appear in Appendix A. Additionally, in Ap-
pendix B, we relate our framework for modeling robust experiments to a small-world
in Savage’s model of choice under purely subjective uncertainy.

2. The Main Concepts, Results and Insights

Before the formal development of our framework that begins in Section 3, we
provide in this section a summary of the main concepts, results and insights: in-
troducing and illustrating each in the context of Ellsberg’s single-urn thought ex-
periment.

In Ellsberg’s single-urn thought experiment, the reader is asked to “imagine an
urn known to contain 30 red balls and 60 black and yellow balls, the latter in
unknown proportion.” (Ellsberg, 1961, p. 653). A ball is to be drawn from the
urn. On the basis of the color of the ball drawn, first consider a choice between
a bet that pays $100 if the ball drawn is red and nothing otherwise, denoted bR,
and a bet that pays $100 if the ball drawn is black and nothing otherwise, denoted
bB . Next consider a choice between a bet that pays $100 if the ball drawn is red
or yellow and nothing if it is black, denoted bRY , and a bet that pays $100 if the
ball drawn is black or yellow and nothing if it is red, denoted bBY . Ellsberg argues
that anyone exhibiting the preference pattern bR ≻ bB and bBY ≻ bRY is “simply
not acting ‘as though’ they assigned numerical or even qualitative probabilities to
the events in question.” (Ellsberg, 1961, p. 656) In particular, this means such a
preference pattern is inconsistent with subjective expected utility theory.

His reasoning rests on the assumption that the subject in such an experiment
takes the state space to be the sample space {sR, sB , sY }, where sc is the sample-
state in which a ball of color c is drawn from the urn independent of which bet has
been chosen by the subject in either problem. By identifiying each of these three

1An additional example from Machina (2009) is analyzed in Appendix C.
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states with the corresponding vector of bet-consequences we obtain the following
4× 3 payoff matrix:

C =

sR sB sY


bR 100 0 0
bB 0 100 0
bRY 100 0 100
bBY 0 100 100

.

The set of admissible preferences are ones that can be induced by a subjective
expected utility maximizing decision-maker characterized by a pair (u, p) where

(1) u is any (Bernoulli) utility function for which u(0) < u(100).
(2) p is any probability distribution over the sample space satisfying p(sR) =

1
3 ,

p(sB) = q and p(sY ) =
2
3 − q, for some number q, 1

90 ⩽ q ⩽ 59
90 .

2

We refer to the set A of all such pairs as the admissible parameters and the pair
(C,A) as the canonical version of the single-urn Ellsberg experiment in belief form.

For each pair (u, p) ∈ A, we can map each bet into a lottery with a support
comprising the two outcomes, u(0) and u(100). For example, the bet bRY is mapped
to the lottery that assigns probability 1

3 + p(sY ) to outcome u(100) and assigns the
complementary probability p(sB) to outcome u(0). The final step is to translate,
by the application of the expected utility rule, each lottery into a real number from
which is generated the preferences over bets characterized by that pair.

Notice that for any (u, p) ∈ A the difference in the probability assigned to the
outcome u(100) by the lottery induced from bet bR compared to that assigned by
the lottery induced from bet bB is p(sR) − p(sB). But this can in turn be seen
to be equal to the difference in the probability assigned to the outcome u(100) by
the lottery induced from bet bRY compared to that assigned by the lottery induced
from bet bBY . That is, the lottery induced from bet bR assigns more probability
to the better outcome than does the lottery induced from bet bB if and only if the
lottery induced from bet bRY assigns more probability to the better outcome than
does the lottery induced from bet bBY . So we conclude any preference ordering
≿ over the four bets, with bR ≻ bB and bBY ≻ bRY , is not admissible in this
experiment.

Notice further, that such a preference pattern remains inadmissible even if we
allow for pertubations of any admissible belief in the direction of any belief over
the sample space {sR, sB , sY }.3 In this sense, we view the canonical version of the
Ellsberg experiment as being internally robust.

Imagine now, however, the experimenter suspects that some participants have
an alternative perception of the situation which corresponds to the experiment in

2The restriction p(sR) = 1
3

accords with the information that 30 out of the 90 balls are red.
The restriction to positive probability for the other two states accords with the information that

the urn contains both black and yellow balls, albeit in unknown proportion. Alternatively, as
Ellsberg writes, “imagine a sample of two drawn from the 60 black and yellow balls has resulted
in one black and one yellow.” (Ellsberg, 1961, pp. 653-4)

3This includes inadmissible beliefs such as those for which p(sR) ̸= 1
3

or p(sB) being any

number in the interval [0, 1].
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belief form (C ′,A′) given by the consequence matrix

C ′ =

sR sB sY s∗


bR 100 0 0 0
bB 0 100 0 0
bRY 100 0 100 0
bBY 0 100 100 100

.

with A′ being the set of all (u, p′) for which there is (u, p) ∈ A satisfying p′(s) = p(s)
for all s ∈ {sR, sB , sY }, thus making p′(s∗) = 0. That is, (C ′,A′) is very similar
to the canonical version but with an additional state s∗ that has zero probability
in all the admissible parameters of the experiment. One possible interpretation
for this state s∗ is the participant conceives of, but places zero probability on, the
possibility that the experimenter can “manipulate” the draw of a ball whose color
is not red by substituting a yellow ball for a black one or a black ball for a yellow
one, whenever such a substitution results in the bet paying out $0 instead of $100.
Hence the only bet that pays out $100 in s∗ is bBY , the one that pays out $100 no
matter whether the color of a non-red ball is black or yellow.

The version (C ′,A′) admits the same admissible and inadmissible preferences
as the canonical experiment. However, the set of possible perturbations in beliefs
is richer in (C ′,A′) than was the case in the canonical version. In particular,
notice that the preference ordering ≿, in which bBY ≻ bRY ≻ bR ≻ bB , although
inadmissible in both versions of the experiment, can be rationalized by a subjective
expected utility maximizer characterized by a utility function satisfying u(0) <
u(100) and a belief (

1

3
,
1− ε

3
,
1− ε

3
,
2ε

3

)
,

where ε can be any number in (0, 1), no matter how small. That is, although
inadmissible, once we allow for small perturbations of any admissible belief (such
as ( 13 ,

1
3 ,

1
3 , 0)) in the direction of any other probability distribution over the sample-

space {sR, sB , sY , s∗} (such as ( 13 , 0, 0,
2
3 )) the preference ordering becomes what

we refer to in the sequel as ε-admissible in (C ′,A′).4

Although the canonical version of the Ellsberg experiment is clearly what Ells-
berg had in mind, we contend that one cannot rule out, either from a priori reason-
ing or from any ex post experimental observation, that a participant did not have
some alternative version in mind, for example, the version (C ′,A′) described above.
Notice that both of these versions are probability models with the same set of bets
and, for each bet, the same set of consequences and, as we have already noted,
the sets of admissible preferences coincide. However, the sample-spaces of the two
versions differ which we have seen lead to differences in what is ε-admissible. Thus
if we desire a notion of robustness that does not depend on which of these two
versions a participant has in mind, then internal robustness will not suffice.

Even more troubling, the sample space of the non-canonical version (C ′,A′) was
chosen somewhat arbitrarily. We introduced and motivated it by one story, but

4This is reminiscient of Kadane (1992) in which he proposes that the participants’ ‘healthy
scepticism’ of the experimenter and a suspicion that he might manipulate the design to their

disadvantage could ‘explain’ both Allais and Ellsberg type phonomena without having to resort
to a model of behavior that does not conform to expected utility.
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there are other possible stories one might tell each with its own distinct probabil-
ity model. There are many more probability models with widely varying sample
spaces that are also consistent with the underlying uncertainty described in this
Ellsberg scenario. Any of these potentially can serve as the version in the mind of
a participant.

Building on this insight we define in Section 4 an equivalence class of experi-
ments in belief form which includes all these potential versions. Our formal notion
of robustness will be one that is invariant across such an equivalence class of ex-
periments. The associated equivalence relation is based on the distributions over
consequences induced from the bets by the beliefs thus making no explicit refer-
ence to the sample space. Loosely speaking, each equivalence class of experiments
in belief form can be interpreted as embodying a notion of statistical equivalence.

Given the (statistical) equivalence class associated with an experiment in belief
form (C,A), we shall say a preference ordering over bets is weakly-admissible if it
is ε-admissible for some version from this class. This leads naturally to our notion
of robustness both for observed violations of the theory within an experiment and
for the entire experiment itself.

• A preference ordering is robustly inadmissible if it is not weakly-admissible.
• An experiment is robust if every inadmissible preference ordering is robustly
inadmissible.

Although this notion of robustness requires a property to hold on an entire
equivalence class of experiments, we show it can be characterized entirely in terms
of the admissible preferences over the bets for any given (statistically equivalent)
version of the experiment. So in the case of the Ellsberg experiment, for example,
we can characterize robustness purely in terms of its canonical version (C,A).

In particular, the main result of the paper is a characterization of robust in-
admissibility and a corollary characterizing robust experiments. They are stated
in terms of the following partial orderings over preference orderings. A preference
ordering over bets is finer than another distinct preference ordering if any strict
preference between a pair of bets in the latter implies the corresponding strict pref-
erence holds in the former. Correspondingly, we say one preference ordering over
bets is coarser than another if the latter is finer than the former.

Our characterizations are based on the insight that any refinement of any ad-
missible preference ordering is weakly admissible.

Characterization of Robust Inadmissibility (Theorem 1):
A preference ordering is robustly inadmissible in an experiment
if and only if no coarser preference ordering is admissible.

Characterization of Robust Experiments (Corollary 1.2):
An experiment is robust if and only if every preference ordering that is finer
than an admissible preference ordering is also admissible.

Applying these results to the Ellsberg experiment, we see that any inadmissible
preference ordering ≿ exhibiting bR ≻ bB and bBY ≻ bRY is not robustly inadmis-
sible since the coarser preference ordering ≿′ in which bR ∼′ bB and bBY ∼′ bRY

is admissible as it can be induced by the admissible parameter pair (û, p̂), where
û(0) < û(100) and p̂(sB) =

1
3 (= p̂(sR)). Correspondingly, we see that the Ellsberg

experiment is not robust since the inadmissible preference ordering ≿ is finer than
the admissible preference ordering ≿′.
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The simple explanation of the characterizations is that non-robust anomalous-
inadmissible preferences are highly susceptible to (misspecification) error in cases
where true preferences are at indifferences. Even vanishingly small perturbations in
beliefs can produce reported preferences that are inconsistent with the theory being
tested. As we shall see, this susceptibility to small perturbations is not confined
to the Ellsberg one-urn experiment. It arises with other classic experiments and
reflects the way they were constructed: namely, as direct tests of axiom systems
that imply preferences admit an expected utility representation.

Thus the take-home message of Theorem 1 is that if a participant in an exper-
iment reports a preference ordering that is inadmissible for that experiment, then
the experimenter should check whether there is any admissible preference ordering
that is coarser. If that turns out to be the case, then the experimenter cannot rule
out the possibility that the participant is an expected utility maximizer, who has a
statistically equivalent version ‘in mind’ for which the observed ‘anomalous’ pref-
erences can be attributed to a (vanishingly) small perturbation of some admissible
belief.

On the other hand, if every coarser preference ordering is also inadmissible,
then this reported failure of admissibility is robust in the sense that it cannot be
rationalized by a (vanishingly) small perturbation to any admissible belief within
any of the equivalent versions. Thus, even if the experiment itself is not robust,
this particular piece of data may be viewed as a robust rejection of the participant’s
behavior conforming to the theory being tested. Section 5 features a number of
examples of non-robust experiments.

In section 6 we present results showing how small adjustments to the payoffs
in the consequence matrix of an experiment in belief form and to the probabilities
over consequences in a lottery based experiment can make them robust. For the
case of four bets the intuition underpinning these results can be illustrated in the
following modified version of the canonical form for the Ellsberg experiment (Ĉ, Â),
where the consequence matrix is ‘slightly perturbed’ as follows:

Ĉ =

sR sB sY


bR 99 0 0
bB 0 100 0
bRY 100 0 100
bBY 0 100 100

,

and the set of admissible parameters Â is correspondingly expanded by allowing for
any utility function u, satisfying u(0) < u(99) < u(100). Notice for any admissible
preference ordering ≿, we have: (i) bRY ≻ bR; (ii) bBY ≻ bB ; (iii) bBY ≻ bR; and,

(iv) bR ≿ bB ⇒ bRY ≻ bBY . Thus for the inadmissible preference ordering ≿̂ in
which bBY ≻̂ bRY ≻̂ bR ≻̂ bB , no coarsening is admissible. Hence, by Theorem 1
this preference ordering is robustly inadmissible. Furthermore, for any admissible
preference ordering, it is straightforward to check that every finer preference or-
dering is also admissible, so by Corollary 1.2 the experiment is robust. Essentially,
this robustified Ellsberg experiment has become a ‘one-sided’ test for ambiguity
aversion, since the preference ordering ≿′ in which bRY ≻′ bBY ≻′ bB ≻′ bR is now
admissible.5

5Notice ≿′ can be induced by any (u′, p′) ∈ Â for which
u′(99)−u′(0)
u′(100)−u′(0) < 3p′(sB) < 1.



EXPECTED UTILITY HYPOTHESES 9

3. An experiment in belief form

An experiment is designed to test whether decision makers in a certain population
behave in a way that is consistent with a given decision-making theory involving
subjective expected utility.

3.1. The experiment in belief form. An experiment comprises a finite number
B of bets (sometimes referred to as actions, choices or prospects) and a finite number
S of sample states that determine the outcomes of the bets. We abuse notation
and write B = {1, 2, . . . , B} for the set of bets and S = {1, 2, . . . , S} for the sample
space. We use b for elements of B to denote bets and s for elements of S to denote
states.

A consequence matrix is a function from S ×B to R associating with each bs a
number cbs and thus can be represented in matrix form:

C =

1 2 · · · S


1 c11 c12 · · · c1S
2 c21 c22 · · · c2S
...

...
...

. . .
...

B cB1 cB2 · · · cBS

A (Bernoulli) utility function is a function u : R → R. Each utility function gives
rise to the S ×B utility matrix:

u(c11) u(c12) · · · u(c1S)
u(c21) u(c22) · · · u(c2S)

...
...

. . .
...

u(cB1) u(cB2) · · · u(cBS)

 .
So we will often identify a Bernoulli utility function with its utility matrix denoted
both by u. Of course, the consequence matrix C is the utility matrix for the utility
function i(x) = x, which we call the identity utility function.

A (subjective) belief p over S is a probability distribution (density function) over
the sample space S. A (simple) lottery is a probability density function ℓ : R → [0, 1]
whose distribution has finite support: we write ℓ for the support {x : ℓ(x) > 0} of
ℓ.

An ordered pair (u, p), where u is a utility function and p is a belief, is called
a parameter. Each parameter (u, p) induces from each bet b ∈ B the lottery over
outcomes ℓupb defined by

ℓupb (x) =
∑

s : x=u(csb)

ps .

For each parameter (u, p) we write E(ℓupb ) for the expectation of the lottery ℓupb
induced from bet b. That is,

E(ℓupb ) =
∑
x∈R

xℓupb (x) =

S∑
s=1

u(cbs)ps ,

and so can be interpreted as the subjective expected utility of bet b. We say that a
parameter pair (u, p) represents a binary relation ≿ over the set of bets B whenever
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b ≿ b′ if and only if E(ℓupb ) ⩾ E(ℓupb′ ). Notice that if (u, p) represents a binary relation
≿ then that relation must be a preference ordering, that is, complete and transitive.

A parameter (u, p) is said to be non-degenerate if whenever b ̸= b′ and |ℓbup| =
|ℓb′up| = 1, it must be the case that ℓupb ̸= ℓupb′ . This non-degeneracy condition
states that all induced degenerate lotteries are distinct. We are ready to define an
experiment.

Definition 1. An experiment (in belief form) is a pair (C,A) where C is a B × S
consequence matrix and A is a set of non-degenerate parameters (u, p) (on C). The
parameters in A are called admissible parameters of the experiment.

A preference ordering ≿ on B is called admissible in the experiment if it is
represented by an admissible parameter (u, p) ∈ A. We refer to any binary relation
≿ on B that is not admissible in the experiment as inadmissible in the experiment.

The canonical version (C,A) of the Ellsberg experiment from Section 2 is indeed
an experiment, as is the alternative version (C ′,A′).

The experimenter designs an experiment in belief form with the aim of test-
ing expected utility theory, possibly in combination with some global restriction
such as (constant absolute) risk aversion. The belief form allows her to choose a
consequence matrix C and an accompanying set of parameters A that is tailored
to express her challenge to the theory. The subjects participate in the designed
experiment and their preferences over the set of bets are elicited. If the observed
preferences of a subject turn out to be inadmissible then the analyst concludes that
the decision-maker in question has preferences that do not conform to expected
utility theory (as restricted by A), posing a challenge to the theory.

3.2. An experiment with expected value maximizers. We briefly define an
experiment in which participants are assumed to be expected value maximizers.

Definition 2. An experiment (C,A) is said to have expected value maximizers if

A = {(u, p) : u = i is the identity and (i, p) is non-degenerate} .
In such a case we simply write C for the experiment.

Every consequence matrix C generates an experiment with expected value max-
imizers. We will say that the consequence matrix is resolving if for every s and
b ̸= b′ we have cbs ̸= cb′s. Notice that if C is resolving and (C,A) has expected
value maximizers, then (i, p) ∈ A for all beliefs p.

These experiments play an important role in understanding our notion of ro-
bustness. Such experiments arise for instance when the consequences are units of
probability that a participant will win a (final) prize as in Berg et al. (1986).

3.3. Lottery based experiments. In special experiments, like the Allais common
consequence and common ratio experiments, the design is presented effectively, in
terms of lotteries with objective probabilities. The experimenter then elicits prefer-
ences over these lotteries and checks for instance whether they can be represented
by the von Neumann-Morgenstern utility function. These can be treated as a sub-
class of experiments in belief form since we shall see in Proposition 1, they always
admit at least one rendition in belief form, with a state space and a single admissible
belief that induces those lotteries.

Suppose that we are given a finite set of lotteries ℓ1, ℓ2, . . . , ℓB . We write K =
{1, 2, . . . ,K} as an index set for the set of consequences given by ∪b∈Bℓb, that is,
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the union of the supports of the B lotteries. The lottery matrix L induced by the
lotteries is the B ×K matrix

L =

1 2 · · · K


1 ℓ11 ℓ12 · · · ℓ1K
2 ℓ21 ℓ22 · · · ℓ2K
...

...
...

. . .
...

B ℓB1 ℓB2 · · · ℓBK

,

where ℓbk is the probability assigned by lottery ℓb to consequence ck, with ℓbk > 0
if and only if ck ∈ ℓb. Notice that a lottery matrix has no column of all zeros.

Let Λ denote the set of simple lotteries. We define lottery based experiments.

Definition 3. A lottery based experiment is a pair (L,U), where L is the lottery
matrix induced from a lottery profile (ℓ1, ℓ2, . . . , ℓB) ∈ ΛB such that

(1) ℓb ̸= ℓ′b if b, b′ ∈ B are distinct and |ℓb| = 1.
(2) U is a set of (Bernoulli) utility functions.

The lottery based experiment (L,U) is induced by the experiment in belief form
(C,A) with B bets if A = {(p, u) : u ∈ U} for some belief p on S and

ℓb = ℓipb ,

for the identity function i : R → R and all b ∈ B.

The next proposition states that for any lottery based experiment we can “reverse
engineer” an experiment in belief form that induces it.

Proposition 1. Every lottery based experiment is induced by an experiment in
belief form.

We illustrate this proposition for the Allais common consequence experiment.
Moreover, we demonstrate that a lottery based experiment can be induced by mul-
tiple experiments in belief form with distinct sample spaces.

Allais Common Consequence Experiment. In the common consequence ex-
periment (Allais, 1953, p. 527) the reader is asked to consider the following four
lotteries {ℓ1, ℓ2, ℓ3, ℓ4} over monetary consequences specified (in millions) as:

ℓ1 (c) =

{
1 if c = $1
0 if c ̸= $1

ℓ2 (c) =


10
100 if c = $5
89
100 if c = $1
1

100 if c = $0

0 if c /∈ {$0, $1, $5}

ℓ3 (c) =


11
100 if c = $1
89
100 if c = $0

0 if c /∈ {$0, $1}
ℓ4 (c) =


10
100 if c = $5
90
100 if c = $0

0 if c /∈ {$0, $5}
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Notice that ℓ1 ∪ ℓ2 ∪ ℓ3 ∪ ℓ4 = {0, 1, 5}, thus the lottery based experiment repre-
senting this situation is the pair (L,U), where L is the 4× 3 lottery matrix

L =


0 1 0
1

100
89
100

1
10

89
100

11
100 0

9
10 0 1

10


and U is the set of all utility functions satisfying u(0) < u(1) < u(5).

To construct one experiment in belief form that generates (L,U), take a sample
space comprising just three elements S = {s1, s2, s3} with a corresponding conse-
quence matrix

C =




1 1 1
5 0 1
1 1 0
5 0 0

.

Set the unique admissible belief to be

p =

 p1
p2
p3

 =


1
10
1

100
89
100

 .
Thus, A is the set of pairs (u, p) where u is a utility function satisfying u(0) <
u(1) < u(5).6

Although the experiment in belief form above induces a lottery based experi-
ment that corresponds to the Allais common consequence experiment, we stress
that it is not the only experiment in belief form that does this. Furthermore, the
sample spaces of alternative experiments in belief form will generally involve differ-
ent correlation structures for the lotteries. The version above is one in which the
correlation is greatest, allowing us to specify a sample space of minimal cardinality
of three.

Another possible version has the four lotteries distributed independently as for-
mulated by Loomes and Sugden (1982). In this case, the sample space S′ needs at
least twelve elements. An example of a consequence matrix with twelve states is:

C ′ =




1 1 1 1 1 1 1 1 1 1 1 1
5 5 5 5 1 1 1 1 0 0 0 0
1 0 1 0 1 0 1 0 1 0 1 0
5 5 0 0 5 5 0 0 5 5 0 0

.

The single admissible belief p′ is the 12-dimensional column vector, in which

p′s = ℓ1(c1s)ℓ2(c2s)ℓ3(c3s)ℓ4(c4s) ,

6This formulation is closest to the way the example is presented in Allais (1953) as well as

in experiments where the design is essentially equivalent to one in which the subject is asked to
consider the draw of ball from an urn containing 100 balls numbered from 1 to 100, with state
s1 corresponding to the event of the draw of a ball with any number from 1 to 10, state s2
corresponding to the draw of the ball numbered 11, and state s3 corresponding to the event of
the draw of a ball with any number from 12 to 100.
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for all the twelve states s ∈ S′. ■

4. Robust experiments

4.1. Internally robust experiments. For the experimental results to constitute
a robust challenge to the theory being tested, the set of inadmissible preference
orderings in the experiment should be unaffected by (vanishingly) small perturba-
tions in the beliefs in the experiment (C,A). To capture robustness, we introduce
a weaker notion of admissibility that expands the set of admissible preference or-
derings and makes it harder to reject a theory.

Definition 4. A preference ordering ≿ over bets B is ε-admissible in an experiment
in belief form (C,A) if there a pair (u, p) ∈ A and a belief p̂ over S such that

(1) ℓb
up̂ ⊆ ℓb

up for all bets b.
(2) The preference ≿ is induced by(

E
(
ℓ
u(p+ε(p̂−p))
b

))
b∈B

for all ε ∈ (0, 1).

An experiment in belief form is internally robust if every ε-admissible preference
ordering is admissible.

Our notion of robustness is based on the idea that a subject may have a slightly
different experiment in mind which may be captured by a slight perturbation in
beliefs outside the admissible set. We view p+ ε(p̂−p) as a perturbation of the ad-
missible belief p in the direction of belief p̂. Notice that we allow for perturbations
toward any belief over S that does not add positive probability to consequences that
have zero probability of realising; in particular, to those outside the admissible set
of beliefs. In an internally robust experiment an inadmissible preference ordering
challenges theory more convincingly than in an experiment that is not internally
robust, where inadmissible preferences may in fact be ε-admissible. Internal robust-
ness ensures that for vanishingly small differences between the actual experiment,
and the one in the subject’s mind, the set of admissible preferences are the same.

Returning to the illustrative Ellsberg example given in Section 2, we can now
verify that the canonical version (C,A) is internally robust while the alternative
version (C ′,A′) is not. So, if the analyst is convinced that the participants perceive
the experimental design according to (C,A) and its associated state space S, then
the analyst will view the observation of any inadmissible preference pattern in the
experiment (C,A) as constituting a violation of the theory. With the second exper-
iment (C ′,A′), the violation of subjective expected utility posed by the preference
pattern bBY ≻ bRY and bR ≻ bB is not as robust. The apparent violation may arise
from a small perturbation of an admissible belief of a subjective expected utility
maximizer.

4.2. Equivalence classes of experiments. In this section we first define an
equivalence class of experiments in belief form which for the illustrative example in
Section 2 includes both the canonical version of the Ellsberg experiment and the
alternative version.

In an experiment in belief form, (C,A), each pair (u, p) induces a lottery profile
(ℓup1 , ℓup2 , . . . , ℓupB ) ∈ ΛB .
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Definition 5. Fix an experiment in belief form (C,A). Its reduction, denoted
L(C,A), is the set

L(C,A) = {(ℓup1 , ℓup2 , . . . , ℓupB ) : (u, p) ∈ A} .
Two experiments are versions of each other if they have the same reduction.

Notice that any two experiments that are versions of each other have the same
set of bets and the same set of outcomes for each of the corresponding bets.

Returning to the Ellsberg single-urn experiment, we see that the canonical and
alternative forms described in Section 2 are versions of each other in the sense of
Definition 5. Furthermore, the set of possible lottery profiles are those with support
{γ, δ}, γ < δ and probabilities of the form

γ δ


ℓbR
2
3

1
3

ℓbB
90−n
90

n
90

ℓbRY

n
90

90−n
90

ℓbBY

1
3

2
3

,

where 1 ⩽ n ⩽ 59 and is naturally interpreted as the expected number of black
balls.

These experiments would be regarded as equivalent by any decision-maker who
is probabilistically sophisticated in the sense of Machina and Schmeidler (1992).
Recall, a probabilistically sophisticated decision-maker has state-independent pref-
erences over the consequences and only cares about a state in terms of its associated
consequence and its likelihood of obtaining.

By virtue of having the same reduction, it follows that any two versions of an ex-
periment have the same set of admissible preferences. However, as we have already
demonstrated in the context of the Ellsberg experiment, what can be ‘rationalized’
by small perturbations of the admissible beliefs in different versions will in general
differ. As we noted above, ideally a notion of robustness should be a condition that
holds for all versions of an experiment. This motivates the following.

Definition 6. A preference ordering over bets is weakly-admissible in an experi-
ment if it is ε-admissible for some version of the experiment. A preference ordering
is robustly inadmissible if it is not weakly-admissible. An experiment is robust if
every inadmissible preference ordering is robustly inadmissible.

Underpinning our robustness notion is the idea that the analyst who designs
the experiment (C,A) does not know which version of the experiment is in the
mind of the participant. So, for a particular observed violation of expected utility
to be deemed robust, we require that no matter which version of the experiment
the participant has in mind, the violation cannot be attributed to a (vanishingly)
small perturbation of an admissible belief within that version. Correspondingly,
the experiment itself is deemed robust, if a perturbation of a belief in any version
of the experiment does not affect its set of admissible preferences.

We state the following characterization of robust experiments.

Proposition 2. The following statements are equivalent for an experiment in belief
form:
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(1) It is robust.
(2) Every weakly-admissible preference ordering is admissible.
(3) Every version of the experiment is internally robust.

Although robustness requires a property to hold on an entire equivalence class
of experiments, we characterize it entirely in terms of the admissible preferences
over the bets for any given version of the experiment. In particular, we characterize
robustness purely in terms of the analyst’s version of the experiment (C,A).

We shall say that one preference ordering ≿′ on B is finer than another distinct
preference ordering ≿ on B, if for all b, b′ ∈ B we have b ≻ b′ implies b ≻′ b′.7

Correspondingly, we say that ≿′ on B is coarser than ≿ on B, whenever ≿ is finer
than ≿′.

We characterize a robustly inadmissible preference ordering in terms of inadmis-
sibility of its coarsenings.

Theorem 1. A preference ordering is robustly inadmissible in an experiment in
belief form if and only if no coarser preference ordering is admissible.

Restating this result we obtain a characterization of weak admissibility of a
preference ordering in terms of its refinements.

Corollary 1.1. A preference ordering is weakly admissible in an experiment in
belief form if and only if it is finer than an admissible preference ordering.

We characterize robust experiments in terms of refinements of all admissible
preferences.

Corollary 1.2. An experiment in belief form is robust if and only if every prefer-
ence ordering that is finer than an admissible preference ordering is also admissible.

4.3. Robustness for lottery-based experiments. Using the fact that lottery
based experiments can be induced by experiments in belief form, we extend the
notions of admissibility and robustness to lottery based experiments in the natural
way. That is, a preference ordering in a lottery based experiment is admissible
(respectively, [robustly] inadmissible) if it is admissible (respectively, [robustly] in-
admissible) in any experiment in belief form that induces it. Similarly, a lottery
based experiment is robust if any experiment in belief form that induces it is robust.

However, as was demonstrated in the Allais common consequence experiment,
a lottery based experiment can be induced by multiple distinct experiments in
belief form. Hence we cannot unambiguously define the corresponding notion of
ε-admissible preferences over lotteries or internal robustness of a lottery based ex-
periment.

5. Examples of non-robust experiments

We present five examples. The first is a one-urn Ellsberg-style experiment based
on an example that appears in Eichberger et al. (2007)[p. 892]. Although the exper-
iment itself is not robust, we show that there is a robustly inadmissible preference
pattern that accords with our intuition of how an ambiguity averse decision-maker
might choose. The second is the Allais common-consequence experiment which
provides an example of a non-robust lottery-based experiment. The third is a a
two-urn Ellsberg-style experiment which corresponds to the “Reflection Example”

7That is, ≿′ is finer than ≿, if ≻ ⊂ ≻′.
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from Machina (2009). The fourth is a non-robust test of CARA. The fifth is also a
non-robust experiment but is qualitatively different from the others. In particular,
one of its main features is that even if we have reason to believe that participants
are expected utility maximizers, the preferences elicited from them may well be
inadmissible for the canonical version of the experiment.

Example 1 (A Robustly Inadmissible Preference). Consider an urn that contains
200 balls numbered 1 to 200. The balls numbered 1 to 66 are red, the balls numbered
67 to 200−2n are black and the remainder (that is, those numbered from [201−2n]
to 200) are yellow. The only information a participant has about n is that it is
an interger and that 1 ⩽ n ⩽ 66. Let O (respectively, E) be the event that the
ball drawn from the urn has an odd (respectively, even) number on it. Let R
(respectively, B, Y ) be the event that color of the ball drawn is red (respectively,
black, yellow). Let OR be the event that the ball drawn from the urn has an odd
number and its color is red, and so on. Notice that the number of balls that are black
with an odd number on them or yellow with an even number on them is 67 no matter
what value n takes. Similarly, the number of balls that are black with an even
number on them or yellow with an odd number on them is also 67 no matter what
value n takes. We take the sample space to be S = {OR,OB,OY,ER,EB,EY }
and the set of bets to be B = {b1, b2, b3, b4, b5, b6}. The payoffs are given in the
following consequence matrix

CRI =

OR OB OY ER EB EY


b1 $100 $0 $0 $100 $0 $0
b2 $0 $100 $0 $0 $0 $100
b3 $100 $0 $0 $0 $0 $0
b4 $0 $100 $0 $0 $0 $0
b5 $0 $0 $0 $100 $0 $0
b6 $0 $0 $0 $0 $0 $100

.

The bet b1 is a standard ‘unambiguous’ bet that the color of the ball drawn is
red. The bet b2 can be viewed as a way of implementing the suggestion by Raiffa
(1961) to avoid the ambiguity associated with a bet on black or a bet on yellow
by randomly choosing which of these two colors to bet on. Here we are using the
property of whether the number on the ball drawn is odd or is even ‘to decide’
whether to bet on black or yellow. A choice between bets b3 and b4 corresponds to
a choice between betting on red versus betting on black conditional on the number
of the ball drawn is odd. Similarly, a choice between bets b5 and b6 is a choice
between betting on red versus betting on yellow, conditional on the number of the
ball drawn is even.

The set of admissible parameters ARI consists of pairs (u, p) where u is any
Bernoulli utility function with u(0) < u(100) and p is a probability defined on S,
satisfying

p(OR) = p(ER) =
33

200
p(OB) = p(EB) = q p(OY ) = p(EY ) =

67

100
− q ,

where 1
100 ⩽ q ⩽ 66

100 .

We note that in the experiment (CRI,ARI), the preference pattern b2 ≻ b1,
b3 ≻ b4 and b5 ≻ b6 is robustly inadmissible. To see this, notice that for any
admissible preference ordering we must have b2 ≻ b1, and b3 ≿ b4 ⇒ b6 ≻ b5. This
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follows since for any (u, p) ∈ A,

p(OB) + p(EY ) > p(OR) + p(ER)

max{p(OB), p(EY )} > p(OR) = p(ER)

Hence, any coarsening of b2 ≻ b1 or b3 ≻ b4 or b5 ≻ b6 is inadmissible, thus
by Theorem 1 the inadmissible preference pattern is robustly inadmissible. But
this pattern accords with what we expect from someone who exhibits ambiguity
aversion, since b1, b2, b3, b5 are all unambiguous (and b2 first-order stochastically
dominates b1) while b4 and b6 are bets for which there is ambiguity about the
probability of winning. ■

As we shall now see the Allais lottery based experiment is not robust. Fur-
thermore, as a lottery-based experiment there is no “natural” experiment in belief
form that induces it, one might argue it is even “less robust” than the Ellsberg
experiment for which the canonical version was shown to be internally robust.

Example 2 (Allais Common Consequence Experiment). Recall the two experi-
ments in belief form (C,A) and (C ′,A′) from Section 3.3 that were both shown to
induce the lottery based Allais common consequence experiment (L,U).

The preference ordering ≿ satisfying

ℓ1 ≻ ℓ2 ≻ ℓ4 ≻ ℓ3

is inadmissible in both (C,A) and (C ′,A′). Thus it is inadmissible in the lot-
tery based experiment (L,U). Consider, however, the belief p∗ on S′, in which
p∗(s∗) = 1, where s∗ is the state in S′ that has associated with it the vector of bet
consequences

C ′
s∗ =


1
0
0
5

 .
By straightforward calculation it follows that for a utility function u′ in which
u′(1) = 10

11u
′(5) + 1

11u
′(0) and a belief p̂ = 1

2p
′ + 1

2p
∗ on S′, we have

E
(
ℓ
u′(p′+ε(p̂−p′))
1

)
> E

(
ℓ
u′(p′+ε(p̂−p′))
2

)
> E

(
ℓ
u′(p′+ε(p̂−p′))
4

)
> E

(
ℓ
u′(p′+ε(p̂−p′))
3

)
,

for any ε ∈ (0, 1). Hence, ≿ is ε-admissible in (C ′,A′) which means it is not robustly
inadmissible in (C,A) and hence not robustly inadmissible in (L,U) either.

Furthermore, the coarser preference ordering ≿′ satisfying

ℓ1 ∼′ ℓ2 ≻′ ℓ4 ∼′ ℓ3

is admissible in (C,A) as it is generated by the admissible pair (u′, p). So applying
Corollary 1.2 we conclude that (C,A) is not robust and thus neither is the Allais
common consequence lottery based experiment (L,U). ■

Turning now to the “Reflection Example” from Machina (2009), recall that it
was designed as an Ellsberg-style experiment to generate choice paradoxes that
could not be explained by any member of the generalization of expected utility
known as Choquet Expected Utility (CEU). So we shall begin by undertaking the
appropriate modifications of our framework to enable it to accommodate this larger
family of preferences. We then show that, although the experiment is designed to
elicit preference patterns that are inadmissible for this larger class of preferences,
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such inadmissible patterns are not robustly inadmissible even for the smaller class
of subjective expected utility maximizers.

Example 3 (The Reflection Example from Machina (2009)). The subject is pre-
sented with two urns each containing 100 balls that are either Red or Black. Urn
1 is known to contain 50 balls of each color. The proportion of red balls in urn 2 is
unknown. There are four bets b1, b2, b3, b4.

We take the sample space to be S = {RR,RB,BR,BB}, where γ1γ2 is the state
in which a ball of color γi is drawn from urn i. The consequence matrix is

Cr =

RR RB BR BB


b1 $4000 $8000 $4000 $0
b2 $4000 $4000 $8000 $0
b3 $0 $8000 $4000 $4000
b4 $0 $4000 $8000 $4000

.

Exploiting the symmetry between bets b1 and b4, and similarly, between bets b2
and b3, Machina argues that we might expect a decision-maker to exhibit the pref-
erences b1 ∼ b4 and b2 ∼ b3. When comparing b1 to b2 he observes that although
the events in which they yield the best (respectively, the worst) outcome are ‘simi-
larly’ ambiguous, the event in which the middle outcome occurs is unambiguous for
b2 but not for b1. Hence, one might argue that an ambiguity-averse decision-maker
would strictly prefer b2 to b1.

The class of preferences Machina has in mind is Choquet expected utility. Prefer-
ences in this class are characterized by a Bernoulli utility function u and a subjective
belief which is now a capacity ν (or ‘non-additive probability’) defined over the set
of subsets of S, that is normalized (ν(∅) = 0 and ν(S) = 1) and set-monotonic
(E ⊂ F ⊆ S ⇒ ν(E) ⩽ ν(F )).8 Fixing a capacity ν, its conjugate, denoted ν, is
the capacity given by ν(E) = 1− ν(Ec).

Each pair (u, ν) induces from each bet b ∈ B the lottery ℓuνb defined by

ℓuνb (x) = ν({s : u(csb) ⩾ x})− ν({s : u(csb) > x}) .

Correspondingly, we say that a pair (u, ν) represents a preference ordering ≿ over
the set of bets B whenever b ≿ b′ if and only if E(ℓuνb ) ⩾ E(ℓuνb′ ).

We take Ar to be the set of pairs (u, ν), where u is any Bernoulli utility function
with u(0) < u(4000) < u(8000) and ν is a capacity that along with its conjugate ν
satisfy the following ‘natural’ symmetry conditions:

ν(RR) = ν(RB) = ν(BR) = ν(BB) > 0

ν(RR) = ν(RB) = ν(BR) = ν(BB) > 0 .

We say a preference ordering ≿ is (CEU-)admissible in the experiment (Cr,Ar) if
it can be represented by some (u, ν) ∈ Ar. However, notice that for any (u, ν) ∈ Ar,

8The capacity ν is a probability if, in addition to being normalized and set-monotonic, it is
additive, that is, ν(E) + ν(F ) = ν(E ∪ F ) + ν(E ∩ F ).
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we have:

E(ℓuνb1 ) = ℓuνb1 (8000)u(8000) + ℓuνb1 (4000)u(4000) + ℓuνb1 (0)u(0)

= (ν(RB)− ν(∅))u(8000) + (ν({RR,RB,BR})− ν(RB))u(4000)

+ (ν(S)− ν({RR,RB,BR}))u(0)
= ν(RB)u(8000) + (1− ν(RB)− (1− ν({RR,RB,BR}))u(4000)
+ (1− ν({RR,RB,BR}))u(0)

= ν(RB)u(8000) + (1− ν(RB)− ν(BB))u(4000) + ν(BB)u(0) .

Similarly, the (Choquet) expected utilities of the other three bets are given by,
respectively,

E(ℓuνb2 ) = ν(BR)u(8000) + (1− ν(BR)− ν(BB))u(4000) + ν(BB)u(0) ,

E(ℓuνb3 ) = ν(RB)u(8000) + (1− ν(RB)− ν(RR))u(4000) + ν(RR)u(0) ,

E(ℓuνb4 ) = ν(BR)u(8000) + (1− ν(BR)− ν(RR))u(4000) + ν(RR))u(0) .

Given the above equality constraints on any admissible capacity, it follows that
the (Choquet) expected utilities of all four bets must be equal. Hence the only
preference ordering that is admissible is the trivial one in which b ∼t b′, for all
b, b′ in B. Thus the preference ordering in which b2 is strictly preferred to b1 as
suggested by Machina, is inadmissible.

However, the trivial preference relation is also admissible for the probability
p = ( 14 ,

1
4 ,

1
4 ,

1
4 ). Hence it follows from Theorem 1 that any inadmissible preference

relation, including the one suggested by Machina, is not robustly inadmissible even
restricting preferences to the smaller class of subjective expected utility maximizers.

In Appendix C we analyze the “50:51” experiment, the other main thought ex-
periment presented in Machina (2009). We show the preference pattern Machina
argues as being intuitively plausible for an ambiguity averse individual is not only
inadmissible for CEU maximizers but it is also robustly inadmissible for SEU maxi-
mizers. However, since a coarsening of these preferences is admissible for some CEU
maximizer, and we conjecture a result analogous to Theorem 1 can be established
for the family of CEU preferences, this suggests this preference pattern would not
be robustly “CEU-inadmissible.” ■

Example 4 (A Non-robust Test of CARA). The subjects are presumed to be
expected utility maximizers that are either CARA or DARA. For this experiment
we seek to challenge the hypothesis that the subjects are all CARA. We offer the
subjects four bets involving the toss of a fair coin. So the canonical state space
is S = {H,T} and the payoffs of the bets are given by the following consequence
matrix:

C =

H T


b1 5 5
b2 2 10
b3 55 55
b4 52 60

.

Here the set of parametersA are given by pairs (α, p∗), where α > 0 is the coefficient
of absolute risk aversion for the Bernoulli utility function of the form u(x) = −e−αx

and p∗(H) = 1
2 .
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Notice that the preference ordering b4 ≻ b3 ≻ b1 ≻ b2 is inadmissible for the
CARA model. However, for the admissible pair (α∗, p∗) in which

−e−5α∗
= −1

2
e−2α∗

− 1

2
e−10α∗

we have b4 ∼∗ b3 ≻∗ b1 ∼∗ b2, thus making b4 ≻ b3 ≻ b1 ≻ b2 weakly admissible
and hence not robustly inadmissible. ■

Example 5 (Betting Across Exchanges and Across Industries). The experiment
has six bets with payoffs based on the NASDAQ listed technology stocks AAPL and
GOOG and the ASX (Australian Securities Exchange) listed mining stocks BHP
and RIO. The one-day Monday percentage changes in the price of these stocks are
ranked and the one with the greatest increase is noted. The bets are provided to
the participants on Sunday when both stock exchanges are closed.

The consequence matrix of the experiment is as follows:

C =

AAPL BHP GOOG RIO


b1 $1000 $0 $1000 $0
b2 $0 $1000 $0 $1000
b3 $2000 $2000 $0 $0
b4 $0 $0 $2000 $2000
b5 $6000 $0 $0 $0
b6 $0 $0 $0 $6000

.

Here cbs is the amount of money received under bet b if the one-day Monday
percentage change of stock s is the highest among the four stocks. Investment
professionals are asked to report their preferences over three pairs: b1 and b2; b3
and b4; b5 and b6. An admissible parameter is any pair (i, p), where i is the identity
function and p is any probability distribution over AAPL, BHP, GOOG, RIO with
full support. So we presume that the participants are expected value maximizers.

We informally presented these choices to a couple of our colleagues who are
professors of finance. Both displayed b1 ∼ b2 and b5 ≻ b6. One displayed b3 ∼ b4
while the other displayed b4 ≻ b3. They both agreed that they are certainly happy
to put the “same money” on bets b1 or b2 and nearly the “same money” on bets
b3 or b4. One expressed the opinion that he is inclined to prefer b4 over b3 because
GOOG is a nose ahead of AAPL on NASDAQ and BHP may beat RIO on the ASX
by a lower amount. Both agreed that AAPL is likely to beat RIO. So b5 ≻ b6.

Neither of these arrangements, however, can be accommodated by an admissible
preference ordering. To see this, notice that for any admissible (i, p) the indifference
b1 ∼ b2 implies

pA + pG = pB + pR .

Similarly, b3 ∼ b4 implies

pA + pB = pG + pR ,

and thus pA = pR, in turn implying b5 ∼ b6. On the other hand, b4 ≻ b3 implies

pG + pR > pA + pB .

Thus, pR > pA implying b6 ≻ b5.
But the ordering in which b5 ∼ b6 ≻ b4 ∼ b3 ≻ b1 ∼ b2 is admissible for

pA = pB = pG = pR. Since the two inadmissible preference orderings of the
finance professors are both finer than this admissible preference ordering it follows
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from Corollary 1.2 that the experiment is not robust. Furthermore, it follows from
Theorem 1 that both of these inadmissible prefrence orderings are not robustly
inadmissible. Thus we contend, neither of the prefrence arrangements displayed by
our colleagues constitutes a robust challenge to subjective expected utility (value)
theory. ■

6. Robustifying an experiment

The idea of robustification begins with a given non-robust thought experiment
(C,A) and a specific preference ordering ≿ that is inadmissible. The experimenter
has a well-reasoned intuition that participants could display these preferences. The
first task of robustification is to modify the experiment so that the hypothesized
preference ordering is robustly inadmissible. A more ambitious objective is to
choose a modfication such that the modified experiment is robust while at the
same time the hypothesized preference ordering remains inadmissible.

We begin by showing how the first task may be accomplished for a class of exper-
iments, including the classic Ellsberg and Allais, involving two pairs of bets. Next
we address the more ambitious objective for the case where admissible preferences
are restricted to the family of expected value maximizers. We conclude this section
by discussing a participant based approach in which experiments are modified for
each participant to guarantee that, if a participant’s elicited answers imply pref-
erences that are inadmissible, then those preferences are robustly inadmissible in
that personalized experiment.

6.1. Robustification of the Four Bet Experiment.
Important characteristics of preferences may be expressed in terms of consistency
requirements. Examples include the sure-thing principle in subjective expected
utility, the independence axiom in expected utility, and CARA in risk theory. Ex-
periments designed to test these consistency requirements directly will often give
rise to inadmissible preferences that are not robustly so. This may be explained as
follows.

Suppose that in an experiment (C,A) involving four bets, the following consis-
tency property holds,

b1 ≿ b2 ⇔ b3 ≿ b4 , for all (u, p) ∈ A .

Furthermore suppose that the experimenter has an intuition that participants could
display the inadmissible preference pattern b1 ≻ b2 and b4 ≻ b3 as in the Ellsberg
one-urn example from Section 2, and as in Examples 2 and 4. Since all these
admit a pair (u, p) ∈ A that induces indifference between b1 and b2 (and hence, by
the consistency property, between b3 and b4, as well), this pattern is not robustly
inadmissible.

Since any u is an order-preserving transformation of the consequences, we can
exploit the monotonicity of the induced preferences to robustify experiments of this
kind. Consider a perturbed consequence matrix Ĉ ̸= C, in which Cb1 ⩾ Ĉb̂1

and

Ĉb̂i
= Cbi for i = 2, 3, 4. Notice that for any (u, p) ∈ A, E[ℓupb1 ] > E[ℓup

b̂1
]. Hence

monotonicity and the consistency property together imply

b̂1 ≿ b̂2 ⇒ b1 ≻ b2 ⇔ b3 ≻ b4 ⇔ b̂3 ≻ b̂4 , for all (u, p) ∈ A .

Thus for the inadmissible preference ordering b̂1 ≻ b̂2 and b̂4 ≻ b̂3, no coarsening is
admissible. So by Theorem 1 the ordering is robustly inadmissible.
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Returning to Example 4, consider the perturbed consequence matrix

Ĉ =

H T


b̂1 4 4

b̂2 2 10

b̂3 55 55

b̂4 52 60

.

obtained by reducing the consequence of bet b1 in each state from 5 to 4. The choice

pattern b̂1 ≻ b̂2 and b̂4 ≻ b̂3 is now robustly inadmissible for CARA preferences.
Notice that there is a price to pay. In the original experiment, the pattern b2 ≻ b1

and b3 ≻ b4 was also inadmissible. In the new experiment the preference ordering

b̂3 ≻ b̂4 ≻ b̂2 ≻ b̂1 is admissible. That is, the new experiment is a ‘one-sided’ instead
of a ‘two-sided’ test. The acceptability of this trade-off depends on the strength
of the intuition that the preference pattern b1 ≻ b2 and b4 ≻ b3 is more plausible
than the reverse. In the case of Example 4, CARA is likely to be rejected in favor
of DARA but not in favor of IARA.

6.2. Fully robust experiment. We now present a method to fully robustify an
experiment in which admissibility is restricted to expected value maximizers.

The next result provides a test for checking whether an experiment with expected-
value maximizing participants is robust. By way of example, suppose that the
consequence matrix in an experiment is given as follows:

C =

H T


b1 c11 c12
b2 c21 c22
b3 c31 c32
b4 c41 c42

.

Suppose the preference ordering b1 ≻ b2 ≻ b4 ≻ b3 is inadmissible in an experiment
(C,A). However, envisage a situation in which the coarser preference ordering
b1 ∼′ b2 ≻′ b3 ∼′ b4. is admissible. This tells us that the ≿ is weakly admissible
and thus the experiment is not robust.

We know that there is an admissible probability p on {H,T} such that Cp induces
≿′. In particular,

CΠp =

[
c11 − c21 c12 − c22
c31 − c41 c32 − c42

] [
pH
pT

]
=

[
0
0

]
.

This in turn tells us that the 2×2 matrix CΠ, constructed from row subtractions of
the consequence matrix, is not of full rank. Furthermore, had CΠ been of full rank,
then the coarser preference ordering ≿′ would not have been admissible because
it had too many indifferences. Finally, there exists a plethora of perturbations of
the consequence matrix C for which the associated CΠ is of full rank and thus
guarantees the inadmissibility of the coarser preference orderings. This insight is
generalized in the next group of results.

To present the first result of this part of the paper we introduce the following
additional notation. Suppose that C is a consequence matrix. For each partition
of the bets B in C,

Π = {B1, B2, . . . , Bm} ,
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and each element in the partition Bi ∈ Π, let bi = maxb ∈ Bi and let CBi be the
|Bi| − 1× S matrix whose rows are Cb −Cbi , b ∈ Bi \ {bi} (if |Bi| = 1, then this is
the empty matrix). Let CΠ be the matrix

CΠ =


CB1

CB2

...
CBm

I


where I is the S × S identity matrix. The following is a set of sufficient conditions
for the robustness of an experiment with expected value maximizers

Theorem 2. Suppose (C,A) is an experiment with expected value maximizers. If
for each partition Π of B, every S × S sub-matrix whose rows are distinct rows of
CΠ is of full rank, then the experiment is robust.

By means of this theorem we can check that the following perturbation robustifies
the experiment of Example 5:

C ′′ =

AAPL BHP GOOG RIO


b1 $1001 $0 $1000 $0
b2 $0 $1000 $0 $1002
b3 $2000 $2000 $0 $0
b4 $0 $0 $2000 $2000
b5 $6001 $0 $0 $0
b6 $0 $0 $0 $6000

.

The following are immediate consequences of the previous result.

Corollary 2.1. The set X of consequence matrices C ⊆ RB×S for which the
experiment (C,A) with expected value maximizers is not robust is closed with
empty interior and has zero measure.

Corollary 2.2. Let L be a B ×K lotteries matrix. There is an open dense set of
B ×K lotteries matrices ε such that every lottery based experiment ( 12L+ 1

2ε,U)
is robust for any open U .

We now consider experiments in which the set of admissible utility functions is
open. This is the case for instance when we allow for all monotonic transformations
of the consequence matrix, but it is not the case when considering subjects that are
expected value maximizers, or whose utility functions satisfy properties like CARA.

Theorem 3. If in an experiment (C,A) the following are satisfied:

(1) Each bet b ∈ B has a consequence c ∈ Cb such that c /∈ Cb′ for all b
′ ̸= b,

(2) For all (u, p) ∈ A the {u′ : (u′, p) ∈ A} is open in RC ,

then (C,A) is robust.
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Reconsidering Example 1 we see that the experiment with the following conse-
quence matrix is robust:

Cri =

OR OB OY ER EB EY


b1 $100 $0 $2 $100 $0 $0
b2 $0 $100 $1 $0 $0 $100
b3 $100 $0 $0 $0 $0 $0
b4 $0 $100 $5 $0 $0 $0
b5 $0 $0 $1 $100 $0 $0
b6 $0 $0 $4 $0 $0 $100

.

Notice that the preference arrangement b2 ≻ b1, b3 ≻ b4 and b5 ≻ b6 remains
inadmissible.

Similarly we can robustify Machina’s reflection example (see Example 3) with
the following consequence matrix:

Cr =

RR RB BR BB


b1 $4001 $8000 $4001 $0
b2 $4000 $4000 $8000 $0
b3 $0 $8000 $3999 $3999
b4 $0 $4002 $8000 $4002

.

Notice that for every (u, ν) ∈ A the only admissible preference ordering is b4 ≻
b1 ≻ b2 ≻ b3. Hence, the inadmissible preference ordering b2 ≻ b3 ≻ b4 ≻ b1 (the
analog of the one that was of interest to Machina) is thus robustly inadmissible.

6.3. Participant based robustness. Every expected utility maximizing subject
in an experiment in belief form (C,A) can be taken to have a single subjective
belief p. If p is an admissible belief, that is, (u, p) ∈ A for some utility function u,
then that subject can be viewed as participating in a ‘personalized’ lottery based
experiment. So for an experiment (C,A) and each admissible belief p, let Ap =
{(u, p) : (u, p) ∈ A}. The pair (C,Ap) is an experiment in belief form that induces
a lottery based experiment.

The next result states that the an experiment in belief form is robust if and only
if each admissible personalized lottery based experiment is robust.

Proposition 3. An experiment (C,A) is robust if and only if the ‘personalized’
experiment (C,Ap) is robust for every admissible belief p.

So far we have considered an experiment (C,A) for which the experimenter
selects a sample of participants from the population that is being studied. The
robustness of this experiment guarantees that any inadmissible elicited preference
ordering from any participant is robustly admissible. Consider an individual par-
ticipant i who if the experimenter elicits a preference ordering ≿ over the bets,
and it is inadmissible but weakly admissible in the experiment (C,A), then the
experimenter may have enough information about the preferences of the particular
participant to rule out the possibility that ≿i is arising from a small perturbation
in the expected utility maximizer’s beliefs.

To see this, we assume by way of contradiction that participant i is a subjective
expected utility maximizer satisfying the theory being tested. This participant i
has a belief pi over S and a utility function ui, which represent her preferences
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but which are not known. From the perspective of the experimenter, i participates
in the trivial experiment (C,Ai) where Ai = {(ui, pi)}. Because she has just one
belief, effectively this participant faces the lottery-based experiment L(C,Ai).

The elicited preferences ≿i are inadmissible in L(C,Ai) because they are inad-

missible in (C,A). Importantly, although ≿i may be weakly admissible in (C,A),
if the experimenter can establish that L(C,Ai) is robust, then the experimenter is

able to conclude that preferences ≿i are not due to a small perturbation in the
subjective beliefs of the particular participant i.

The experimenter, however, does not know the parameter (ui, pi) of the (C,Ai)
and cannot determine these simply by the information given by the preferences ≿i.
So the experimenter will want to gather additional information from the participant
and econometrically estimate (ui, pi) from these. In an Ellsberg experiment where
there are only two consequence, one need only estimate the participant i’s beliefs
pi setting the range of ui as {0,1}, then checking for the robustness of of (C,Ai).

For the special case of an Ellsberg experiment Binmore et al. (2012) employed
the following procedure for each participant i:

(1) Estimate the implied beliefs pi of each participant by iteratively adding and
subtracting balls in the experiment, eliciting the participant i’s preferences,
and stopping the iteration when when i switches her strict preferences over
two bets. Coupled with the contrapositive assumption of expected utility
maximization, this switching (taken as representing indifferences) gives an
estimate p̂i of pi.

(2) Use the information given by p̂i to robustify the experiment L(C,(u,p̂i)) by
means of a perturbation of the induced lotteries.

(3) Elicit preferences in the robustified experiment.

We note that the Binmore et al. (2012) procedure has a modification in which
the elicited preferences ≿i are given for the same experiment for all participants.
For instance, first elicit the participant’s preferences ≿i for all i. Then follow the
Binmore et al. (2012) procedure and estimate p̂i. If ≿i is robustly inadmissible in
L(C,(u,p̂i)), then we can take it as a robust rejection that i is an expected utility

maximizer.9

7. Concluding comments

Experiments like those proposed by Allais and Ellsberg have been influential in
the development of alternatives to, and generalizations of, expected utility theory.
However, it has often been suggested that the apparently anomalous results of these
experiments may result from sensitivity to small errors in decisions or deviations
between the perceptions of the subject and those assumed by the experimenter.

The central task of this paper has been to formulate a rigorous definition of
robustness for experiments and for observed choices that are inadmissible for a class
of preferences under consideration. Most commonly, this is the class of expected
utility preferences, but the method is equally applicable to tests of such hypotheses

9Although primarily concerned with testing properties of dynamic preferences such as conse-

quentialism and dynamic consistency, Dominiak et al. (2012) note that their design can also be
seen as a more robust test of expected utility since they found a non-negligible fraction of their
subjects who were classified as conforming to subjective expected utility theory in the static Ells-

berg experiment exhibited behavior after the arrival of new information that was not consistent
with standard (i.e. Bayesian) updating.
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as constant absolute risk aversion. The core result is that if inadmissible preferences
can be made admissible by coarsening (that is, by one or more conversions of strict
preference to indifference), then the inadmissibility is not robust.

As noted in the paper the ultimate question of interest, for any postulated pref-
erence pattern inconsistent with expected utility (or some alternative baseline hy-
pothesis) is whether there exists a robust experiment in which subjects exhibit such
preference patterns. We have provided some methods for robustification of experi-
ments, however we have not explored all possible techniques. Our interpretation of
the experimental design in Binmore et al. (2012) indicates to us that while we have
provided a formal notion of robustness, a general theory of robustification seems to
be elusive.

We do not explore the econometric implications of robust experiments. In line
with the approach of Hey and Orme (1994) experiments involving elicited prefer-
ences require a model selection criterion for selecting the decision theoretic model
that best fits the discrete results of the experiment. In non-robust experiments,
such as Hey and Orme (1994), small perturbations of beliefs may select different
decision theoretic models. So the selection is not stable to such perturbations. An
open question is whether robust experiments alleviate this problem.

Appendix A. Proofs

Let B be the set of bets and K ⊆ R be a set of distinct consequences. Let
L be any B × K (Markov or lottery) matrix: that is, each row Lb of L is non-

negative and
∑K

k=1 ℓbk = 1. With slight abuse of notation, let ℓb denote the lottery
corresponding to each row Lb. That is, ℓb(c) = ℓbc if c ∈ K and ℓb(c) = 0, if c /∈ K.

Consider the set of states S = KB . Fix the B × S consequence matrix C in
which cbs = sb ∈ K for all bs. Let pL be the belief on S given by

pLs = ℓ1(c1s)ℓ2(c2s) . . . ℓB(cBs) .

We shall use the following lemma.

Lemma 1. For any L and c ∈ K we have ℓip
L

b (c) = ℓbc, where i is the identity
Bernoulli utility function.

Proof. Notice that for each b ∈ B and each c ∈ K

ℓip
L

b (c) =
∑

s : cbs=c

pLs

= ℓb(c)

( ∑
s : cbs=c

ℓ1(c1s)ℓ2(c2s) . . . ℓb−1(c(b−1)s) ℓb+1(c(b+1)s) . . . ℓB(cBs)

)
= ℓb(c) = ℓbc ,

as required. ■

Proof of Proposition 1. The proof is an immediate consequence of Lemma 1. ■

Proof of Proposition 2. The proposition simply translates definitions and the proof
is an immediate consequence of these. ■
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Proof of Theorem 1. If ≿ is weakly admissible, then the continuity of expected
utility tells us that it is coarser than an admissible preference ordering. In partic-
ular, if ≿ is not coarser than an admissible preference ordering, then it is robustly
inadmissible.

For the converse, let ≿ be a weakly admissible preference ordering. Pick an
arbitrary bet b, suppose for convenience that b = 1. Let ≿+1 and ≿−1 be the
preference orderings satisfying the following

(1) For b, b′ > 1, we have b ≿ b′ if and only if b ≿+1 b′ (b ≿−1 b′).
(2) For b > 1, we have

(a) b ≻ 1 or 1 ≻ b implies b ≻+1 1 (b ≻−1 b) or 1 ≻+1 b (1 ≻−1 b),
repectively.

(b) b ∼ 1 implies 1 ≻+1 b and b ≻−1 b.

If we can show that both ≿+1 and ≿−1 are weakly admissible, then the proof is
done because the choice b = 1 is arbitrary and any preference ordering that is finer
than ≿ can be generated by an iterative application of such single tie-breaking
procedures.

Let K ⊆ R be any finite set that includes all the elements of C. Let S′ = KB

and C ′ be the associated consequence matrix as in Lemma 1. For each belief p of S

let qp be the belief on S′ satisfying ℓipb = ℓiq
p

b for all b as constructed in Lemma 1.
Let A′ = {(u, qp) : (u, p) ∈ A}. Clearly, (C ′,A′) is a version of (C,A). Further,
a preference ordering on bets is weakly admissible in (C,A) if and only if it is
ε-addmissble in (C ′,A′)

We now fix our attention on the experiment (C ′,A′). Let ≿ be represented by
(u∗, p) such that ≿ is coarser than an admissible preference ordering. We shall

consider two cases. ℓu
∗p

1 is not degenerate and ℓu
∗p

1 is degenerate. Consider the

first case. We can assume without loss of generality that c11, c12 ∈ ℓ1
ip and u(c11) >

E(ℓup1 ) > u(c12). Now consider the lottery profile ε

εb(c) =


ℓip1 (c11) + ε if b = 1 and c = c11 ,

ℓip1 (c12)− ε if b = 1 and c = c12 ,

ℓipb (cbs) otherwise .

Notice that for ε (positive or negative) close to zero ε this indeed is a lottery
profile. Let pε be the belief over S′ consistent with ε given in Lemma 1. Clearly,
(u∗, pε), for ε > 0, generates ≿+1 and the preference ≿−1 is generated by (u∗, pε)
for ε < 0. From this it is simply to conclude that ≿+1 and ≿−1 are ε-admissible in
the experiment (C ′,A′), thus weakly admissible in (C,A).

We can apply a similar argument in the second case where ℓu
∗p

1 is degenerate,
keeping in mind that we can assume without loss of generality that in this case

ℓu
∗p

1 ̸= ℓu
∗p

b for all b > 1. ■

Proofs of Corollary 1.1 and Corollary 1.2. The corollaries follow from the defini-
tions and Theorem 1. ■
Proof of Theorem 2. It is easy to see that if ≿ is addmissible and the conditions
are satisfied, then the preferences ≿+b and ≿−b defined in the proof of Theorem 1
are also admissible. ■
Proof of Corollary 2.1 and Corollary 2.2. These are immediate consequences of The-
orem 2. ■
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Proof of Theorem 3. It is easy to see that if ≿ is admissible and the conditions are
satisfied, then the preferences ≿+b and ≿−b defined in the proof of Theorem 1 are
also admissible. ■

Proof of Proposition 3. The property is obvious from the definitions. ■

Appendix B. Probability models, perturbed beliefs and Savage “small
worlds”.

In this appendix we provide an interpretation that connects the personal prob-
ability models and our understanding of the perturbations of beliefs to the under-
lying Savage subjective expected utility framework. The decision making scenario
involves a population I of decision makers whose behavior the experimenter wishes
to study. The experimenter samples the decision makers from the population I and
those chosen participate in the experiment (C,A).

We suppose that the attitudes towards risk of all the individuals in I can be
described in a single Savage setting. So there is one universal state space Ω and
one universal set of consequences K. An act f is a function from Ω to K with
finite range. It is assumed that every individual i ∈ I has a preference ordering ≿i

over the set F of all acts. These preferences summarize all the relevant attitudes
towards uncertainty, some of which the analyst wishes to study.

A probability distribution π on Ω is a finitely additive function from the set of all
subsets of Ω to [0, 1], satisfying π(Ω) = 1. A Bernoulli utility function is a function
u : K → R. Given a Bernoulli utility function u and a probability distribution π on
Ω for each act f ∈ F , let ℓuπf be the lottery over “utils” defined by

ℓuπf (x) = π{s : x = u(f(ω))} .
Thus the subjective expected utility of the act f for distribution π and utility function
u is given by:

E(ℓupf ) =
∑
x∈R

xℓuπf (x) =

∫
Ω

u ◦ f(ω)dπ(ω) .

As usual, we say that a preference ordering ≿ on F is said to be represented by
E(ℓuπf ) whenever f ≿ g if and only if E(ℓuπf ) ⩾ E(ℓuπg ).

An individual i whose preferences can be represented by E(ℓuπf ) is called a (sub-

jective) expected utility maximizer. Under the usual assumptions on his preferences
the pair (u, π) is unique up to the cardinal equivalence class of u. So we identify
each expected utility maximizer i with her characteristic pair (ui, πi), in which ui is
a Bernoulli utility function and πi is a probability distribution (called belief ) such
that E(ℓuiπi

f ) represents her preferences ≿i.
We need to associate with each individual i ∈ I some way for translating the bets

B in the experiment into acts in F . So we associate with individual i a mapping
ψi : B → F that has the following properties:

(1) ψi(b) is an act whose codomain is Cb, that is the individual does not conceive
of a possibility that the bet can be associated with consequences outside of
Cb.

(2) For each c ∈ Cb, the event Eb
i (c) = {ω ∈ Ω: ψ(b)(ω) = c} has positive

probability according to πi (that is, the event Eb
i (c) is not null).

The preferences reported by i over B in the experiment are individual i’s preferences
over the set of acts ψi(b), b = 1, 2, . . . , B.
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Notice that each bet b induces a finite events partition Πb = {Eb
i (c) : c ∈ Cb} of

the state space Ω. We can now associate the individual’s state space Si (and hence
his probabilistic understanding of the experiment) with the finite partition Π of Ω
that is the coarsest common refinement of the partitions Πb, b = 1, 2, . . . , B. Thus,
each s ∈ Si is a unique event Es

i in Π and the subjective probability of s realizing
is πi(E

s
i ).

The perturbations of beliefs that we have studied in this paper can now be
understood as simply perturbations of the partition Π and consequently perturba-
tions of beliefs πi(E

s
i ). Noting that under the usual behavioral assumptions on the

preferences ≿i the probability distribution πi is atomless, any perturbation of the
subjective probability of beliefs over Si has a corresponding perturbation of the
partition Π that leads to equivalent perturbations of the subjective beliefs πi(E

s
i ).

Appendix C. The 50:51 Example from Machina (2009)

Recall the preference pattern in Example 3 that Machina hypothesized was in-
tuitively plausible for an ambiguity averse individual. Although such a pattern was
not admissible for any member of the larger family of Choquet expected utility
(CEU) maximizers, we showed it was weakly-admissible and hence not robustly
inadmissible for subjective expected utility (SEU) maximizers.

In this appendix we analyze the other main thought experiment presented in
Machina (2009), which he dubbed the “50:51” example. We show the preference
pattern he argues as being intuitively plausible for an ambiguity averse individual
is not only inadmissible for CEU maximizers but it is also robustly inadmissible
for SEU maximizers. However, since a coarsening of these preferences is admis-
sible for some CEU maximizer we conjecture they would not be “robustly CEU-
inadmissible.”

The subject is presented with a single urn containing 101 balls. Fifty balls are
marked with either 1 or 2, the other fifty-one balls are marked with either 3 or 4.
Each ball is equally likely to be drawn. There are four bets b1, b2, b3, b4.

We take the sample space to be S = {1, 2, 3, 4}, where s is the event in which a
ball marked with an s is drawn from the urn. The consequence matrix is

Cm =

1 2 3 4


b1 $8000 $8000 $4000 $4000
b2 $8000 $4000 $8000 $4000
b3 $12000 $8000 $4000 $0
b4 $12000 $4000 $8000 $0

.

An individual who prefers bets with known odds might well express the prefer-
ence pattern b1 ≻ b2 and b4 ≻ b3.

As was the case in Example 3, the class of preferences Machina has in mind
is Choquet expected utility. We take Am to be the set of pairs (u, ν), where u is
any Bernoulli utility function with u(0) < u(4000) < u(8000) < u(12000) and ν
is a capacity that along with its conjugate ν satisfy the following ‘natural’ sym-
metry conditions along with inequalities reflecting the known aspects of the urn’s
composition:

0 < ν(1) = ν(2) ⩽ ν(3) = ν(4) , ν({1, 2}) < ν({3, 4}) ,
0 < ν(1) = ν(2) ⩽ ν(3) = ν(4) .
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We say a preference ordering ≿ is (CEU-)admissible in the experiment (Cm,Am)
if it can be represented by some (u, ν) ∈ Am. However, by similar calculations to
the ones detailed in Example 3, it follows that for any (u, ν) ∈ Am:

E(ℓuνb1 ) ⩾ E(ℓuνb2 ) ⇔ ν({1, 2}) ⩾ ν({1, 3}) ⇔ E(ℓuνb3 ) ⩾ E(ℓuνb4 ) .

Hence the preference pattern b1 ≻ b2 and b4 ≻ b3 is (CEU-)inadmissible. More-
over, it is robustly (SEU-)inadmissible since the only probability that satisfies the
above equality and inequality restrictions is p =

(
25
101 ,

25
101 ,

50
202 ,

50
202

)
. Thus the only

preference orderings that are (SEU-)admissible must have b2 ≻seu b1 and b4 ≻seu b3.
However, notice that for any (u, ν) ∈ Am with ν({1, 2}) = ν({1, 3}), the induced

preference ordering ≿′ has b1 ∼′ b2 and b3 ∼′ b4. Since we conjecture a result
analogous to Theorem 1 can be established for the larger family of Choquet expected
utility preferences, this suggests the preference pattern b1 ≻ b2 and b4 ≻ b3 would
not be robustly (CEU-)inadmissible. ■
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