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Abstract

This paper studies strongly symmetric equilibria (SSE) in continuous-time
games of strategic experimentation with Poisson bandits. SSE payoffs can be
studied via two functional equations similar to the HJB equation used for Markov
equilibria. This is valuable for three reasons. First, these equations retain the
tractability of Markov equilibrium, while allowing for punishments and rewards:
the best and worst equilibrium payoff are explicitly solved for. Second, they
capture behavior of the discrete-time game: as the period length goes to zero
in the discretized game, the SSE payoff set converges to their solution. Third,
they encompass a large payoff set: there is no perfect Bayesian equilibrium in the
discrete-time game with frequent interactions with higher asymptotic efficiency.
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kleinnic@yahoo.com.
§University of Bonn, Adenauerallee 24-42, D-53113 Bonn, Germany, rady@hcm.uni-bonn.de.



1 Introduction

There is a troubling disconnect between discrete-time and continuous-time game theory.

With few exceptions, games in discrete time use either subgame-perfect equilibrium or,

if there is incomplete information, perfect Bayesian equilibrium as a solution concept.

With few exceptions, games in continuous time are concerned with Markov equilibria

only. The technical reasons for this divide are well-known: defining outcomes, strategies

and equilibrium in continuous time raises serious mathematical difficulties; restricting

attention to Markov strategies bypasses these. Conceptually, however, the discontinuity

is artificial and deeply unsatisfactory.

This paper suggests a middle ground. It examines strongly symmetric equilibria

(SSE). These are equilibria in which all players use a common continuation strategy,

on and off path. However, this common continuation strategy can depend on the

entire history, not only its payoff-relevant component. As we show, strongly sym-

metric equilibria retain the tractability of Markov perfect equilibria (MPE). Markov

perfect equilibrium payoffs can be studied via a well-known functional equation, the

Hamilton-Jacobi-Bellman (or Isaacs) equation. Similarly, the set of strongly symmetric

equilibrium payoffs is characterized by a pair of coupled functional equations. At the

same time, unlike Markov equilibrium, strongly symmetric equilibrium allows for pat-

terns of behavior that are both empirically compelling and theoretically fundamental:

punishments and rewards.

We confine our analysis to a particular class of models, the so-called two-armed

bandit models of strategic experimentation, which are due to Bolton and Harris (1999)

and have been extensively studied both in discrete and in continuous time. More

specifically, the set-up is as in Keller et al. (2005) and Keller and Rady (2010). The

motivation for this restriction is two-fold. First, as will become clear, the characteriza-

tion of the appropriate boundary condition for strongly symmetric equilibria hinges on

fine details of the set-up (as is also the case for MPE). We only know how to perform

such an analysis within the confines of a specific model. Second, restricting attention

to such a well-studied model allows us to provide a closed-form for the equilibrium

payoff set, a concrete illustration of how a slight weakening of the solution concept

(from MPE to SSE) dramatically alters behavior and payoffs.

Strongly symmetric equilibria are not new. They have been studied in repeated

games at least since Abreu (1986). They are known to be restrictive. To begin with,

they make no sense if the model itself fails to be symmetric. But as Abreu (1986)

already observes for repeated games, they are (i) easily calculated, being completely

characterized by two simultaneous equations; (ii) more general than static Nash, or
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even Nash reversion; and even (iii) without loss in terms of total welfare, at least in

some cases. See also Abreu, Pearce and Stacchetti (1986) for optimality of symmetric

equilibria within a standard oligopoly framework, and Abreu, Pearce and Stacchetti

(1993) for a motivation of the solution concept based on a notion of equal bargaining

power. A more general analysis for repeated games with perfect monitoring is carried

out by Cronshaw and Luenberger (1994) showing how the set of SSE payoffs is obtained

by finding the largest scalar solving a certain equation. Properties (i)–(iii) generalize

to stochastic games, with “Markov perfect” replacing “Nash” in statement (ii).

Our first step involves establishing the rather straightforward functional analogues

of the equations derived by Abreu, and Cronshaw and Luenberger, for a discretized

version of our game in which all players can adjust actions on a common, equally spaced

time grid only. This in turn motivates the coupled functional equations and boundary

condition in continuous time that we put forth as the tool for analyzing stochastic

games such as our bandit model. In our second step, we then provide a formal limiting

result: as players are allowed to adjust actions more and more frequently, the upper

and lower boundaries of the set of SSE payoffs of the discretized game converge to

the unique solution of the functional equations subject to the boundary condition.

Thus, while continuous time gives us analytical tractability, the boundary condition

underlying our analysis can only be derived in discrete time.

To be sure, we can and do (in our third step) directly construct strongly symmetric

equilibria in continuous time and show that their payoff functions solve the functional

equations. But given that, to the best of our knowledge, this paper is the first attempt

at studying these coupled equations in continuous-time games, we view it as useful and

reassuring to check that they capture precisely the strategic elements of the discrete-

time game with frequent interactions in this particular instance. This is by no means

a foregone conclusion: there are well-known examples in which the continuous-time

definition of Markov equilibrium yields a set of payoffs that does not coincide with the

limit of the set of Markov equilibrium payoffs for the discrete-time approximation. In

fact, one corollary of our analysis is that the infinite-switching equilibria in Keller et

al. (2005) have no counterpart in discrete time, no matter how small the time interval

between consecutive choices;1 see also Heidhues, Rady and Strack (2015).

While proving this limit result requires some care, actually solving the continuous-

time equations is a straightforward exercise in the case of the bandit model. This is

where the analytical convenience of continuous time comes into play, yielding simple

and exact solutions that admit intuitive interpretations. The resulting equilibrium

1To be more precise, they have no counterpart provided one discretizes the game as we do. Alter-

native discretizations might yield different boundary conditions and different predictions.
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payoff correspondence is rich: the symmetric Markov equilibrium is neither the lowest

nor the highest selection. In fact, we show that the restriction to SSE is without loss

in terms of joint payoffs: as we take the length of the time intervals to zero, there is no

sequence of (pure or mixed) perfect Bayesian equilibria in the discrete-time game whose

limit sum of payoffs or experimentation rates would be higher than in the best SSE.

The same holds true regarding the worst SSE joint payoff, which equals the single-agent

payoff.

Both the best and the worst equilibrium are of the cut-off type, so that players

experiment if and only if the belief exceeds a certain threshold. This contrasts with the

non-existence of such equilibria within the set of Markov equilibria; see Proposition 3 of

Keller and Rady (2010). Surprisingly, first-best can be attained for some parameters.

Whether or not this is possible hinges on a simple comparison: does a success (the

arrival of a lump-sum) at the cooperative threshold take the posterior belief above or

below the single-agent threshold? If the posterior lies below the single-agent threshold,

the cooperative solution can be implemented. Roughly speaking, this is because the

“punishment” (applied when a non-deviant player has a success) is most effective in

this case, giving a deviant player the lowest possible continuation payoff – that of

everybody giving up on experimentation forever. By contrast, if a success makes the

players very optimistic, the opponents’ threat to stop experimenting has little impact

on a deviant player’s payoff.

We provide comparative statics regarding the cut-off in the best equilibrium and

the associated payoff. In particular, the larger the number of players, the lower the

cut-off, and hence the larger the amount of experimentation.

Section 2 introduces the model. Section 3 presents the main results regarding

equilibrium payoffs and strategies both in the discrete-time game and the continuous-

time limit. Section 4 contains the construction of SSE in the discrete-time game which

underlies our main results. Section 5 discusses the robustness of our results and various

extensions. Section 6 concludes.

2 The Model

The basic setup is that of Keller et al. (2005) and Keller and Rady (2010). Time

t ∈ [0,∞) is continuous. There are N ≥ 2 players, each facing the same two-armed

bandit problem with one safe and one risky arm.

The safe arm S generates a known expected payoff s > 0 per unit of time. The risky
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arm R generates lump-sum payoffs that are independent draws from a time-invariant

distribution on IR\{0} with a known mean h > 0. These lump sums arrive at the jump

times of a standard Poisson process whose intensity depends on an unknown state of

the world, θ ∈ {0, 1}. If θ = 1, the intensity is λ1 > 0 for all players; if θ = 0, the

intensity is λ0 for all players with 0 ≤ λ0 < λ1. These constants are again known to

the players. Conditional on θ, the Poisson processes that drive the payoffs of the risky

arm are independent across players.

In the discrete-time versions of the experimentation game, players may only change

their action at the times t = 0,∆, 2∆, . . ., for some fixed ∆ > 0. The action is binary

(using the risky or safe arm). We refer to this game as the discrete game (although

it is cast in continuous time), to be contrasted with the analysis that we perform in

the continuous-time game (see Section 5.3). While arguably natural, our discretization

remains nonetheless ad hoc, and other discretizations might possibly yield other results.

Not only is it well known that limits of the discrete-time models might differ from

the continuous-time solutions, but the particular discrete structure might matter; see,

among others, Müller (2000), Fudenberg and Levine (2009), Hörner and Samuelson

(2013), and Sadzik and Stacchetti (2015).2

The expected discounted payoff increment from using S for the length of time ∆

is
∫ ∆

0
r e−r t s dt = (1 − δ)s with δ = e−r∆, where r > 0 is the common discount

rate. Conditional on θ, the expected discounted payoff increment from using R is

E

[∫ ∆

0
r e−r t h dNθ,t

]
where Nθ,t is a standard Poisson process with intensity λθ; as

Nθ,t − λθt is a martingale, this simplifies to
∫ ∆

0
r e−r t hλθ dt = (1− δ)λθh. We assume

that λ0h < s < λ1h, so each player prefers R to S if R is good (θ = 1), and prefers S

to R if R is bad (θ = 0).

Players start with a common prior belief about θ. Thereafter, they observe each

other’s actions and outcomes, so they hold common posterior beliefs throughout time.

With p denoting the subjective probability that θ = 1, the expected discounted payoff

increment from using R conditional on all available information is (1 − δ)λ(p)h with

λ(p) = pλ1 + (1− p)λ0. This exceeds the payoff increment from using S if and only if

p exceeds the myopic cut-off belief

pm =
s− λ0h

(λ1 − λ0)h
.

2In Hörner and Samuelson (2013), for instance, there are multiple solutions to the optimality

equations, corresponding to different boundary conditions, and to select among them it is necessary

to investigate in detail the discrete-time game (see their Lemma 3). But the role of the discretization

goes well beyond picking the “right” boundary condition; see Sadzik and Stacchetti (2015).
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To derive the law of motion of beliefs, consider one of the intervals of length ∆

on which the player’s actions (k1, . . . , kN) ∈ {0, 1}N are fixed, with kn = 1 indicating

that player n uses R, and kn = 0 indicating that she uses S. With K =
∑N

n=1 kn

players using the risky arm, the probability in state θ of a total of j = 0, 1, 2, . . . lump

sums during this time interval is (Kλθ∆)j

j!
e−Kλθ∆ by the sum property of the Poisson

distribution. Given the belief p held at the beginning of the interval, therefore, the

probability assigned to J lump sums arriving within the length of time ∆ is

Λ∆
J,K(p) =

KJ∆J

J !

[
pλJ1γ

K
1 + (1− p)λJ0γ

K
0

]
,

with γθ = e−λθ∆, and the corresponding posterior belief is

B∆
J,K(p) =

pλJ1γ
K
1

pλJ1γ
K
1 + (1− p)λJ0γ

K
0

.

For K > 0, the absence of a lump-sum payoff over the length of time ∆ makes

players more pessimistic: B∆
0,K(p) < p whenever p > 0. Throughout the paper, we

shall assume ∆ small enough that λ1γ
N
1 > λ0γ

N
0 . This guarantees that successes

always make players more optimistic: B∆
J,K(p) > p for all J ≥ 1, K > 0 and p < 1.

For any bounded function w on [0, 1] and any K ∈ {0, 1, . . . , N}, we define a

bounded function E∆
Kw by

E∆
Kw(p) =

∞∑

J=0

Λ∆
J,K(p)w(B

∆
J,K(p)).

This is the expectation of w with respect to the distribution of posterior beliefs when

the current belief is p and K players use R for a length of time ∆.

A history of length t = ∆, 2∆, . . . is a sequence

ht =
(
(kn,0)

N
n=1, (jn,∆)

N
n=1, . . . , (kn,t−∆)

N
n=1, (jn,t)

N
n=1

)
,

such that kn,τ = 0 ⇒ jn,τ+∆ = 0. This history specifies all actions kn,τ ∈ {0, 1} taken

by the players, and the resulting number of realized lump-sums jn,τ+∆ ∈ IN0. We write

Ht for the set of all histories of length t, set H0 = {∅}, and let H =
⋃∞

t=0,∆,2∆,...Ht.

In addition, we assume that players have access to a public randomization device in

every period, namely, a draw from the uniform distribution on [0, 1], which is assumed

to be independent of θ and across periods. Following standard practice, we omit its

realizations from the description of histories.
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Along with the prior belief p0, each profile of strategies induces a distribution over

H . Given a history ht, we can recursively define the beliefs p∆, p2∆, . . . , pt through

pτ = B∆
Jτ ,Kτ−∆

(pτ−∆), where Jτ =
∑N

n=1 jn,τ and Kτ−∆ =
∑N

n=1 kn,τ−∆.
3

A behavioral strategy σn for player n is a sequence (σn,t)t=0,∆,2∆,..., where σn,t is a

map from Ht to the set of probability distributions on {0, 1}; a pure strategy takes

values in the set of degenerate distributions only. A (pure or behavioral) strategy is a

Markov (stationary) strategy if it depends on ht only through the posterior belief pt.

A Markov strategy profile is symmetric if this map is the same for all players.

Player n seeks to maximize

(1− δ)E

[
∞∑

ℓ=0

δℓ
{
(1− kn,ℓ∆)s+ kn,ℓ∆λθh

}]
.

By the law of iterated expectations, this equals

(1− δ)E

[
∞∑

ℓ=0

δℓ
{
(1− kn,ℓ∆)s+ kn,ℓ∆λ(pℓ∆)h

}]
.

Nash equilibrium, perfect Bayesian equilibrium and Markov perfect equilibrium of the

game with period length ∆ are defined in the usual way.4

Our focus is on strongly symmetric equilibria. By definition, a strongly symmetric

equilibrium (SSE) is a perfect Bayesian equilibrium in which all players use the same

strategy: σn(ht) = σn′(ht), for all n, n
′ and ht ∈ H . This implies symmetry of behavior

after any history, not just on the equilibrium path of play.5 For λ0 > 0, we shall

actually restrict ourselves to pure-strategy SSE; as we shall see, this entails no loss in

terms of equilibrium payoffs when we take the period length ∆ to 0.6 Endowing the

set of histories with the product topology, the set of SSE outcomes for a given initial

belief is compact, and so is the set of SSE payoffs. If non-empty, this set is simply an

interval in IR. Its characterization is the subject of the next section.

3Anticipating on the solution concept, this requires Bayes’ rule to be applied off-path as well. As

the game has observable actions, this raises no particular difficulty.
4While we could equivalently define this Bayesian game as a stochastic game with the common

posterior belief as a state variable, no characterization or folk theorem applies to our set-up, as the

Markov chain (over consecutive states) does not satisfy the sufficient ergodicity assumptions; see Dutta

(1995) and Hörner, Sugaya, Takahashi and Vieille (2011).
5Note that any symmetric Markov perfect equilibrium is a strongly symmetric equilibrium.
6When λ0 = 0, there exists no pure-strategy SSE. The equilibria we construct in this scenario

involve mixed actions over a range of beliefs that vanishes as ∆ → 0, so that the resulting outcome in

continuous time is achieved by a (pure-strategy) automaton as defined in Section 3.3.
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3 Main Results

In this section, we present the main results, discuss the intuition behind them and

sketch the strategy of proof.

3.1 SSE Payoffs in the Discrete Game

Fix ∆ > 0. For p ∈ [0, 1], let W
∆
(p) and W∆(p) denote the supremum and infimum,

respectively, of the set of payoffs over pure-strategy strongly symmetric equilibria,

given prior belief p. If such an equilibrium exists, these extrema are achieved, and

W
∆
(p) ≥W∆(p).

Proposition 1 Suppose that the discrete game with time increment ∆ > 0 admits a

pure-strategy SSE for any prior belief. Then the pair of functions (w,w) = (W
∆
,W∆)

solve the functional equations

w(p) = max
κ∈K(p;w,w)

{
(1− δ)[(1− κ)s+ κλ(p)h] + δE∆

Nκw(p)
}
, (1)

w(p) = min
κ∈K(p;w,w)

max
k∈{0,1}

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ+kw(p)
}
, (2)

where K(p;w,w) ⊆ {0, 1} denotes the set of all κ such that

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Nκw(p) (3)

≥ max
k∈{0,1}

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ+kw(p)
}
.

Moreover, W∆ ≤ w ≤ w ≤W
∆
for any solution (w,w) of (1)–(3).

This result relies on arguments that are familiar from Cronshaw and Luenberger

(1994). As they will be crucial to our construction of equilibria later on, we present

them here.

First, the above equations can be understood as follows. The ideal condition for a

given (symmetric) action profile to be incentive compatible is that, if each player con-

forms to it, the continuation payoff is the highest possible, while a deviation triggers

the lowest possible continuation payoff. These actions are precisely the elements of

K(p;w,w), as defined by equation (3). Given this set of actions, equation (2) gives the

recursion that characterizes the constrained minmax payoff under the assumption that,

if a player were to deviate to his myopic best-reply to the constrained minmax action
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profile, the punishment would be restarted next period, resulting in a minimum con-

tinuation payoff. Similarly, equation (1) gives the highest payoff under this constraint,

but here, playing the best action (within the set) is on the equilibrium path.

Second, note that in any SSE, given p, the action κ(p) must be an element of

K(p;W
∆
,W∆). This is because the left-hand side of (3) with w = W

∆
is an upper

bound on the continuation payoff if no player deviates, and the right-hand side with w =

W∆ a lower bound on the continuation payoff after a unilateral deviation. Consider

the equilibrium that achieves W
∆
. Then

W
∆
(p) ≤ max

κ∈K(p;W
∆
,W∆)

{
(1− δ)[(1− κ)s+ κλ(p)h] + δE∆

NκW
∆
(p)
}
,

as the action played must be in K(p;W
∆
,W∆) and the continuation payoff is at most

given by W
∆
. Similarly, W∆ must satisfy (2) with “≥” instead of “=”. Suppose now

that the “≤” were strict. Then we can define a strategy profile given prior p that (i)

in period 0, plays the maximizer of the right-hand side, and (ii) from t = ∆ onward,

abides by the continuation strategy achieving W
∆
(p∆). Because the initial action is in

K(p;W
∆
,W∆), this constitutes an equilibrium; and it achieves a payoff strictly larger

than W
∆
(p), a contradiction. Hence, (1) must hold with equality for W

∆
. The same

reasoning applies to W∆ and (2).

Third, fix a pair (w,w) that satisfies (1)–(3). Note that (1)–(2) imply that w ≤ w.

Given such a pair, and any prior p, we construct two SSE whose payoffs are w and w,

respectively. It then follows that W∆ ≤ w ≤ w ≤W
∆
. Let κ and κ denote a selection

of the maximum and minimum of (1)–(2). The equilibrium strategies are described by

a two-state automaton, whose states are referred to as “good” or “bad.” The difference

between the two equilibria lies in the initial state: w is achieved when the initial state

is good, w when it is bad. In the good state, play proceeds according to κ; in the bad

state, according to κ. Transitions are as follows. If the state is good and all players

play κ, play remains in the good state; otherwise, play shifts to the bad state. If after

some history h, the state is bad and all players play κ, play switches from the bad

state to the good state with some probability η(p) ∈ [0, 1] where p is the belief held

after history h. This switch is determined by the public randomization device (i.e., the

switch is a deterministic function of its realization). Otherwise, play remains in the

bad state. The probability η(p) is chosen so that

w(p) = (1− δ)[(1− κ(p))s+ κ(p)λ(p)h]

+ δ
{
η(p) E∆

Nκ(p)w(p) + [1− η(p)] E∆
Nκ(p)w(p)

}
,
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with (1)–(3) ensuring that η(p) ∈ [0, 1]. This completes the description of the strategies.

The choice of η along with (1)–(2) rules out profitable one-shot deviations in either

state, so that the automaton describes equilibrium strategies, and the desired payoffs

are obtained.

Our next step is to study the system (1)–(3) as the reaction lag ∆ vanishes.

3.2 SSE Payoffs in the Continuous Limit

As ∆ tends to 0, equations (1)–(2) transform into differential-difference equations in-

volving terms that are familiar from Keller and Rady (2010). A formal Taylor approx-

imation shows that for any κ ∈ {0, 1} and K ∈ {0, 1, . . . , N},

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Kw(p)

= w(p) + r
{
(1− κ)s + κλ(p)h+K b(p, w)− w(p)

}
∆+ o(∆),

where

b(p, w) =
λ(p)

r
[w(j(p))− w(p)]−

λ1 − λ0
r

p(1− p)w′(p),

and

j(p) =
λ1p

λ(p)
.

As in Keller and Rady (2010), we can interpret b(p, w) as the expected benefit of

playing R when continuation payoffs are given by the function w. It weighs a discrete

improvement in the overall payoff after a single success, with the belief jumping up

from p to j(p), against a marginal decrease in the absence of such a success.7

Applying this approximation to (1)–(2), cancelling the terms of order 0 in ∆, di-

viding through by ∆, letting ∆ → 0 and using the notation

c(p) = s− λ(p)h

for the opportunity cost of playing R, we obtain the coupled differential equations

which are at the heart of the following result.

Proposition 2 As ∆ → 0, the pair of functions (W
∆
,W∆) converges uniformly (in

7As the belief is updated downward in the absence of a success we can compute b(p, w) whenever

w possesses a left-hand derivative at p.
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p) to a pair of functions (w,w) solving

w(p) = s+ max
κ∈K(p)

κ [Nb(p, w)− c(p)] , (4)

w(p) = s+ min
κ∈K(p)

(N − 1)κ b(p, w) + max
k∈{0,1}

k [b(p, w)− c(p)] , (5)

where

K(p) =

{
{0, 1} for p ≥ p,

{0} for p < p,
(6)

and

Nb(p, w)− c(p) = (N − 1)b(p, w). (7)

Proposition 2 will be proved jointly with our next result; more details about this proof

are provided below.

Equation (7), which characterizes the threshold below which no experimentation

takes place, is central to our analysis and thus merits a detailed discussion. At the

threshold, each player must be just willing to use the risky arm given that (i) all other

players are using it, (ii) continuation values are given by w if all players play risky, and

(iii) continuation values are given by w after a deviation to the safe arm. Now, playing

risky involves an instantaneous opportunity cost of c(p), but yields the informational

benefits of N experiments, evaluated at the continuation values given by w. By playing

safe, a player can avoid the opportunity cost, but then only obtains the informational

benefits of N − 1 experiments, evaluated at the continuation values given by w. So

equation (7) indeed captures indifference between the two actions at p.

This indifference condition yields a first important insight into the possibility of

sustaining efficient experimentation in the limit. Adopting the same notation as Keller

and Rady (2010), let V ∗
N be the N -player cooperative value function in continuous time,

that is, the value function of a planner who operates all N bandits and maximizes their

average payoff.8 As the planner fully internalises the informational externality of any

experiment that he carries out, the efficient N -player cut-off p∗N in continuous time

is pinned down by the requirement that the informational benefit of N experiments,

evaluated at the continuation values given by V ∗
N , be equal to the opportunity cost

of one experiment, that is, Nb(p∗N , V
∗
N) = c(p∗N). As a consequence, equation (7)

holds for p = p∗N and w = V ∗
N if and only if b(p∗N , w) = 0. Intuitively, if the opponents’

experiments have no informational benefit after a unilateral deviation, then each player

individually faces the same trade-off as the social planner, weighing the benefit of all

players’ experiments against the cost of his own.

8A closed-form expression for V ∗
N is provided in Appendix A.
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We can make the indifference condition (7) more explicit by noting that the values

and left-hand derivatives of w and w at p satisfy w(p) = w(p) = s and w′(p) = w′(p) =

0, so that b(p, w) = λ(p) [w(j(p))− s] /r and b(p, w) = λ(p) [w(j(p))− s] /r. After

multiplication with r on both sides, (7) now becomes

Nλ(p)
[
w(j(p))− s

]
− rc(p) = (N − 1)λ(p)

[
w(j(p))− s

]
.

In other words, the benefit of experimentation only accrues in the event that a lump-

sum arrives in the next instant, causing the common belief to jump from p to j(p).

The instantaneous probability of this event is the number of experiments being carried

out times the expected arrival rate λ(p). When all players use the risky arm, therefore,

the continuation value jumps from s to w(j(p)) at the rate Nλ(p); when one player

deviates to the safe arm, the continuation value jumps from s to w(j(p)) at the rate

(N − 1)λ(p). In particular, the indifference condition holds for p = p∗N and w = V ∗
N if

and only if w(j(p∗N)) = s, which means that all experimentation comes to a halt after

a unilateral deviation at the efficient cut-off – even if one of the opponents’ current

experiments were to produce a success.

We now solve for the unknowns (w,w) and p that appear in Proposition 2. Taking

the threshold p and associated correspondence K as given at first, we can use results

from Keller and Rady (2010) to solve the equations (4)–(5). As V ∗
N solves the HJB

equation

V ∗
N(p) = s+ max

κ∈{0,1}
κ [Nb(p, V ∗

N )− c(p)]

with Nb(p, V ∗
N)− c(p) being positive to the right of p∗N and negative to the left, (4) is

trivially solved by V ∗
N whenever p ≤ p∗N . Next, let VN,p be the players’ common payoff

function in continuous time when all N of them use the risky arm on (p, 1] and there

is no experimentation otherwise; thus, VN,p solves

VN,p(p) = s+ 1p>p(p)
[
Nb(p, VN,p)− c(p)

]

where 1A denotes the indicator function of the event A.9 For p = p∗N , this is again the

cooperative value function V ∗
N . For p > p∗N , we have VN,p < V ∗

N on (p∗N , 1), and VN,p is

continuously differentiable except for a convex kink at p, which implies a discontinuity

in Nb(p;VN,p) − c(p): this difference is positive on (p, 1], approaches zero as p tends

to p from the right, is positive at p itself, and then decreases monotonically as p falls

further, eventually assuming negative values. All this implies that VN,p solves (4) when

p > p∗N .

9Appendix A also provides a closed-form expression for VN,p.
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Setting N = 1 in the above description of the cooperative value function and the

efficient cut-off in continuous time, we obtain the single-agent value function V ∗
1 and

corresponding cut-off p∗1 > p∗N . It is straightforward to see that V ∗
1 always solves (5).

In fact, as b(p;V ∗
1 ) ≥ 0 everywhere, we have minκ∈{0,1}(N − 1)κ b(p, V ∗

1 ) = 0, and (5)

with this minimum set to zero is just the HJB equation for V ∗
1 .

Thus, it only remains to pin down p.

Proposition 3 The unique solution to the system (4)–(7) is (w,w, p) = (VN,p̂, V
∗
1 , p̂)

where p̂ is the unique belief in [p∗N , p
∗
1] satisfying

Nλ(p̂) [VN,p̂(j(p̂))− s]− rc(p̂) = (N − 1)λ(p̂) [V ∗
1 (j(p̂))− s] .

Moreover, p̂ = p∗N if and only if j(p∗N) ≤ p∗1, and p̂ = p∗1 if and only if λ0 = 0.

Figure 1 illustrates the cooperative continuous-time payoff V ∗
N , the lowest SSE limit

payoff V ∗
1 , as well as the highest SSE limit payoff VN,p̂ for a parameter configuration

which implies p∗N < p̂ < p∗1.

As alluded to before, Propositions 2 and 3 will be proved together. First, Lemma

A.1 in Appendix A establishes the existence of a unique belief p̂ satisfying the defining

identity in Proposition 3 and proves the conditions under which this belief equals p∗N
or p∗1. Second, Section 4.1 shows that the functions VN,p̂ and V ∗

1 constitute upper and

lower bounds, respectively, on SSE payoffs in the discrete game as ∆ vanishes. Third,

Sections 4.2–4.3 construct SSE of the discrete game which in the limit get as close

to these bounds as one wishes, so that Section 4.4 can establish uniform convergence

W
∆
→ VN,p̂ and W

∆ → V ∗
1 , and thus the validity of Propositions 2 and 3. A road map

of this proof can be found at the start of Section 4.

A remarkable implication of Proposition 3 is that for a range of parameters, first-

best experimentation can be achieved in the limit. Furthermore, the necessary and

sufficient condition for this to be the case is simply that a jump in the belief when

a success is observed, starting from the cooperative threshold p∗N , does not take the

common belief above the single-player threshold p∗1. This is because, in such a configu-

ration, there is no benefit from free-riding at (or right above) the threshold p∗N : failing

to partake in the cooperative effort leads to the continuation payoff of s, whether or not

another player experiences a success or not; as explained above, this means that each

player effectively faces the same trade-off as a social planner. On the other hand, when

j(p∗N) > p∗1, the punishment for deviating at p∗N which is specified when another player

has a success is not enough: the deviating player can still secure a payoff above the

12
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Figure 1: Payoffs V ∗
1 (dotted), V ∗

N (solid) and VN,p̂ (dashed). Here, (r, s, h, λ1, λ0, N) =
(1, 1, 1.5, 1, 0.2, 5), implying (p∗N , p̂, p

∗
1) ≃ (.27, .40, .45).

safe arm’s return, which depresses his incentives to experiment relative to the planner’s.

Nonetheless, for λ0 > 0, this punishment is not entirely ineffective, and helps push the

experimentation threshold below the threshold that would prevail in the symmetric

Markov equilibrium.10 We have the following result, proved in Appendix B (as are the

two results that follow it).

Corollary 1 For λ0 > 0, the cut-off p̂ is strictly lower than the belief at which all

experimentation stops in the symmetric MPE of the continuous-time game.

The unique symmetric Markov perfect equilibrium in Keller and Rady (2010) ex-

hibits a double-barrel inefficiency. Not only is the overall amount of experimentation

too small, i.e. there is an inefficiently high probability of never finding out the true

state of the world in the long run; the speed of experimentation is inefficiently slow to

boot. Strongly symmetric equilibria do better along both dimensions.11

It is also instructive to consider what happens when the players become infinitely

impatient or patient. If players are myopic, they will not react to future rewards and

10When λ0 = 0, there is no difference between the best and worst continuation payoffs after a

success: both equal λ1h. This is the reason that experimentation cannot be sustained below p∗1.
11This holds even though the action set used in the continuous-time game defined by Keller and

Rady (2010) is larger (an action is a fraction allocated to the risky arm) and there is no requirement

that the symmetric MPE be the limit of a sequence of discrete-time equilibria.
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punishments. It is therefore no surprise that in this case the cooperative solution cannot

be sustained in equilibrium. By contrast, if players are very patient, the planner’s

solution can be sustained provided the number of players is large enough.

Corollary 2 For λ0 > 0,

lim
r→∞

j(p∗N)

p∗1
=
λ1h

s
,

and

lim
r→0

j(p∗N)

p∗1
=

λ1
Nλ0

.

Finally, in the case λ0 > 0, the more players participate in the game the more

experimentation can be sustained. (Recall that for λ0 = 0, the threshold belief p̂ is

independent of N .)

Corollary 3 For λ0 > 0, p̂ is decreasing in N .

This corroborates the comparative statics of the symmetric Markov equilibrium in

Keller and Rady (2010): experimentation and payoffs increase in the number of players.

However, there are two important differences with the SSE that we construct below:

first, the symmetric MPE is necessarily inefficient; second, behavior in the MPE is not

of the cut-off type.

3.3 Limit PBE Payoffs

How restrictive are pure-strategy SSE? One’s intuition suggests that it might be easier

to reward only one player for playing risky (with some positive probability) than it

is to give incentives to all the players to do so. Similarly, it might be more effective

to punish just a single player who deviates unilaterally than to impose a punishment

phase on all players.

However, as our next result shows, the restriction to strongly symmetric equilibria

is without loss when it comes to the players’ average payoff (and hence, to the range

of beliefs at which experimentation is possible) in the limit.

Proposition 4 Fix a prior p. In the limit as ∆ → 0, the best and worst average payoff

(per player) over all perfect Bayesian equilibria is achieved by an SSE. If λ0 > 0, these

SSE are in pure strategies.
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The proof, presented in Appendix B, consists in showing that the players’ average

PBE payoffs in the discrete game are also bounded by VN,p̂ and V ∗
1 as ∆ vanishes. As

these bounds can be approached arbitrarily closely by SSE, the result then follows from

Propositions 2–3.

For a heuristic explanation of the logic behind this result, consider a sequence of

pure-strategy PBE for vanishing ∆ such that the infimum of the set of beliefs at which

at least one player experiments converges to some limit p̆. Selecting a subsequence of

∆’s and relabeling players, if necessary, we can assume without loss of generality that

players 1, . . . , L play R immediately to the right of at p̆, while players L + 1, . . . , N

play S. In the limit, players’ individual continuation payoffs are bounded below by

the single-agent value function V ∗
1 and cannot sum to more than NVN,p̆, so the sum of

the continuation payoffs of players 1, . . . , L is bounded above by NVN,p̆ − (N − L)V ∗
1 .

Averaging these players’ incentive compatibility constraints thus yields

Lλ(p̆)

[
NVN,p̆(j(p̆))− (N − L)V ∗

1 (j(p̆))

L
− s

]
− rc(p̆) ≥ (L− 1)λ(p̆) [V ∗

1 (j(p̆))− s] .

Simplifying the left-hand side, adding (N − L)λ(p̆) [V ∗
1 (j(p̆))− s] to both sides and

re-arranging, we obtain

Nλ(p̆) [VN,p̆(j(p̆))− s]− rc(p̆) ≥ (N − 1)λ(p̆) [V ∗
1 (j(p̆))− s]

and hence p̆ ≥ p̂ by Lemma A.1. The proof in Appendix B makes this argument

rigorous and extends it to mixed equilibria.

Ultimately, therefore, Proposition 4 follows from the fact that in the continuous-

time limit the probability of a lump sum occurring is linear in the number of players

who use the risky arm. Given this linearity, the plan of action that maximizes players’

average payoff in continuous time has the bang-bang property that either all players

experiment or none of them does – and this kind of behavior can indeed be sustained

in strongly symmetric equilibria.

4 SSE in the Discrete Game

As announced above, Section 4 is devoted to the proof of Propositions 2 and 3. Figure

2 presents the structure of this proof and the intermediate results that we shall obtain

along the way.
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Lemmas C.3–C.9:

Convergence and

comparison results

Proposition 5:

Upper and lower bounds

on SSE payoffs as ∆ → 0

Proposition 6:

Construction of SSE

for small ∆ and λ0 > 0

Proposition 7:

Construction of SSE

for small ∆ and λ0 = 0

Proposition 8:

Convergence of best and

worst SSE payoffs

Propositions 2 and 3:

Characterization of

SSE payoffs as ∆ → 0

Figure 2: Structure of the proof of Propositions 2 and 3.

4.1 Upper and Lower Bounds on Equilibrium Payoffs

For ∆ > 0, let p̃∆ be the infimum of the set of prior beliefs at which the experimenta-

tion game with period length ∆ admits a strongly symmetric equilibrium with payoff

exceeding s. Let p̃ = lim inf∆→0 p̃
∆. For small ǫ > 0, consider the problem of maximiz-

ing the average of the players’ payoffs in the discretized setting subject to symmetry of

actions at all times and no use of R at beliefs p ≤ p̃−ǫ. Denote the corresponding value

function by W̃∆,ǫ. By definition of p̃, there exists a ∆̃ǫ > 0 such that for ∆ ∈ (0, ∆̃ǫ),

the function W̃∆,ǫ provides an upper bound on the players’ common payoffs in any

strongly symmetric equilibrium, and hence W
∆
≤ W̃∆,ǫ. As the solution to this con-

strained optimization problem is feasible for the unconstrained planner in continuous

time, we have W̃∆,ǫ ≤ V ∗
N , implying W

∆
≤ V ∗

N for all ∆ > 0, and hence p̃ ≥ p∗N .

Lemma C.3 in the Appendix establishes that W̃∆,ǫ → VN,pǫ uniformly as ∆ → 0, where

pǫ = max{p̃− ǫ, p∗N}.
12

As any player can choose to ignore the information contained in the other players’

12The proof of this convergence result relies on the safe action being imposed on a closed interval.

This is the reason why we work with the interval [0, p̃− ǫ] and then take ǫ → 0.
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experimentation results, the value function W∆
1 of a single agent experimenting in

isolation constitutes an obvious lower bound on a player’s payoff in any (not just

strongly symmetric) equilibrium, and so we have W∆ ≥W∆
1 . Lemma C.5 (applied for

p̄ = 1) establishes uniform convergence W∆
1 → V ∗

1 as ∆ → 0.

Now, fix ǫ > 0 and consider a sequence of ∆’s smaller than ∆̃ǫ and converging to

0 such that the corresponding beliefs p̃∆ converge to p̃. For each ∆ in this sequence,

choose p∆ > p̃∆ such that B∆
0,N−1(p

∆) < p̃∆, and hence B∆
0,N (p

∆) < p̃∆ as well. If the

players start at the belief p∆, therefore, and N − 1 or all of them use R for ∆ units

of time without success, then the posterior belief ends up below p̃∆ and there is no

further experimentation in equilibrium. Now, playing R at p∆ (against N − 1 players

who do so) yields at most

(1− δ)λ(p∆)h+ δ

{
Λ∆

0,N(p
∆)s+

∞∑

J=1

Λ∆
J,N(p

∆)W̃∆,ǫ(B∆
J,N(p

∆))

}

= r∆λ(p∆)h+ (1− r∆)

{
[1−Nλ(p∆)∆]s

+Nλ(p∆)∆ W̃∆,ǫ(B∆
1,N(p

∆))

}
+ o(∆)

= s+
{
r[λ(p̃)h− s] +Nλ(p̃)[VN,pǫ(j(p̃))− s]

}
∆+ o(∆),

while playing S yields at least

(1− δ)s+ δ

{
Λ∆

0,N−1(p
∆)s+

∞∑

J=1

Λ∆
J,N−1(p

∆)W∆
1 (B∆

J,N−1(p
∆))

}

= r∆ s+ (1− r∆)

{
[1− (N − 1)λ(p∆)∆]s

+ (N − 1)λ(p∆)∆W∆
1 (B∆

1,N−1(p
∆))

}
+ o(∆)

= s+
{
(N − 1)λ(p̃)[V ∗

1 (j(p̃))− s]
}
∆+ o(∆).

Incentive compatibility of R at p∆ for small ∆ requires

Nλ(p̃)
[
VN,pǫ(j(p̃))− s

]
− rc(p̃) ≥ (N−1)λ(p̃)

[
V ∗
1 (j(p̃))− s

]
.

Letting ǫ→ 0, we have pǫ → p̃ and thus

Nλ(p̃)
[
VN,p̃(j(p̃))− s

]
− rc(p̃) ≥ (N−1)λ(p̃)

[
V ∗
1 (j(p̃))− s

]
.
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By Lemma A.1, this means p̃ ≥ p̂, which in turn implies the following result.

Proposition 5 For any ǫ > 0, there is a ∆ǫ > 0 such that for all ∆ ∈ (0,∆ǫ), the set of

beliefs at which experimentation can be sustained in a strongly symmetric equilibrium

of the discrete game with period length ∆ is contained in the interval (p̂ − ǫ, 1]. In

particular, lim sup∆→0W
∆
(p) ≤ VN,p̂(p) and lim inf∆→0W

∆(p) ≥ V ∗
1 (p) for all p.

Proof: The statement about the range of experimentation follows immediately from

the fact (established at the start of this section) that for ∆ < ∆̃ǫ, we have W
∆
≤ W̃∆,ǫ,

and hence W
∆
= W̃∆,ǫ = s on [0, p̃− ǫ] ⊇ [0, p̂− ǫ].

The statement about the supremum of equilibrium payoffs follows from the in-

equality W
∆
≤ W̃∆,ǫ for ∆ < ∆̃ǫ, convergence W̃

∆,ǫ → VN,pǫ as ∆ → 0, convergence

VN,pǫ → VN,p̃ for ǫ → 0, and the inequality VN,p̃ ≤ VN,p̂.

The statement about the infimum of equilibrium payoffs follows from the inequality

W∆ ≥ W∆
1 and convergence W∆

1 → V ∗
1 as ∆ → 0.

In the following subsections, we show constructively that these bounds on the range

of experimentation and the best and worst equilibrium payoffs are tight, that is, p̃ = p̂

and, for all p, lim∆→0W
∆
(p) = VN,p̂(p) and lim∆→0W

∆(p) = V ∗
1 (p). Our construction

depends upon whether λ0 > 0 or λ0 = 0. Accordingly, we divide the analysis into two

parts.

4.2 The Non-Revealing Case (λ0 > 0)

The equilibrium construction for λ0 > 0 is inspired by the last step in the proof of

Proposition 1 in Section 3.1. For sufficiently small ∆ > 0, we shall exhibit a strongly

symmetric equilibrium that can be summarized by two functions, κ and κ, which will

not depend on ∆. The equilibrium strategy is characterized by a two-state automaton.

In the “good” state, play proceeds according to κ and the equilibrium payoff satisfies

w∆(p) = (1− δ)[(1− κ(p))s+ κ(p)λ(p)h] + δE∆
Nκ(p)w

∆(p), (8)

while in the “bad” state, play proceeds according to κ and the payoff satisfies

w∆(p) = max
k

{
(1− δ)[(1− k)s+ kλ(p)h] + δE∆

(N−1)κ(p)+kw
∆(p)

}
. (9)

That is, w∆ is the value from a player’s best response to all other players following κ.
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A unilateral deviation from κ in the good state is punished by a transition to the

bad state in the following period; otherwise we remain in the good state. If there is no

unilateral deviation from κ in the bad state, a draw of a public randomization device

determines whether the state next period is good or bad (and guarantees that the

payoff is indeed given by w∆); otherwise we remain in the bad state. The probability

of a transition from the bad to the good state in the absence of a unilateral deviation

from κ(p) is determined exactly as in Section 3.1.

With continuation payoffs given by w∆ and w∆, the common action κ ∈ {0, 1} can

be sustained at a belief p if and only if

(1− δ)[(1− κ)s+ κλ(p)h] + δE∆
Nκw

∆(p) (10)

≥ (1− δ)[κs+ (1− κ)λ(p)h] + δE∆
(N−1)κ+1−κw

∆(p).

The functions κ and κ define an SSE, therefore, if and only if (10) holds for κ = κ(p)

and κ = κ(p) at all p.

It remains to specify κ and κ. Fixing p ∈ (p̂, p∗1) and p̄ ∈ (pm, 1), we let κ(p) = 1p>p

and κ(p) = 1p>p̄. Note that punishment and reward strategies agree outside of (p, p̄)

and that the strategies in Proposition 9 are obtained upon letting p ↓ p̂ and p̄ ↑ 1.

The continuous-time payoff function associated with the common Markov strategy κ

is VN,p; we write V1,p̄ for the continuous-time payoff function obtained from a best

response against the opponents’ common strategy κ. In Appendix C, we establish

uniform convergence w∆ → VN,p and w∆ → V1,p̄ as ∆ → 0, and V1,p̄ → V ∗
1 as p̄→ 1.

Proposition 6 For λ0 > 0, there are beliefs p♭ ∈ (p̂, p∗1) and p♯ ∈ (pm, 1) such that

for all p ∈ (p̂, p♭) and p̄ ∈ (p♯, 1), there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄),

the two-state automaton with functions κ and κ defines a strongly symmetric perfect

Bayesian equilibrium of the experimentation game with period length ∆.

Proof: See Appendix B.

4.3 The Fully Revealing Case (λ0 = 0)

In the case λ0 > 0, we were able to provide incentives in the potentially last round of

experimentation by threatening punishment conditional on there being a success. This

option is no longer available in the case λ0 = 0. Indeed, now any success takes us to a

posterior of 1, so that everyone will play risky forever in any equilibrium. This means

that irrespective of whether a success occurs or not, continuation strategies will be
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independent of past behavior, conditional on the players’ belief about the state of the

world. This raises the possibility of unravelling. If we cannot support incentives just

above the candidate threshold below which play proceeds according to the symmetric

Markov equilibrium, will the actual threshold not “shoot up”?

To settle whether unravelling occurs or not requires us to study the discrete game

in considerable detail.13 Because the optimality equations for the discrete game are

less tractable than their continuous-time analogue, their detailed analysis is relegated

to the Appendix.14

First, we show that there is no perfect Bayesian equilibrium with any experimen-

tation at beliefs below the single-agent cut-off p∆1 = inf{p : W∆
1 (p) > s}.

Lemma 1 Let λ0 = 0. Fix ∆ > 0 and any prior belief p < p∆1 . Then the unique perfect

Bayesian equilibrium outcome specifies that all players play safe in all periods.15

Proof: See Appendix D.

Lemma 1 already rules out the possibility that the asymmetric equilibria of Keller

et al. (2005) with an infinite number of switches can be approximated in discrete time.

The highest payoff that can be hoped for, then, involves all players experimenting

above p∆1 .

Unlike for the case λ0 > 0 (see Proposition 6), an explicit description of a two-state

automaton implementing strongly symmetric equilibria whose payoffs converge to the

obvious upper and lower bounds appears elusive. Partly, this is because equilibrium

strategies are necessarily mixed for beliefs that are arbitrarily close to (but above) p∆1 ,

as it turns out.

The proof of the next proposition establishes that the length of the interval of

beliefs for which this is the case is vanishing as ∆ → 0. In particular, for higher beliefs

13As already mentioned, we do not claim that the specific choice of the discrete game is innocuous:

it might well be that requiring players to move in alternate periods, for instance, would yield different

conclusions.
14These difficulties are already present in the study of symmetric Markov equilibria in discrete time.

Unlike in the continuous-time limit, in which an explicit solution is known (see Keller et al. (2005)),

the symmetric MPE in discrete time does not seem to admit an easy characterization. In fact, there

are open sets of beliefs for which there are multiple symmetric Markov equilibria in discrete time,

no matter how small ∆. It is not known whether these discrete-time equilibria all converge (in some

sense) to the symmetric equilibrium of Keller et al. (2005); in fact, it is not known whether some

discrete-time MPE converges to it.
15This does not extend to off-path behavior, of course. If a player deviates by pulling the risky arm

and obtains a success, players all switch to the risky arm from that point on.
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(except for beliefs arbitrarily close to 1, when playing R is strictly dominant), both

pure actions can be enforced in some equilibrium.

Proposition 7 For λ0 = 0, and any beliefs p and p̄ such that p∗1 < p < pm < p̄ < 1,

there exists ∆̄ > 0 such that for all ∆ ∈ (0, ∆̄), there exists

- a strongly symmetric equilibrium in which, starting from a prior above p, all

players experiment on the path of play as long as the belief remains above p, and

stop experimenting once the belief drops below p∗1;

- a strongly symmetric equilibrium in which, given a prior in between p and p̄, the

players’ payoff is no larger than their best-reply payoff against opponents who

experiment if and only if the belief lies in [p∗1, p] ∪ [p̄, 1].

Proof: See Appendix D.

While this proposition is somewhat weaker than Proposition 6, its implications

for limit payoffs as ∆ → 0 are the same. Intuitively, given that the interval [p∗1, p]

can be chosen arbitrarily small (actually, of the order ∆, as the proof establishes), its

impact on equilibrium payoffs starting from priors above p is of order ∆. This suggests

that for the equilibria whose existence is stated in Proposition 7, the payoff converges,

respectively, to the payoff from all players experimenting above p∗1 and to the best-reply

payoff against none of the opponents experimenting. We now turn to proving this claim

rigorously and establishing uniform convergence.

4.4 Limit SSE Payoffs

Recall that, for fixed ∆, we write W
∆
and W∆ for the pointwise supremum and infi-

mum, respectively, of the set of strongly symmetric equilibrium payoff functions. The

main result of this section is a characterization of the limit of W
∆
and W∆.

Proposition 8 lim∆→0W
∆
= VN,p̂ and lim∆→0W

∆ = V ∗
1 , uniformly on [0, 1].

Proof: For λ0 > 0 and a given ǫ > 0, the explicit representation for VN,p in Section

3.2 and the uniform convergence V1,p̄ → V ∗
1 as p̄ → 1 (established in Lemma C.6)

allow us to choose ξ > 0, p ∈ (p̂, p♭) and p̄ ∈ (p♯, 1) such that ‖VN,p̂−ξ − VN,p̂‖ < ǫ,

‖VN,p − VN,p̂‖ < ǫ and ‖V1,p̄ − V ∗
1 ‖ <

ǫ
2
, with ‖ · ‖ denoting the supremum norm. Next,

Proposition 6, Lemma C.7, Section 4.1 and Lemma C.5 imply the existence of a ∆† > 0

such that for all ∆ ∈ (0,∆†), the two-state automaton defined by the cut-offs p and
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p̄ constitutes an SSE of the game with period length ∆ and the following inequalities

hold: w∆ ≥ VN,p, W
∆
≤ VN,p̂−ξ, ‖w

∆−V1,p̄‖ <
ǫ
2
and ‖W∆

1 −V ∗
1 ‖ < ǫ. For ∆ ∈ (0,∆†),

we thus have

VN,p̂ − ǫ < VN,p ≤ w∆ ≤W
∆
≤ VN,p̂−ξ < VN,p̂ + ǫ

and

V ∗
1 − ǫ < W∆

1 ≤ W∆ ≤ w∆ < V1,p̄ +
ǫ

2
< V ∗

1 + ǫ,

so that ‖W
∆
−VN,p̂‖ and ‖W∆−V ∗

1 ‖ are both smaller than ǫ, which was to be shown.

For λ0 = 0, the proof of Proposition 7 establishes that there exists a natural number

M such that, given p as stated, we can take ∆̄ to be (p − p∗1)/M . Equivalently,

p∗1 +M∆̄ = p. Hence, Proposition 7 can be restated as saying that, for some ∆̄ > 0,

and all ∆ ∈ (0, ∆̄), there exists p∆ ∈ (p∗1, p
∗
1 +M∆) such that the two conclusions of

the proposition hold with p = p∆. Fixing the prior, let w∆, w∆ denote the payoffs in

the first and second SSE from the proposition, respectively.16 Given that p → p∗1 and

w∆(p) → s, w∆(p) → s for all p ∈ (p∗1, p∆), it follows that we can pick ∆† ∈ (0, ∆̄) such

that for all ∆ ∈ (0,∆†), w∆ ≥ VN,p−ǫ, and as before,W
∆
≤ VN,p̂−ξ, ‖w

∆−V1,p̄‖ <
ǫ
2
and

‖W∆
1 − V ∗

1 ‖ < ǫ. The obvious inequalities follow as before, subtracting an additional ǫ

to the left-hand side of the first one; and the conclusion follows as before, using 2ǫ as

an upper bound.

5 Robustness and Extensions

5.1 Breakdowns

Keller and Rady (2015) consider a version of the present bandit model in which Poisson

events are bad news (“breakdowns” rather than “breakthroughs”). Their setting is

isomorphic to one in which the safe flow payoff and the average size of lump-sum payoffs

are both negative with λ1h < s < λ0h ≤ 0 and all other assumptions made above being

maintained. Now, θ = 1 is the bad state of the world, and a myopic player will play

risky below the cut-off belief pm defined in Section 2. Correspondingly, the efficient and

single-player cut-offs in continuous time satisfy pm < p∗1 < p∗N . The associated value

functions V ∗
1 and V ∗

N solve the same HJB equations as in Section 3.2; both are weakly

decreasing in the probability p assigned to state θ = 1 with V ∗
1 (0) = V ∗

N (0) = λ0h,

V ∗
1 (p) = s on [p∗1, 1], and V

∗
N (p) = s on [p∗N , 1].

16Hence, to be precise, these payoffs are only defined on those beliefs that can be reached given the

prior and the equilibrium strategies.
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As j(p∗N) > p∗N > p∗1, we have V ∗
1 (j(p

∗
N)) = s; as V ∗

1 (p
∗
N ) = s and (V ∗

1 )
′(p∗N) = 0,

moreover, we see that b(p∗N , V
∗
1 ) = 0. With continuation values given by the single-

agent value function, that is, experiments have no benefit at p∗N : in the absence of a

breakdown, players become marginally more optimistic but their belief stays within the

stopping region [p∗1, 1]; if a breakdown occurs, they become more pessimistic and their

belief jumps even deeper into the stopping region. In either case, their continuation

payoff will be s.

This in turn implies that (w,w, p) = (V ∗
N , V

∗
1 , p

∗
N) solves the system (4)–(7), sug-

gesting that, with bad Poisson news, strongly symmetric equilibria can always achieve

asymptotic efficiency.

5.2 Brownian Payoffs

In the model of Bolton and Harris (1999), cumulative payoffs on the risky arm are

given by a Brownian motion with a known diffusion coefficient σ > 0 and an unknown

drift which is either h > s or ℓ < s. The opportunity cost of an experiment in this

framework is c(p) = s−ph− (1−p)ℓ. The informational benefit of using the risky arm

is

b(p, w) =
1

2r

(
h− ℓ

σ

)2

p2(1− p)2w′′(p)

when continuation values are given by a continuously differentiable function w that

admits a generalized second derivative.17 With the opportunity cost and informational

benefit of an experiment redefined in this way, the continuous-time N -player coop-

erative value function V ∗
N and single-player value function V ∗

1 solve exactly the same

HJB equations as in the Poisson case.18 The efficient cut-off belief p∗N is again strictly

smaller than the single-agent cut-off p∗1.

As V ∗
1 (p) = s in a neighborhood of p∗N , therefore, we have b(p∗N , V

∗
1 ) = 0, which in

turn implies that (w,w, p) = (V ∗
N , V

∗
1 , p

∗
N) solves the system (4)–(7). This suggests that,

with Brownian payoffs, strongly symmetric equilibria can always achieve asymptotic

efficiency.

17If w is not continuously differentiable, the learning benefit also involves a local-time term; see

Karatzas and Shreve (1988).
18In addition, the value functions in the Brownian and good-news Poisson models share the same

functional form, reflecting the fact that both payoff-generating processes belong to a certain class

of Lévy processes, that is, continuous-time stochastic processes with independent and stationary

increments; see Cohen and Solan (2013) for details.
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5.3 SSE Strategies in the Continuous-Time Game

Markov equilibria allow a simple characterization of the set of equilibrium payoffs (via

dynamic programming) as well as a description of the corresponding strategies in a

manner that unambiguously defines the equilibrium outcome, by requiring them to be

measurable functions of the state variable. A similar description can be given here.

Instead of considering a single measurable function, we must describe play by two

functions – depending upon whether the continuation payoff is maximum or minimum

– and a point process that acts as public randomization device. Given these three

elements, we define a two-state automaton which unambiguously defines an outcome.

We can then provide a definition of SSE in continuous time, relative to this class of

strategies. (As with MPE, a player cannot gain from deviating to any other adapted

process as long as the other players follow the equilibrium strategy.)

To be more formal, let L be the set of all mappings from {0, 1} × [0, 1] to {0, 1}

that are left-continuous with respect to the second argument on the open unit interval

and switch between the two possible actions only finitely many times as the second

argument increases from 0 to 1. Any f ∈ L is considered as an augmented Markov

strategy, with f(ψt, pt) being the action taken at time t. A two-state automaton (with

the “reward state” 1 and the “punishment state” 0) is determined by the initial state-

belief pair (1, p), a strategy κ ∈ L and a measurable function η : [0, 1] → [0,∞)

which governs the rate of transitions from the punishment to the reward state when

all players conform to the punishment action κ(0, pt); transitions in the other direction

occur instantaneously at the time of a unilateral deviation from the suggested common

action κ(1, pt). More precisely, given (κ, η) and any profile of strategies (kn)
N
n=1 in LN ,

the joint dynamics of the state and the belief are defined through a random number of

stages as in Murto and Välimäki (2013); the details of this construction are presented

in Appendix E.

Given an automaton (κ, η), each initial state-belief pair (ψ, p) and profile (kn)
N
n=1

of strategies is associated with well-defined payoffs

E

[∫ ∞

0

re−rt
{
[1− kn(ψt, pt)]s + kn(ψt, pt)λ(pt)h

}∣∣∣∣ (ψ0, p0) = (ψ, p)

]
(n = 1, . . . , N).

Let uκ,η(ψ, p|k) denote a player’s payoff from using strategy k ∈ L when all other

players use the strategy κ.

Definition 1 The automaton (κ, η) is an equilibrium if uκ,η(ψ, p|κ) ≥ uκ,η(ψ, p|k) for

all k ∈ L and all state-belief pairs (ψ, p). The pair of functions (uκ,η(1, ·|κ), uκ,η(0, ·|κ))
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are then called the equilibrium payoffs.

This definition encompasses symmetric MPE as the special case in which the function

κ does not depend on its first argument. Note that it does not require the strategy

profile to be a limit of equilibria of the discrete game.

We now turn to the equilibrium that achieves the extreme payoffs determined in

Proposition 3. While this equilibrium can be understood as the (pointwise) limit of the

SSE of the discrete game that we construct to prove Propositions 2–3, working directly

in continuous time again results in a significantly cleaner description.

Proposition 9 The two-state automaton defined by

κ(1, p) = 1p>p̂, κ(0, p) = 1p=1 and η(p) = 1p∗
1
<p<1

r [b(p, V ∗
1 )− c(p)]

VN,p̂(p)− V ∗
1 (p)

is an equilibrium of the continuous-time game with payoffs (VN,p̂, V
∗
1 ).

The proof of this result can be found in Appendix E. In fact, it is shown there that

all pairs (VN,p, V
∗
1 ) with p ∈ [p∗N , p

∗
1] (including the first best) are equilibrium payoffs

in the sense of Definition 1. Yet, by Propositions 2–3, only those with p ≥ p̂ can be

approximated by SSE payoffs of the discrete game.

6 Conclusion

This paper has characterized the strongly symmetric equilibrium payoffs in a standard

model of strategic experimentation. As a proof of concept, our analysis demonstrates

that this solution concept offers a good compromise between two objectives: preserving

the flexibility of dynamic programming, even in continuous time (replacing the HJB

equation by a pair of coupled optimality equations, with the appropriate boundary

condition being derived in discrete time), yet allowing for the rewards and punish-

ments that are the hallmark of dynamic games. Our point is not that this concept is

necessarily preferable to either Markov equilibrium or perfect Bayesian equilibrium, if

a model lends itself to systematic analysis. Each yields specific insights.

Relative to the literature on strategic experimentation, the paper delivers three

findings. First, it validates some of the comparative statics of Markov equilibria: pay-

offs and experimentation increase with the number of players (for λ0 > 0), despite the

free-riding incentives. Second, and more importantly, in terms of behavior: the highest
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and lowest joint surpluses are achieved by equilibria in which players adhere to a simple

common conduct; unlike in any Markov equilibrium, on-path play is of the cut-off type,

with players experimenting at maximum rate until some threshold is reached.19 Third,

in terms of efficiency: when information accrues at sufficiently moderate speed (in the

sense that lump-sums are not too informative), the best equilibrium achieves the first

best.

Obviously, some of these conclusions will not carry over to other applications. For

instance, it is known that strongly symmetric equilibria are restrictive when actions are

imperfectly monitored, at least if the monitoring structure permits statistical discrim-

ination among deviations by different players; see Fudenberg, Levine and Takahashi

(2007). Clearly, the linearity and symmetry of both payoffs and transition probabilities

in the players’ actions also play a role in our argument. Nonetheless, such features are

common in applications; the model of Bolton and Harris (1999), for example, in which

the players learn about the drift of a Brownian motion, shares them with our setup.

It would be interesting to get more general sufficient conditions for the restriction to

strongly symmetric equilibria to be innocuous, just as it would be to apply the solution

concept to specific applications where it is not.

19Recall that in the symmetric MPE in Keller et al. (2005) and Keller and Rady (2010), players

choose an interior level of experimentation at intermediate beliefs. More generally, Keller and Rady

(2010) show that there is no MPE in which all players use a cut-off strategy.
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Appendix

A Continuous-Time Payoff Functions

In this appendix, we provide explicit representations for the continuous-time payoff functions

V ∗
N , VN,p and V1∗ that first appear in Section 3.2, and we prove existence and uniqueness of

the belief p̂ introduced in Proposition 2.

Keller and Rady (2010) show that V ∗
N , the N -player cooperative value function in con-

tinuous time, satisfies V ∗
N (p) = s for p ≤ p∗N , and V ∗

N (p) > s for p > p∗N , where

p∗N =
µN (s− λ0h)

(µN + 1)(λ1h− s) + µN (s− λ0h)

and µN is implicitly defined as the unique positive root of

r

N
+ λ0 − µN (λ1 − λ0) = λ0

(
λ0

λ1

)µN

.

Both µN and p∗N increase in r/N . On (p∗N , 1], moreover,

V ∗
N (p) = λ(p)h+

c(p∗N )

u(p∗N ;µN )
u(p;µN )

with

u(p;µ) = (1− p)

(
1− p

p

)µ

,

which is strictly convex for µ > 0. V ∗
N is once continuously differentiable, so that Nb(p, V ∗

N )−

c(p) is continuous in p. This difference has a single zero at p∗N , being positive to the right of it

and negative to the left. The benefit of experimentation b(p, V ∗
N ) is nonnegative everywhere.

Setting N = 1, one obtains the single-agent value function V ∗
1 and corresponding cutoff

p∗1, both involving the implicitly defined parameter µ1 > µN .

From Keller and Rady (2010), we further obtain that VN,p, the players’ common payoff

function in continuous time when all N of them use the risky arm on (p, 1] and there is no

experimentation otherwise, is continuous and satisfies

VN,p(p) = λ(p)h+
c(p)

u(p;µN )
u(p;µN )

for p > p, and VN,p(p) = s otherwise. For p = p∗N , this is again the cooperative value function

V ∗
N . For p > p∗N , we have VN,p < V ∗

N on (p∗N , 1), and VN,p is continuously differentiable

except for a convex kink at p, which implies a single discontinuity in Nb(p;VN,p) − c(p) at

that belief. In fact, as VN,p(p) = s+Nb(p, VN,p)− c(p) on (p, 1] and VN,p(p) = s on [0, p], it

is straightforward to check that Nb(p;VN,p)− c(p) is positive on (p, 1], approaches zero as p

tends to p from the right, is positive at p itself, and then decreases monotonically as p falls

further, eventually assuming negative values.
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We can now establish the following result.

Lemma A.1 There is a belief p̂ ∈ [p∗N , p∗1] such that

λ(p)
[
NVN,p(j(p))− (N − 1)V ∗

1 (j(p))− s
]
− rc(p)

is negative if 0 < p < p̂, zero if p = p̂, and positive if p̂ < p < 1. Moreover, p̂ = p∗N if and

only if j(p∗N ) ≤ p∗1, and p̂ = p∗1 if and only if λ0 = 0.

Proof: We start by noting that given the functions V ∗
1 and V ∗

N , the cut-offs p∗1 and p∗N are

uniquely determined by

λ(p∗1)[V
∗
1 (j(p

∗
1))− s] = rc(p∗1) (A.1)

and

λ(p∗N )[NV ∗
N (j(p∗N ))−Ns] = rc(p∗N ), (A.2)

respectively.

Consider the differentiable function f on (0, 1) given by

f(p) = λ(p)[NVN,p(j(p))− (N − 1)V ∗
1 (j(p))− s]− rc(p).

For λ0 = 0, we have j(p) = 1 and VN,p(j(p)) = V ∗
1 (j(p)) = λ1h for all p, so f(p) =

λ(p)[V ∗
1 (j(p))− s]− rc(p), which is zero at p = p∗1 by (A.1), positive for p > p∗1, and negative

for p < p∗1.

Assume λ0 > 0. For 0 < p < p ≤ 1, we have VN,p(p) = λ(p)h + c(p)u(p;µN )/u(p;µN ).

Moreover, we have V ∗
1 (p) = s when p ≤ p∗1, and V ∗

1 (p) = λ(p)h + Cu(p;µ1) with a constant

C > 0 otherwise. Using the fact that

u(j(p);µ) =
λ0

λ(p)

(
λ0

λ1

)µ

u(p;µ),

we see that the term λ(p)NVN,p(j(p)) is actually linear in p. When j(p) ≤ p∗1, the term

−λ(p)(N − 1)V ∗
1 (j(p)) is also linear in p; when j(p) > p∗1, the nonlinear part of this term

simplifies to −(N−1)Cλµ1+1
0 u(p;µ1)/λ

µ1

1 . This shows that f is concave, and strictly concave

on the interval of all p for which j(p) > p∗1. As limp→1 f(p) > 0, this in turn implies that f

has at most one root in the open unit interval; if so, f assumes negative values to the left of

the root, and positive values to the right.

As VN,p∗
1
(j(p∗1)) > V ∗

1 (j(p
∗
1)), moreover, we have f(p∗1) > λ(p∗1)[V

∗
1 (j(p

∗
1))−s]−rc(p∗1) = 0

by (A.1). Any root of f must thus lie in [0, p∗1). If j(p∗N ) ≤ p∗1, then V ∗
1 (j(p

∗
N )) = s and

f(p∗N ) = λ(p∗N )[NV ∗
N (j(p∗N ))−Ns]−rc(p∗N ) = 0 by (A.2). If j(p∗N ) > p∗1, then V ∗

1 (j(p
∗
N )) > s

and f(p∗N) < 0, so f has a root in (p∗N , p∗1).
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B Proofs

Proof of Corollary 1: Keller and Rady (2010) establish that in the unique symmet-

ric Markov perfect equilibrium of the continuous-time game, all experimentation stops at

the belief p̃N implicitly defined by rc(p̃N ) = λ(p̃N )[ũ(j(p̃N )) − s], where ũ is the players’

common equilibrium payoff function. The results of Keller and Rady (2010) further imply

that VN,p̃N (j(p̃N )) > ũ(j(p̃N )) > V ∗
1 (j(p̃N )), so that NVN,p̃N (j(p̃N )) − (N − 1)V ∗

1 (j(p̃N )) >

ũ(j(p̃N )), and hence p̂ < p̃N by Lemma A.1.

Proof of Corollary 2: Simple algebra yields

j(p∗N )

p∗1
=

λ1

λ0

µN

µ1

(µ1 + 1)(λ1h− s) + µ1(s− λ0h)

(µN + 1)(λ1h− s) + (λ1/λ0)µN (s− λ0h)
.

From the implicit definitions of µ1 and µN , we obtain limr→0 µ1 = limr→0 µN = 0 (so that

the third fraction in the previous expression converges to 1) and

lim
r→0

∂µ1

∂r
=

[
λ1 − λ0 + λ0 ln

λ0

λ1

]−1

= N lim
r→0

∂µN

∂r

implying

lim
r→0

µN

µ1
=

1

N

by l’Hôpital’s rule.

Furthermore, we note that we can write equivalently

j(p∗N )

p∗1
=

λ1

λ0

(1 + 1
µ1
)(λ1h− s) + (s− λ0h)

(1 + 1
µN

)(λ1h− s) + (λ1/λ0)(s − λ0h)
.

As limr→∞ µ1 = limr→∞ µN = ∞, we can immediately conclude that

lim
r→∞

j(p∗N )

p∗1
=

λ1h

s
.

Proof of Corollary 3: For the case that p̂ = p∗N , this is shown in Keller and Rady

(2010). Thus, in what follows we shall assume that p̂ > p∗N .

Recall the defining equation for p̂ from Lemma A.1,

λ(p̂)NVN,p̂(j(p̂))− λ(p̂)s− rc(p̂) = (N − 1)λ(p̂)V ∗
1 (j(p̂)).

We make use of the closed-form expression for VN,p̂ to rewrite its left-hand side as

Nλ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s.
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Similarly, by noting that p̂ > p∗N implies j(p̂) > j(p∗N ) > p∗1, we can make use of the closed-

form expression for V ∗
1 to rewrite the right-hand side as

(N − 1)λ(p̂)λ(j(p̂))h+ (N − 1)c(p∗1)
u(p̂;µ1)

u(p∗1;µ1)
[r + λ0 − µ1(λ1 − λ0)].

Combining, we have

λ(p̂)λ(j(p̂))h+Nc(p̂)[λ0 − µN (λ1 − λ0)]− λ(p̂)s

(N − 1)[r + λ0 − µ1(λ1 − λ0)]c(p∗1)
=

u(p̂;µ1)

u(p∗1;µ1)
.

It is convenient to change variables to

β =
λ0

λ1
and y =

λ1

λ0

λ1h− s

s− λ0h

p̂

1− p̂
.

The implicit definitions of µ1 and µN imply

N =
β1+µ1 − β + µ1(1− β)

β1+µN − β + µN (1− β)
,

allowing us to rewrite the defining equation for p̂ as the equation F (y, µN ) = 0 with

F (y, µ) = 1− y + [β(1 + µ)y − µ]
1− β

β

β1+µ1 − β + µ1(1− β)

(µ1 − µ)(1− β) + β1+µ1 − β1+µ

−
µµ1

1

(1 + µ1)1+µ1
y−µ1 .

As y is a strictly increasing function of p̂, we know from Lemma A.1 that F (·, µN ) admits a

unique root, and that it is strictly increasing in a neighborhood of this root.

A straightforward computation shows that

∂F (y, µN )

∂µ
=

1− β

β

β1+µ1 − β + µ1(1− β)

((µ1 − µN )(1− β) + β1+µ1 − β1+µN )2
ζ(y, µN )

with

ζ(y, µ) = β(1−β)(1+µ1)y− (1−β)µ1+(1−βy)(β1+µ−β1+µ1)+β1+µ (β(1+µ)y−µ) ln(β).

As p∗N < p̂ < p∗1, we have
µN

1 + µN
< βy <

µ1

1 + µ1
,

which implies

ζ(y, µ1) = (β(1 + µ1)y − µ1) (1− β + β1+µ1 log(β)) < 0

and
∂ζ(y, µ)

∂µ
= β1+µ[β(1 + µ)y − µ] ln(β)2 > 0
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for all µ ∈ [µN , µ1]. This establishes ζ(y, µN ) < 0.

By the implicit function theorem, therefore, y is increasing in µN . Recalling from Keller

and Rady (2010) that µN is decreasing in N , we have thus shown that y (and hence p̂) are

decreasing in N .

Proof of Proposition 4: For any given ∆ > 0, let p̆∆ be the infimum of the set of beliefs

at which there is some (possibly asymmetric) perfect Bayesian equilibrium that gives a payoff

wn(p) > s to at least one player. Let p̆ = lim inf∆→0 p̆
∆. By construction, p̆ ≤ p̂.

For any fixed ǫ > 0 and ∆ > 0, consider the problem of maximizing the players’ average

payoff subject to no use of R at beliefs p ≤ p̆ − ǫ. The corresponding value function W̆∆,ǫ

is the unique fixed point (in the space of bounded functions on the unit interval) of the

contraction mapping given by

T̆∆,ǫw(p) =

{
1
N maxK∈{0,··· ,N}

{
(1− δ)[Kλ(p)h + (N −K)s] + δE∆

Kw(p)
}

if p > p̌− ǫ,

(1− δ)s + δw(p) if p ≤ p̌− ǫ.

Let p̆ǫ = max{p̆ − ǫ, p∗N}. Uniform convergence W̆∆,ǫ → VN,p̆ǫ follows from the same argu-

ments as in the proof of Lemma C.3.

Consider a sequence of ∆’s converging to 0 such that the corresponding beliefs p̆∆ converge

to p̆. For each ∆ in this sequence, select a belief p∆ > p̆∆ with the following two properties:

(i) starting from p∆, a single failed experiment takes us below p̆∆; (ii) given the initial belief

p∆, there exists a perfect Bayesian equilibrium for reaction lag ∆ in which at least one player

plays risky with positive probability in the first round. Select such an equilibrium for each

∆ in the sequence and let L∆ be the number of players in this equilibrium who, at the initial

belief p∆, play R with positive probability. Let L be an accumulation point of the sequence

of L∆’s. After selecting a subsequence of ∆’s, we can assume without loss of generality that

player n = 1, . . . , L plays R with probability α∆
n > 0 at p∆, while player n = L + 1, . . . , N

plays S; we can further assume that (α∆
n )

L
n=1 converges to a limit (αn)

L
n=1 in [0, 1]L.

For player n = 1, . . . , L to play optimally at p∆, it must be the case that

(1− δ)
[
α∆
n λ(p

∆)h+ (1− α∆
n )s
]
+ δ



Pr∆(∅)w∆

n,∅ +
L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ (1− δ)s + δ



Pr∆−n(∅)w

∆
n,∅ +

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 ,

where we write Pr∆(I) for the probability that the set of players experimenting is I ⊆

{1, . . . , L}, Pr∆−n(I) for the probability that among the L − 1 players in {1, · · · , L} \ {n}

the set of players experimenting is I, and w∆
n,I,J for the conditional expectation of player

n’s continuation payoff given that exactly the players in I were experimenting and had J

successes (w∆
n,∅ is player n’s continuation payoff if no one was experimenting). As Pr∆(∅) =

(1 − α∆
n )Pr

∆
−n(∅) ≤ Pr∆−n(∅), the inequality continues to hold when we replace w∆

n,∅ by its
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lower bound s. After subtracting (1− δ)s from both sides, we then have

(1− δ)α∆
n

[
λ(p∆)h− s

]
+ δ



Pr∆(∅)s +

L∑

K=1

∑

|I|=K

Pr∆(I)
∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J





≥ δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

Summing up these inequalities over n = 1, . . . , L and writing ᾱ∆ = 1
L

∑L
n=1 α

∆
n yields

(1− δ)Lᾱ∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=0

Λ∆
J,K(p∆)

L∑

n=1

w∆
n,I,J





≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

By construction, w∆
n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, moreover,

we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)) for all players n = 1, . . . , N , and hence

∑L
n=1 w

∆
n,I,J ≤

NW̆∆,ǫ(B∆
J,K(p∆)) − (N − L)W∆

1 (B∆
J,K(p∆)). So, for the preceding inequality to hold it is

necessary that

(1− δ)Lᾱ∆
[
λ(p∆)h− s

]
+ δ



Pr∆(∅)Ls +

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)Ls

+

L∑

K=1

∑

|I|=K

Pr∆(I)

∞∑

J=1

Λ∆
J,K(p∆)

[
NW̆∆,ǫ(B∆

J,K(p∆))− (N − L)W∆
1 (B∆

J,K(p∆))
]




≥ δ





L∑

n=1

Pr∆−n(∅)s +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)Λ
∆
0,K(p∆)s

+

L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

As

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I) = 1 and

L∑

K=1

∑

|I|=K

Pr∆(I)K = Lᾱ∆,
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we have the first-order expansions

Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
0,K(p∆)

= Pr∆(∅) +
L∑

K=1

∑

|I|=K

Pr∆(I)
(
1−Kλ(p∆)∆

)
+ o(∆)

= 1− Lᾱ∆λ(p∆)∆ + o(∆)

and

L∑

K=1

∑

|I|=K

Pr∆(I)Λ∆
1,K(p∆) =

L∑

K=1

∑

|I|=K

Pr∆(I)Kλ(p∆)∆ + o(∆) = Lᾱ∆λ(p∆)∆ + o(∆),

so the left-hand side of the last inequality expands as

Ls+ L

{
rᾱ [λ(p̆)h− s]− rs+ ᾱλ(p̆) [NVN,p̆ǫ(j(p̆))− (N−L)V ∗

1 (j(p̆))− Ls]

}
∆+ o(∆)

with ᾱ = lim∆→0 ᾱ
∆. In the same way, the identities

Pr∆−n(∅) +
L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I) = 1 and

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)K = Lᾱ∆ − α∆
n

imply

L∑

n=1

Pr∆−n(∅) +
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)Λ
∆
0,K(p∆) = L− L(L− 1)ᾱ∆λ(p∆)∆ + o(∆)

and
L∑

n=1

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)Λ
∆
1,K(p∆) = L(L− 1)ᾱ∆λ(p∆)∆ + o(∆),

and so the right-hand side of the inequality expands as

Ls+ L
{
− rs+ (L− 1)ᾱλ(p̆) [V ∗

1 (j(p̆))− s]
}
∆+ o(∆).

Comparing terms of order ∆, dividing by L and letting ǫ → 0, we obtain

ᾱ
{
λ(p̆)

[
NVN,p̆(j(p̆))− (N−1)V ∗

1 (j(p̆))− s
]
− rc(p̆)

}
≥ 0.

By Lemma A.1, this means p̆ ≥ p̂ whenever ᾱ > 0.
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For the case that ᾱ = 0, we write the optimality condition for player n ∈ {1, . . . , L} as

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I

Pr∆−n(I)
∞∑

J=0

Λ∆
J,K+1(p

∆)w∆
n,I∪̇{n},J





≥ (1− δ)s + δ



Pr∆−n(∅)w

∆
n,∅ +

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=0

Λ∆
J,K(p∆)w∆

n,I,J



 .

As above, w∆
n,∅ ≥ s, and w∆

n,I,0 = s whenever I 6= ∅. For |I| = K > 0 and J > 0, more-

over, we have w∆
n,I,J ≥ W∆

1 (B∆
J,K(p∆)), w∆

n,I∪̇{n},J
≥ W∆

1 (B∆
J,K+1(p

∆)) and w∆
n,I∪̇{n},J

≤

NW̆∆,ǫ(B∆
J,K+1(p

∆))− (N − 1)W∆
1 (B∆

J,K+1(p
∆)). So, for the optimality condition to hold, it

is necessary that

(1− δ)λ(p∆)h+ δ





L−1∑

K=0

∑

|I|=K,n 6∈I

Pr∆−n(I)Λ
∆
0,K+1(p

∆)s

+

L−1∑

K=0

∑

|I|=K,n 6∈I

Pr∆−n(I)

∞∑

J=1

Λ∆
J,K+1(p

∆)
[
NW̆∆,ǫ(B∆

J,K+1(p
∆))− (N−1)W∆

1 (B∆
J,K+1(p

∆))
]




≥ (1− δ)s + δ



Pr∆−n(∅)s +

L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)Λ
∆
0,K(p∆)s

+
L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)
∞∑

J=1

Λ∆
J,K(p∆)W∆

1 (B∆
J,K(p∆))



 .

Now,
L−1∑

K=1

∑

|I|=K,n 6∈I

Pr∆−n(I)K = Lᾱ∆ − α∆
n → 0

as ∆ vanishes. Therefore, the left-hand side of the above inequality expands as

s+

{
r [λ(p̆)h− s] + λ(p̆) [NVN,p̆ǫ(j(p̆))− (N−1)V ∗

1 (j(p̆))− s]

}
∆+ o(∆),

and the right-hand side as s + o(∆). Comparing terms of order ∆, letting ǫ → 0 and using

Lemma A.1 once more, we again obtain p̆ ≥ p̂.

Given that we have p̆ = p̂, therefore, the result follows directly from Proposition 8.

Proof of Proposition 6: We take p♭ as in Lemma C.8; Lemma C.9 ensures that p♭ > p̂.

We fix a p ∈ (p̂, p♭). By Lemma A.1,

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0
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on [p, 1]. As VN,p(j(p)) ≤ VN,p(j(p)) for p ≥ p, this implies

λ(p)[NVN,p(j(p)) − (N − 1)V ∗
1 (j(p)) − s]− rc(p) > 0

on [p, 1]. By Lemma C.6, there exists a belief p♯ > pm such that for all p̄ > p♯, inf{p :

V1,p̄(p) > s} ∈ (p, p∗1) and

λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p) > 0 (B.3)

on [p, 1]. We fix a p̄ ∈ (p♯, 1) and define p† = inf{p : V1,p̄(p) > s}.

By Lemmas C.7 and C.8, there is a ∆0 > 0 such that w∆ ≥ VN,p ≥ w∆ on the unit

interval for all ∆ < ∆0. For any such ∆ and any p ∈ [0, p], the common action κ = κ(p) =

κ(p) = 0 satisfies the incentive constraint (10) because w∆(p) = w∆(p) = s and (9) imply

(1− δ)s + δw∆(p) = s = w∆(p) ≥ (1− δ)λ(p)h + δE∆
1 w∆(p).

For all ∆ < ∆0 and p ∈ (p̄, 1], moreover, the common action κ = κ(p) = κ(p) = 1 satisfies

the incentive constraint (10) because λ(p)h > s and E∆
Nw∆(p) ≥ E∆

NVN,p(p) ≥ E∆
N−1VN,p(p) ≥

E∆
N−1w

∆(p), where the second of these inequalities follows from convexity of VN,p.

Now, let ν1 > 0 be such that

λ(p)[NVN,p(j(p)) − (N − 1)V1,p̄(j(p)) − s]− rc(p) > ν1 (B.4)

for all p ∈ [p, p̄]. Such a ν1 exists by (B.3) and the continuity of its left-hand side in p. Fix

p‡ ∈ (p, p†) such that

(Nλ(p‡) + r)
[
VN,p(p

‡)− s
]
< ν1/3. (B.5)

By Lemma C.5, there exists a ∆1 ∈ (0,∆0) such that for ∆ < ∆1, w
∆(p) = s on [0, p‡]. For

these ∆, the common action κ = κ(p) = 0 satisfies the incentive constraint (10) on (p, p‡] as

well since (1− δ)s + δw∆(p) ≥ s = w∆(p) ≥ (1− δ)λ(p)h + δE∆
1 w∆(p).

In the remainder of the proof, we simplify the notation by writing pKJ for B∆
J,K(p), the

posterior belief starting from p when K players use the risky arm and J lump-sums arrive

within the length of time ∆.

For p ∈ (p, p‡] and κ = κ(p) = 1, the left-hand side of the incentive constraint (10) is

bounded below by

(1− δ)λ(p)h + δE∆
N VN,p(p)

= r∆λ(p)h+ (1− r∆)
{
Nλ(p)∆VN,p(p

N
1 ) + (1−Nλ(p)∆)VN,p(p

N
0 )
}
+O(∆2)

= VN,p(p
N
0 ) +

{
rλ(p)h+Nλ(p)VN,p(p

N
1 )− (Nλ(p) + r)VN,p(p

N
0 )
}
∆+O(∆2),
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and the right-hand side expands as

r∆ s+ (1− r∆)
{
(N − 1)λ(p)∆w∆(pN−1

1 ) + [1− (N − 1)λ(p)∆]w∆(pN−1
0 )

}
+O(∆2)

= w∆(pN−1
0 ) +

{
rs+ (N − 1)λ(p)w∆(pN−1

1 )− [(N − 1)λ(p) + r]w∆(pN−1
0 )

}
∆+O(∆2).

For ∆ < ∆1, we have VN,p(p
N
0 ) ≥ s = w∆(pN−1

0 ), so the difference between the left-hand and

right-hand sides is no smaller than ∆ times

λ(p)
[
NVN,p(p

N
1 )− (N − 1)w∆(pN−1

1 )− s
]
− rc(p)− (Nλ(p) + r)

[
VN,p(p

N
0 )− s

]

plus terms of order ∆2 and higher.

Let ǫ = ν1
6(N−1)λ1

. By Lemma C.5 as well as Lipschitz continuity of VN,p and V1,p̄, there

exists ∆2 ∈ (0,∆1) such that for ∆ < ∆2, ‖w
∆ − V1,p̄‖, maxp≤p≤p‡ |VN,p(p

N
1 ) − VN,p(j(p))|

and maxp≤p≤p‡ |V1,p̄(p
N−1
1 )−V1,p̄(j(p))| are all smaller than ǫ. For ∆ < ∆2 and p ∈ (p, p‡], we

thus have VN,p(p
N
1 ) > VN,p(j(p))− ǫ and w∆(pN−1

1 ) < V1,p̄(j(p)) + 2ǫ, so that the expression

displayed above is larger than ν1 − 2(N − 1)λ(p)ǫ − ν1/3 > ν1/3 by (B.4), (B.5) and the

definition of ǫ. This implies that there is a ∆3 ∈ (0,∆2) such that for all ∆ < ∆3, the

incentive constraint (10) holds for κ on (p, p‡].

As VN,p > V1,p̄ on (p, 1), there exist ∆4 ∈ (0,∆3) and ν2 > 0 such that

VN,p(p
N−1
0 )− V1,p̄(p

N−1
0 ) > ν2 (B.6)

for all ∆ < ∆4 and p ∈ (p‡, p̄]. For any such ∆ and p, the difference between the left-hand and

right-hand sides of (10) for κ = κ(p) = 1 is no smaller than VN,p(p
N
0 ) − w∆(pN−1

0 ) + O(∆).

By Lemma C.5 and Lipschitz continuity of VN,p, there exists ∆5 ∈ (0,∆4) such that for

∆ < ∆5, ‖w
∆ − V1,p̄‖ and maxp‡≤p≤p̄ |VN,p(p

N
0 ) − VN,p(p

N−1
0 )| are both smaller than ν2/3.

For ∆ < ∆5 and p ∈ (p‡, p̄), we thus have VN,p(p
N
0 ) > VN,p(p

N−1
0 ) − ν2/3 and w∆(pN−1

0 ) <

V1,p̄(p
N−1
0 )+ ν2/3, so that by (B.6) the difference between the left-hand and right-hand sides

of (10) for κ = κ(p) = 1 is larger than ν2/3 +O(∆). Thus, there is a ∆6 ∈ (0,∆5) such that

for all ∆ < ∆6, (10) holds for κ on (p‡, p̄].

For p ∈ (p‡, p̄] and κ = κ(p) = 0, the difference between the left-hand and right-hand sides

of (10) is no smaller than VN,p(p) − w∆(p10) + O(∆), and the same steps as in the previous

paragraph yield existence of a ∆̄ ∈ (0,∆6) such that for all ∆ < ∆̄, the incentive constraint

(10) for κ is also satisfied on (p‡, p̄].

C Convergence and Comparison Results

To establish uniform convergence of certain discrete-time value functions to their continuous-

time limits, we will need the following result.20

20To the best of our knowledge, the earliest appearance of this result in the economics literature is

in Biais et al. (2007). A related approach is taken in Sadzik and Stacchetti (2015).
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Lemma C.1 Let {T∆}∆>0 be a family of contraction mappings on the Banach space (W; ‖·‖)

with moduli {β∆}∆>0 and associated fixed points {w∆}∆>0. Suppose that there is a constant

ρ > 0 such that 1 − β∆ = ρ∆ + o(∆) as ∆ → 0. Then, a sufficient condition for w∆ to

converge in (W; ‖ · ‖) to the limit v as ∆ → 0 is that ‖T∆v − v‖ = o(∆).

Proof: As

‖w∆ − v‖ = ‖T∆w∆ − v‖ ≤ ‖T∆w∆ − T∆v‖+ ‖T∆v − v‖ ≤ β∆‖w∆ − v‖+ ‖T∆v − v‖,

the stated conditions on β∆ and ‖T∆v − v‖ imply

‖w∆ − v‖ ≤
‖T∆v − v‖

1− β∆
=

∆f(∆)

ρ∆+∆g(∆)
=

f(∆)

ρ+ g(∆)

with lim∆→0 f(∆) = lim∆→0 g(∆) = 0.

In our applications of this lemma, we shall take W to be the Banach space of bounded

functions on the unit interval, equipped with the supremum norm. The operators T∆ will

be Bellman operators for certain optimal strategies in the experimentation game with period

length ∆; the corresponding moduli will be β∆ = δ = e−r∆.

The limit functions will belong to the set V of all continuous v ∈ W with the following

properties: there are finitely many beliefs {pℓ}
L
ℓ=0 with 0 = p0 < p1 < . . . < pL−1 < pL = 1

such that for all ℓ = 1, . . . , L, (i) the function v is once continuously differentiable with

bounded derivative v′ on the interval (pℓ−1, pℓ), (ii) limp↑pℓ v
′(p) equals the left-hand derivative

of v at pℓ, and (iii) limp↓pℓ−1
v′(p) equals the right-hand derivative of v at pℓ−1. In the

following, we shall always take v′(pℓ) to mean the left-hand derivative at pℓ for ℓ ≥ 1, and

the right-hand derivative for ℓ = 0.

With this convention, the term

b(p, v) =
λ(p)

r
[v(j(p)) − v(p)] −

λ1 − λ0

r
p(1− p) v′(p)

is well-defined on the entire unit interval for any v ∈ V. We can now provide a first-order

expansion for the discounted expectation δE∆
K that will appear in the Bellman operators of

interest.21

Lemma C.2 For K ∈ {0, 1, . . . , N} and v ∈ V ,

lim
∆→0

1

∆

∥∥δ E∆
Kv − v − r[Kb(·, v) − v]∆

∥∥ = 0.

Proof: This follows from a straightforward Taylor expansion.

Our first application of Lemmas C.1 and C.2 concerns the upper bound on equilibrium

payoffs introduced at the start of Section 4.1. Take p̃ as defined there. Given ∆ > 0, ǫ > 0

21Up to discounting, this is nothing but the computation of the infinitesimal generator of the process

of posterior beliefs, of course.
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and any bounded function w on [0, 1], define a bounded function T̃∆,ǫw by

T̃∆,ǫw(p) =

{
max

{
(1− δ)λ(p)h + δE∆

Nw(p), (1− δ)s + δw(p)
}

if p > p̃− ǫ,

(1− δ)s + δw(p) if p ≤ p̃− ǫ.

The operator T̃∆,ǫ satisfies Blackwell’s sufficient conditions for being a contraction mapping

with modulus δ on the Banach space W of bounded functions on [0, 1] equipped with the

supremum norm ‖·‖: monotonicity (v ≤ w implies T̃∆,ǫv ≤ T̃∆,ǫw) and discounting (T̃∆,ǫ(w+

c) = T̃∆,ǫw + δc for any real number c). By the contraction mapping theorem, T̃∆,ǫ has a

unique fixed point in W; this is the value function W̃∆,ǫ of the constrained planner’s problem

considered in Section 4.1.

From Keller and Rady (2010), we know that the corresponding continuous-time value

function is VN,pǫ with pǫ = max{p̃− ǫ, p∗N}. It belongs to V and satisfies VN,pǫ(p) = λ(p)h +

Nb(p, VN,pǫ) > s on (pǫ, 1]. For pǫ = p∗N , moreover, λ(p)h+Nb(p, VN,pǫ)− s is zero at pǫ and

negative on [0, pǫ).

Lemma C.3 W̃∆,ǫ → VN,pǫ uniformly as ∆ → 0.

Proof: To ease the notational burden, we write v instead of VN,pǫ . Lemma C.2 then implies

(1− δ)λ(p)h + δE∆
N v(p) = v(p) + r [λ(p)h+Nb(p, v)− v(p)]∆ + o(∆),

(1− δ)s + δv(p) = v(p) + r [s− v(p)]∆ + o(∆).

Suppose first that pǫ = p̃ − ǫ > p∗N . For p > p̃ − ǫ, we have v(p) = λ(p)h +Nb(p, v) > s,

and hence T̃∆,ǫv(p) = (1− δ)λ(p)h + δE∆
N v(p) = v(p) + o(∆) for small ∆.

Next, suppose that pǫ = p∗N ≥ p̃ − ǫ. For p > p∗N , the same argument as in the previous

paragraph yields T̃∆,ǫv(p) = (1− δ)λ(p)h+ δE∆
N v(p) = v(p)+ o(∆) for small ∆. For p ∈ (p̃−

ǫ, p∗N ], we have v(p) = s ≥ λ(p)h+Nb(p, v), which once more implies T̃∆,ǫv(p) = v(p)+ o(∆)

for small ∆.

As T̃∆,ǫv(p) = s = v(p) trivially on [0, p̃−ǫ], we have established that ‖T̃∆,ǫv−v‖ = o(∆).

As the modulus of the contraction T̃∆,ǫ is δ = e−r∆ = 1 − r∆+ o(∆), uniform convergence

W̃∆,ǫ → v now follows from Lemma C.1.

The second application of Lemmas C.1 and C.2 concerns the payoffs in the good state of

the equilibrium constructed in Section 4.2. Fix a cut-off p and consider the strategy profile

where all N players play risky for p > p, and all play safe otherwise. As in Section 4.2, we

write w∆ for the players’ common payoff function from this strategy profile when actions are

frozen for a length of time ∆. By the same arguments as invoked immediately after Lemma

C.2, w∆ is the unique fixed point in W of the operator T
∆

defined by

T
∆
w(p) =

{
(1− δ)λ(p)h + δE∆

Nw(p) if p > p ,

(1− δ)s + δw(p) if p ≤ p .
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The corresponding payoff function in continuous time is VN,p.

Lemma C.4 w∆ → VN,p uniformly as ∆ → 0.

Proof: We write v instead of VN,p. For p > p, we have v(p) = λ(p)h + Nb(p, v) and

the first displayed equation in the proof of Lemma C.3. implies T
∆
v(p) = (1 − δ)λ(p)h +

δE∆
N v(p) = v(p) + o(∆). For p ≥ p, we trivially have T

∆
v(p) = s = v(p) . As a consequence,

‖T
∆
v − v‖ = o(∆).

The third application of Lemmas C.1 and C.2 concerns the payoffs in the bad state of

the equilibrium constructed in Section 4.2. Fix a cut-off p̄ > pm, and let K(p) = N − 1 when

p > p̄, and K(p) = 0 otherwise. Given ∆ > 0, and any bounded function w on [0, 1], define

a bounded function T∆w by

T∆w(p) = max
{
(1− δ)λ(p)h + δE∆

K(p)+1w(p), (1− δ)s + δE∆
K(p)w(p)

}
.

The operator T∆ again satisfies Blackwell’s sufficient conditions for being a contraction map-

ping with modulus δ on W. Its unique fixed point in this space is the payoff function w∆

(introduced in Section 4.2) from playing a best response against N − 1 opponents who all

play risky when p > p̄, and safe otherwise. For p̄ = 1, the fixed point is the single-agent value

function W∆
1 .

In Section 4.2, we introduced the notation V1,p̄ for the continuous-time counterpart to this

payoff function. The methods employed in Keller and Rady (2010) can be used to establish

that V1,p̄ has the following properties. First, there is a cut-off p† < pm such that V1,p̄ = s

on [0, p†], and V1,p̄ > s everywhere else. Second, V1,p̄ ∈ V, being continuously differentiable

everywhere except at p̄. Third, V1,p̄ solves the Bellman equation

v(p) = max
{
λ(p)h+ [K(p) + 1]b(p, v), s+K(p)b(p, v)

}
.

Fourth, because of smooth pasting at p†, the term λ(p)h + b(p, V1,p̄) − s is continuous in p

except at p̄; it has a single zero at p†, being positive to the right of it and negative to the

left. Finally, we note that V1,p̄ = V ∗
1 and p† = p∗1 for p̄ = 1.

Let p†,∆ = inf{p : w∆(p) > s}.

Lemma C.5 w∆ → V1,p̄ uniformly as ∆ → 0, and lim inf∆→0 p
†,∆ = p†.

Proof: To ease the notational burden, we write v instead of V1,p̄.

For p > p̄, we have K(p) = N − 1, and Lemma C.2 implies

(1− δ)λ(p)h + δE∆
K(p)+1v(p) = v(p) + r [λ(p)h+Nb(p, v) − v(p)] ∆ + o(∆),

(1− δ)s + δE∆
K(p)v(p) = v(p) + r [s+ (N − 1)b(p, v) − v(p)]∆ + o(∆).

As v(p) = λ(p)h + Nb(p, v) > s + (N − 1)b(p, v), we thus have T∆v(p) = (1 − δ)λ(p)h +

δE∆
K(p)+1v(p) = v(p) + o(∆) for small ∆.
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On (p†, p̄], we have K(p) = 0 and

(1− δ)λ(p)h + δE∆
K(p)+1v(p) = v(p) + r [λ(p)h+ b(p, v) − v(p)] ∆ + o(∆),

(1− δ)s + δE∆
K(p)v(p) = v(p) + r [s− v(p)]∆ + o(∆).

As v(p) = λ(p)h + b(p, v) > s, we again have T∆v(p) = (1 − δ)λ(p)h + δE∆
K(p)+1v(p) =

v(p) + o(∆) for small ∆.

For p ≤ p†, finally, we have K(p) = 0 and v(p) = s, hence

(1− δ)λ(p)h + δE∆
K(p)+1v(p) = s+ r [λ(p)h+ b(p, v)− v(p)]∆ + o(∆),

(1− δ)s + δE∆
K(p)v(p) = s.

As v(p) = s ≥ λ(p)h+ b(p, v), this once more implies T∆v(p) = v(p) + o(∆) for small ∆.

We have thus shown that ‖T∆v − v‖ = o(∆). Uniform convergence w∆ → v now follows

from Lemma C.1.

Turning to the second part of the lemma, we define p†,0 = lim inf∆→0 p
†,∆. For a sequence

of ∆’s converging to 0 such that the corresponding beliefs p†,∆ converge to p†,0, choose

p∆ > p†,∆ such that w∆(p∆) > s and B∆
0,1(p

∆) < p†,∆. Along the sequence, we then have

w∆(p∆) = (1− δ)λ(p∆)h+ δE∆
1 w∆(p∆)

= r∆λ(p∆)h+ (1− r∆)

{
(1− λ(p∆)∆)s+ λ(p∆)∆w∆

(
B∆

1,1(p
∆)
)}

+ o(∆)

= s+
{
r[λ(p†,0)h− s] + λ(p†,0)[v(j(p†,0))− s]

}
∆+ o(∆),

implying λ(p†,0)[v(j(p†,0)) − s] ≥ rc(p†,0). As v′(p) = 0 and λ(p)[v(j(p)) − s] = rb(p, v) <

rc(p) for p < p†, this implies p†,0 ≥ p†. And since the inequality p†,0 > p† would imply

v(p) > s = lim∆→0w
∆(p) immediately to the right of p†, we must have p†,0 = p†.

Our third uniform convergence result also concerns the continuous-time limits of equilib-

rium payoffs in the bad state. As it is straightforward to establish with the methods used in

Keller and Rady (2010), we state it without proof.

Lemma C.6 V1,p̄ → V ∗
1 uniformly as p̄ → 1. The convergence is monotone in the sense that

p̄′ > p̄ implies V1,p̄′ < V1,p̄ on {p : s < V1,p̄(p) < λ1h}.

The remaining auxiliary results needed for the proof of Proposition 6 are comparison

results for w∆ and w∆ with VN,p as ∆ becomes small.

Recall that for p > p, VN,p(p) = λ(p)h+Cu(p;µN ) with u(p;µN ) = (1−p)
(
1−p
p

)µN

where

the constant C > 0 is chosen to ensure continuity at p. It follows from Keller and Rady (2010)

that VN,p is strictly increasing on [p, 1]. The function u(·;µN ) is strictly decreasing and strictly

convex, and a straightforward computation reveals that δE∆
Ku(·;µN )(p) = δ1−

K
N u(p;µN ) for
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all ∆ > 0, K ∈ {1, . . . , N} and p ∈ (0, 1].22 We further note that E∆
Kλ(p) = λ(p) for all K by

the martingale property of beliefs.

We start with equilibrium payoffs in the good state.

Lemma C.7 Let p > p∗N . Then w∆ ≥ VN,p for ∆ sufficiently small.

Proof: Because of the monotonicity of the operator T
∆
, it suffices to show that T

∆
VN,p ≥

VN,p for sufficiently small ∆. To ease the notational burden, we write v instead of VN,p and

u instead of u(·;µN ).

We define a belief p̌∆ by requiring that B∆
0,N (p̌∆) = p. On (p̆∆, 1], we then have

T
∆
v(p) = (1− δ)λ(p)h + δE∆

N [λh+ Cu](p)

= (1− δ)λ(p)h + δλ(p)h + Cu(p)

= v(p),

where the third equality follows from E∆
Nλ(p) = λ(p) and δE∆

N u(p) = u(p).

On (p, p̆∆], we find

T
∆
v(p) = (1− δ)λ(p)h + δ

{
Λ∆
0,N (p)s+

∞∑

J=1

Λ∆
J,N (p)v(B∆

J,N (p))

}

= (1− δ)λ(p)h + δΛ∆
0,N (p)

[
s− λ(B∆

0,N (p))h − Cu(B∆
0,N (p))

]
+ δE∆

N [λh+ δCu](p)

= v(p) + δΛ∆
0,N (p)

[
s− λ(B∆

0,N (p))h −Cu(B∆
0,N (p))

]
.

As λ(p′)h + Cu(p′) < s for p∗N ≤ p′ < p, we thus have T
∆
v(p) > v(p) on (p, p̆∆] for ∆ small

enough that B∆
0,N (p) ≥ p∗N .

On [0, p], we trivially have T
∆
v(p) = s = v(p).

Turning to equilibrium payoffs in the bad state, we define

p♭ =
µ♭(s− λ0h)

(µ♭ + 1)(λ1h− s) + µ♭(s− λ0h)
,

where

µ♭ = µN +
(N − 1)r

N(λ1 − λ0)
.

Lemma C.8 For p < p♭ and ∆ sufficiently small, w∆ ≤ VN,p.

Proof: We again write v = λh+Cu for VN,p. It suffices to show that T∆v ≤ v for sufficiently

small ∆.

22This identity reflects the fact that with K players experimenting, and pt denoting the resulting

process of posterior beliefs in continuous time, e−rKt/Nu(pt;µN ) is a martingale. The latter property

follows easily from the results in Keller and Rady (2010).
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We define a belief p̌∆ by requiring that B∆
0,1(p̌

∆) = p. We consider ∆ small enough that

p̌∆ < p̄ and B∆
0,N (p̄) > p. On (p̄, 1], we then have

T∆v(p) = max
{
(1− δ)λ(p)h + δE∆

N v(p), (1− δ)s + δE∆
N−1v(p)

}

= (1− δ)λ(p)h + δE∆
N v(p)

= v(p),

where the second equality holds because δE∆
N v(p) ≥ δE∆

N−1v(p) (by convexity of v) and

λ(p)h > s (as p̄ > pm by assumption), and the third equality follows from E∆
Nλ(p) = λ(p)

and δE∆
N u(p) = u(p).

On (p̌∆, p̄], we have

T∆v(p) = max
{
(1− δ)λ(p)h + δE∆

1 v(p), (1− δ)s + δv(p)
}

= max
{
λ(p)h+ CδE∆

1 u(p), (1− δ)s + δv(p)
}

< v(p),

with the inequality holding because δE∆
1 u(p) = δ

N−1

N u(p) < u(p) and s < v(p).

On (p, p̌∆], we still have (1− δ)s + δv(p) < v(p), while

(1− δ)λ(p)h + δE∆
1 v(p)

= (1− δ)λ(p)h + δΛ∆
0,1(p) s + δ

∞∑

J=1

Λ∆
J,1(p) v(B

∆
J,1(p))

= (1− δ)λ(p)h + δΛ∆
0,1(p)

[
s− λ(B∆

0,1(p))h −Cu(B∆
0,1(p))

]
+ δE∆

1 [λh+ Cu](p)

= λ(p)h+ δΛ∆
0,1(p)

[
s− λ(B∆

0,1(p))h− Cu(B∆
0,1(p))

]
+ Cδ1−

1

N u(p)

= v(p) + δF (p,∆)

with

F (p,∆) = C(δ−
1

N − δ−1)u(p) + Λ∆
0,1(p)

[
s− λ(B∆

0,1(p))h − Cu(B∆
0,1(p))

]
.

As δ−
1

N = er∆/N < er∆ = δ−1, we have F (p̌∆,∆) < 0. Moreover, as Λ∆
0,1(p) = pγ1+(1−p)γ0

and B∆
0,1(p) = pγ1/Λ

∆
0,1(p), we have

Λ∆
0,1(p)λ(B

∆
0,1(p)) = pλ1γ1 + (1 − p)λ0γ0

and

Λ∆
0,1(p)u(B

∆
0,1(p)) = γ0

(
γ0
γ1

)µN

u(p),

hence

F (p,∆) = C

[
δ−

1

N − δ−1 − γ0

(
γ0
γ1

)µN
]
u(p) + [pγ1 + (1− p)γ0]s− [pλ1γ1 + (1− p)λ0γ0]h,
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which is continuously differentiable at any (p,∆) ∈ (0, 1) × IR. For ∆ ≥ 0, the nonlinear

part of F is a negative multiple of u, so F is strictly concave in p. As Fp(p, 0) = −Cu′(p)−

λ′(p)h = −v′(p+) < 0, we see that for sufficiently small ∆ > 0, Fp(p,∆) < 0 and hence

F (p,∆) < F (p,∆) for p > p. As F (p, 0) = −Cu(p) + s− λ(p)h = s− v(p) = 0, we thus have

T∆v < v on (p, p̌∆] for sufficiently small ∆ if we can show that F∆(p, 0) < 0. Computing

F∆(p, 0) =
[
r
N − r + λ0 − µN (λ1 − λ0)

]
(s− λ(p)h) + (pλ2

1 + (1− p)λ2
0)h− λ(p)s,

it is straightforward to check that F∆(p, 0) < 0 if and only if p < p♭.

On [0, p], finally, the monotonicity of v on [p, 1] implies that E∆
1 v(p) is increasing in p.

We thus have

(1− δ)λ(p)h + δE∆
1 v(p) ≤ (1− δ)λ(p)h+ δE∆

1 v(p) = v(p) + δF (p,∆) < v(p) = s

and hence T∆v(p) = s = v(p).

Lemma C.9 If λ0 > 0, then p̂ < p♭ < p∗1.

Proof: As µN < µ♭ and

r + λ0 − µ♭(λ1 − λ0) =
r

N
+ λ0 − µN (λ1 − λ0) = λ0

(
λ0

λ1

)µN

> λ0

(
λ0

λ1

)µ♭

,

we have µ♭ < µ1. This implies p∗N < p♭ < p∗1, which is already the desired result in the case

that j(p∗N ) ≤ p∗1 and p̂ = p∗N .

Suppose therefore that j(p∗N ) > p∗1 and p̂ > p∗N . From Lemma A.1, we know that p♭ > p̂

if and only if

λ(p♭)[NVN,p♭(j(p
♭))− (N − 1)V ∗

1 (j(p
♭))− s]− rc(p♭) > 0.

Arguing as in the proof of that lemma, we can rewrite the left-hand side of this inequality as

[p♭λ2
1+(1−p♭)λ2

0]h+Nλ0

(
λ0

λ1

)µN

c(p♭)−(N−1)λ0

(
λ0

λ1

)µ1 c(p∗1)

u(p∗1;µ1)
u(p♭;µ1)−λ(p♭)s−rc(p♭).

From the proof of Lemma C.8, moreover, we know that F∆(p
♭, 0) = 0, which is equivalent to

[p♭λ2
1 + (1− p♭)λ2

0]h+ λ0

(
λ0

λ1

)µN

c(p♭)− λ(p♭)s − rc(p♭) = 0.

Thus, p♭ > p̂ if and only if

[r + λ0 − µ♭(λ1 − λ0)] c(p
♭)

u(p♭;µ1)
>

[r + λ0 − µ1(λ1 − λ0)] c(p
∗
1)

u(p∗1;µ1)
.
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Now, for µ > 0 and

p(µ) =
µ(s− λ0h)

(µ + 1)(λ1h− s) + µ(s− λ0h)
,

a straightforward computation reveals that

c(p(µ))

u(p(µ);µ1)
=

(s − λ0h)
(
s−λ0h
λ1h−s

)µ1

(µ+ 1)
(
µ+1
µ

)µ1
.

Applying this to p♭ = p(µ♭) and p∗1 = p(µ1), we see that p♭ > p̂ if and only if the function

g(µ) =
r + λ0 − µ(λ1 − λ0)

(µ+ 1)
(
µ+1
µ

)µ1

satisfies g(µ♭) > g(µ1).

It is straightforward to show that g′(µ) has the same sign as µ∗ − µ where

µ∗ =
µ1(r + λ0)

r + λ1 + µ1(λ1 − λ0)
< µ1.

It is thus enough to show that µ♭ > µ∗. Our assumption that j(p∗N ) > p∗1 translates into

µN >
µ1λ0

λ1 + µ1(λ1 − λ0)
.

As N−1
N ≥ 1

2 , this implies that µ♭ is greater than

µ̄ =
µ1λ0

λ1 + µ1(λ1 − λ0)
+

r

2(λ1 − λ0)
.

The proof is complete, therefore, if we can show that µ̄ > µ∗.

Simple algebra shows that this inequality is equivalent to the concave quadratic

q(µ) = λ1(r + λ1) + (λ1 − λ0)(r + 2λ0)µ − (λ1 − λ0)
2µ2

being positive at µ1. We know from Keller and Rady (2010) that r
λ1−λ0

< µ1 < r+λ0

λ1−λ0
. As

q( r
λ1−λ0

) = λ1(r + λ1) + 2λ0r and q( r+λ0

λ1−λ0
) = λ1(r + λ1) + λ0(r + λ0) are both positive, we

can indeed conclude that q(µ1) > 0.

D Analysis of the Fully Revealing Case (λ0 = 0)

Modifying notation slightly, we write Λ for the probability that, conditional on θ = 1, a player

has at least one success on his own risky arm in any given round, and g for the corresponding
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expected payoff per unit of time.23

Consider an SSE played at a given prior p, with associated payoff W . If K ≥ 1 players

unsuccessfully choose the risky arm, the belief jumps down to a posterior denoted pK . Note

that an SSE allows the continuation play to depend on the identity of these players. Taking

the expectation over all possible combinations of K players who experiment, however, we

can associate with each posterior pK , K ≥ 1, an expected continuation payoff WK . If

K = 0, so that no player experiments, the belief does not evolve, but there is no reason

that the continuation strategies (and so the payoff) should remain the same. We denote

the corresponding payoff by W0. In addition, we write α ∈ [0, 1] for the probability with

which each player experiments at p, and QK for the probability that at least one player has a

success, given p, when K of them experiment. The players’ common payoff must then satisfy

the following optimality equation:

W = max

{
(1− δ)p0g + δ

N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−K [QK+1g + (1−QK+1)WK+1)] ,

(1− δ)s + δ
N−1∑

K=1

(
N − 1

K

)
αK(1− α)N−1−K(QKg + (1−QK)WK) + δ(1 − α)N−1W0)

}
.

The first term corresponds to the payoff from playing risky, the second from playing safe.

As it turns out, it is more convenient to work with odds ratios

l =
p

1− p
and lK =

pK
1− pK

which we refer to as “belief” as well. Note that

pK =
p (1− Λ)K

p (1− Λ)K + 1− p

implies that lK = (1− Λ)K l. Note also that

1−QK = p (1− Λ)K + 1− p = (1− p)(1 + lK), QK = p− (1− p)lK = (1− p)(l − lK).

We define

m =
s

g − s
, ω =

W − s

(1− p)(g − s)
, ωK =

WK − s

(1− pK)(g − s)
.

Note that ω ≥ 0 in any equilibrium, as s is a lower bound on the value. Simple computations

23I.e., Λ = 1− e−λ1∆ = 1− γ1 and g = λ1h.

45



now give

ω = max

{
l − (1− δ)m+ δ

N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−K(ωK+1 − lK+1) ,

δl + δ

N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−K(ωK − lK)

}
.

It is also useful to introduce w = ω − l and wK = ωK − lK . We then get

w = max

{
−(1− δ)m+ δ

N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−KwK+1 ,

−(1− δ)l + δ
N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−KwK

}
. (D.7)

We define

l∗ =
m

1 + δ
1−δΛ

.

This is the odds ratio corresponding to the single-agent cut-off p∆1 , i.e., l
∗ = p∆1 /(1 − p∆1 ).

Note that p∆1 > p∗1 for ∆ > 0.

We are now ready to prove Lemma 1, which establishes that no perfect Bayesian equilib-

rium involves experimentation below p∆1 or, in terms of odds ratios, l∗.

Proof of Lemma 1: Let l be the infimum over all beliefs for which a positive probability

of experimentation by some player can be implemented in a perfect Bayesian equilibrium.

Note that l > 0: This is because the social planner’s solution is a cut-off policy, with cut-off

bounded away from 0. Below this cut-off, s is both the minmax payoff of a player (which

he can secure by always playing safe) and the highest average payoff that is feasible (given

that this is the social optimum). Hence this must be the unique perfect Bayesian equilibrium

payoff, and the unique policy that achieves it (from the social planner’s problem) specifies

that all players play safe.

Consider some prior belief l ∈ [l, l/(1 − Λ)), so that a single failed experiment takes the

posterior belief below l, and fix an equilibrium in which at least one player experiments with

positive probability in the first period. Let this be player n. As the normalized equilibrium

payoff w at the belief l is bounded below by −l, and since by construction the payoff equals

−lK at any belief lK for K ≥ 1, player n’s payoff from playing safe is at least

−(1− δ)l − δ
∑

I⊂N\{n}

∏

i∈I

αi

∏

i∈N\(I∪{n})

(1− αi) l|I|,
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while the payoff from playing risky is

−(1− δ)m− δ
∑

I⊂N\{n}

∏

i∈I

αi

∏

i∈N\(I∪{n})

(1− αi) l|I|+1.

Thus, we must have

(1− δ)(m − l) ≤ δ
∑

I⊂N\{n}

∏

i∈I

αi

∏

i∈N\(I∪{n})

(1− αi) (l|I| − l|I|+1)

= δΛl
∑

I⊂N\{n}

(1− Λ)|I|
∏

i∈I

αi

∏

i∈N\(I∪{n})

(1− αi)

≤ δΛl.

(The sum in the second line achieves its maximum of 1 when αi = 0 for all i 6= n.) This

implies

l ≥
m

1 + δ
1−δΛ

= l∗

and hence l ≥ l∗, establishing the lemma.

For all beliefs l < l∗, therefore, any equilibrium has w = −l, or ω = 0, for each player.

We now turn to the proof of Proposition 7.

Proof of Proposition 7: Following terminology from repeated games, we say that we

can enforce action α ∈ {0, 1} at belief l if we can construct an SSE for the prior belief l in

which players prefer to choose α in the first round rather than deviate unilaterally.

Our first step is to derive sufficient conditions for enforcement of α ∈ {0, 1}. The condi-

tions to enforce these actions are intertwined, and must be derived simultaneously.

To enforce α = 0 at l, it suffices that one round of using the safe arm followed by

the best equilibrium payoff at l exceeds the payoff from one round of using the risky arm

followed by the resulting continuation payoff at belief l1 (as only the deviating player will

have experimented). See below for the precise condition.

What does it take to enforce α = 1 at l? If a player deviates to α = 0, we jump to wN−1

rather than wN in case all experiments fail. Assume that at lN−1 we can enforce α = 0.

As explained above, this implies that at lN−1, a player’s continuation payoff can be pushed

down to what he would get by unilaterally deviating to experimentation, which is at most

−(1−δ)m+δwN where wN is the highest possible continuation payoff at belief lN . To enforce

α = 1 at l, it then suffices that

w = −(1− δ)m + δwN ≥ −(1− δ)l + δ(−(1 − δ)m+ δwN ),

with the same continuation payoff wN on the left-hand side of the inequality. The inequality

simplifies to

δwN ≥ (1− δ)m− l;
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by the formula for w, this is equivalent to w ≥ −l, i.e., ω ≥ 0. Given that

ω = l − (1− δ)m+ δ(ωN − lN ) = (1− δ(1 − Λ)N )l − (1− δ)m+ δωN ,

to show that ω ≥ 0, it thus suffices that

l ≥
m

1 + δ
1−δ (1− (1− Λ)N )

= l̃,

and that ωN ≥ 0, which is necessarily the case if ωN is an equilibrium payoff. Note that

(1 − Λ)N l̃ ≤ l∗, so that lN ≥ l∗ implies l ≥ l̃. In summary, to enforce α = 1 at l, it suffices

that lN ≥ l∗ and α = 0 be enforceable at lN−1.

How about enforcing α = 0 at l? Suppose we can enforce it at l1, l2, . . . , lN−1, and that

lN ≥ l∗. Note that α = 1 is then enforceable at l from our previous argument, given our

hypothesis that α = 0 is enforceable at lN−1. It then suffices that

−(1− δ)l + δ(−(1 − δ)m+ δwN ) ≥ −(1− δN )m+ δNwN ,

where again it suffices that this holds for the highest value of wN . To understand this

expression, consider a player who deviates by experimenting. Then the following period the

belief is down one step, and if α = 0 is enforceable at l1, it means that his continuation

payoff there can be chosen to be no larger than what he can secure at that point by deviating

and experimenting again, etc. The right-hand side is then obtained as the payoff from N

consecutive unilateral deviations to experimentation (in fact, we have picked an upper bound,

as the continuation payoff after this string of deviations need not be the maximum wN ). The

left-hand side is the payoff from playing safe one period before setting α = 1 and getting the

maximum payoff wN , a continuation strategy that is sequentially rational given that α = 1

is enforceable at l by our hypothesis that α = 0 is enforceable at lN−1.

Plugging in the definition of ωN , this inequality simplifies to

(δ2 − δN )ωN ≥ (δ2 − δN )(lN −m) + (1− δ)(l −m),

which is always satisfied for beliefs l ≤ m, i.e. below the myopic cut-off lm (which coincides

with the normalized payoff m).

To summarize, if α = 0 can be enforced at the N −1 consecutive beliefs l1, . . . , lN−1, with

lN ≥ l∗ and l ≤ lm, then both α = 0 and α = 1 can be enforced at l. By induction, this

implies that if we can find an interval of beliefs [lN , l) with lN ≥ l∗ for which α = 0 can be

enforced, then α = 0, 1 can be enforced at all beliefs l′ ∈ (l, lm).

Our second step is to establish that such an interval of beliefs exists. This second step

involves itself three steps. First, we derive some “simple” equilibrium, which is a symmetric

Markov equilibrium. Second, we will show that we can enforce α = 1 on sufficiently (finitely)

many consecutive values of beliefs building on this equilibrium; third, we show that this can

be used to enforce α = 0 as well.
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It will be useful to distinguish beliefs according to whether they belong to the interval

[l∗, (1+λ1∆)l∗), [(1+λ1∆)l∗, (1+2λ1∆)l∗), . . . For τ ∈ IN , let Iτ+1 = [(1+τλ1∆)l∗, (1+(τ +

1)λ1∆)l∗). For fixed ∆, every l ≥ l∗ can be uniquely mapped into a pair (x, τ) ∈ [0, 1) × IN

such that l = (1 + λ1(x + τ)∆)l∗, and we alternatively denote beliefs by such a pair. Note

also that, for small enough ∆ > 0, one unsuccessful experiment takes a belief that belongs to

the interval Iτ+1 to (within O(∆2) of) the interval Iτ . (Recall that Λ = λ1∆+O(∆2).)

Let us start with deriving a symmetric Markov equilibrium. Hence, because it is Marko-

vian, ω0 = ω in our notation, that is, the continuation payoff when nobody experiments is

equal to the payoff itself.

Rewriting the equations, using the risky arm gives the payoff24

ω = l − (1− δ)m− δ(1 − Λ)(1 − αΛ)N−1l + δ

N−1∑

K=0

(
N − 1

K

)
αK(1− α)N−1−KωK+1,

while using the safe arm yields

ω = δ(1 − (1− αΛ)N−1)l + δ(1 − α)N−1ω + δ

N−1∑

K=1

(
N − 1

K

)
αK(1− α)N−1−KωK .

In the Markov equilibrium we derive, players are indifferent between both actions, and so

their payoffs are the same. Given any belief l or corresponding pair (τ, x), we conjecture an

equilibrium in which α = a(τ, x)∆2 +O(∆3), ω = b(τ, x)∆2 +O(∆3), for some functions a, b

of the pair (τ, x) only. Using the fact that Λ = λ1∆+O(∆2), 1− δ = r∆+O(∆2), we replace

this in the two payoff expressions, and take Taylor expressions to get, respectively,

0 =

(
rb(τ, x) +

λ1m

λ1 + r
(N − 1)a(τ, x)

)
∆3 +O(∆4).

and

0 = [b(τ, x)− rmλ1(τ + x)]∆2 +O(∆3).

We then solve for a(τ, x), b(τ, x), to get

α− =
r(λ1 + r)(x+ τ)

N − 1
∆2 +O(∆3),

with corresponding value

ω− = λ1mr(x+ τ)∆2 +O(∆3).

This being an induction on K, it must be verified that the expansion indeed holds at the

lowest interval, I1, and this verification is immediate.25

24To pull out the terms involving the belief l from the sum appearing in the definition of ω, use the

fact that
∑N−1

K=0

(
N−1

K

)
αK(1− α)N−1−K(1− Λ)K = (1− αΛ)N/(1− αΛ).

25Note that this solution is actually continuous at the interval endpoints. It is not the only solution

to these equations; as mentioned in the text, there are intervals of beliefs for which multiple symmetric
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We now turn to the second step and argue that we can find N − 1 consecutive beliefs

at which α = 1 can be enforced. We will verify that incentives can be provided to do so,

assuming that ω− are the continuation values used by the players whether a player deviates

or not from α = 1. Assume that N − 1 players choose α = 1. Consider the remaining one.

His incentive constraint to choose α = 1 is

−(1− δ)m + δωN − δ(1 − Λ)N l ≥ −(1− δ)l − δ(1 − Λ)N−1l + δωN−1, (D.8)

where ωN , ωN−1 are given by ω− at lN , lN−1. The interpretation of both sides is as before,

the payoff from abiding with the candidate equilibrium action vs. the payoff from deviating.

Fixing l and the corresponding pair (τ, x), and assuming that τ ≥ N − 1,26 we insert our

formula for ω−, as well as Λ = λ1∆+O(∆), 1 − δ = r∆+O(∆). This gives

τ ≥ (N − 1)

(
2 +

λ1

λ1 + r

)
− x.

Hence, given any integer N ′ ∈ IN , N ′ > 3(N − 1), there exists ∆̄ > 0 such that for every

∆ ∈ (0, ∆̄), α = 1 is an equilibrium action at all beliefs l = l∗(1+τ∆), for τ = 3(N−1), . . . , N ′

(we pick the factor 3 because λ1/(λ1 + r) < 1).

Fix N − 1 consecutive beliefs such that they all belong to intervals Iτ with τ ≥ 3(N − 1)

(say, τ ≤ 4N ), and fix ∆ for which the previous result holds, i.e. α = 1 can be enforced at

all these beliefs. We now turn to the third step, showing how α = 0 can be enforced as well

for these beliefs.

Suppose that players choose α = 0. As a continuation payoff, we can use the payoff from

playing α = 1 in the following round, as we have seen that this action can be enforced at

such a belief. This gives

δl + δ(−(1 − δ)m− δ(1 − Λ)N l + δω−(lN )).

(Note that the discounted continuation payoff is the left-hand side of (D.8).) By deviating

from α = 0, a player gets at most

l + (−(1− δ)m− δ(1 − Λ)l + δω−(l1)) .

Again inserting our formula for ω−, this reduces to

mr(N − 1)λ1

λ1 + r
∆ ≥ 0.

Hence we can also enforce α = 0 at all these beliefs. We can thus apply our induction

Markov equilibria exist in discrete time. It is easy to construct such equilibria in which α = 1 and the

initial belief is in (a subinterval of) I1.
26Considering τ < N − 1 would lead to ωN = 0, so that the explicit formula for ω− would not apply

at lN . Computations are then easier, and the result would hold as well.
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argument: there exists ∆̄ > 0 such that, for all ∆ ∈ (0, ∆̄), both α = 0, 1 can be enforced at

all beliefs l ∈ (l∗(1 + 4N∆), lm).

Note that we have not established that, for such a belief l, α = 1 is enforced with a

continuation in which α = 1 is being played in the next round (at belief lN > l∗(1 + 4N∆)).

However, if α = 1 can be enforced at belief l, it can be enforced when the continuation payoff

at lN is highest possible; in turn, this means that, as α = 1 can be enforced at lN , this

continuation payoff is at least as large as the payoff from playing α = 1 at lN as well. By

induction, this implies that the highest equilibrium payoff at l is at least as large as the one

obtained by playing α = 1 at all intermediate beliefs in (l∗(1+4N∆), l) (followed by, say, the

worst equilibrium payoff once beliefs below this range are reached).

Similarly, we have not argued that, at belief l, α = 0 is enforced by a continuation

equilibrium in which, if a player deviates and experiments unilaterally, his continuation payoff

at l1 is what he gets if he keeps on experimenting alone. However, because α = 0 can be

enforced at l1, the lowest equilibrium payoff that can be used after a unilateral deviation at

l must be at least as low as what the player can get at l1 from deviating unilaterally to risky

again. By induction, this implies that the lowest equilibrium payoff at belief l is at least as low

as the one obtained if a player experiments alone for all beliefs in the range (l∗(1 + 4N∆), l)

(followed by, say, the highest equilibrium payoff once beliefs below this interval are reached).

Note that, as ∆ → 0, these bounds converge (uniformly in ∆) to the cooperative solution

(restricted to no experimentation at and below l = l∗) and the single-agent payoff, respec-

tively, which was to be shown. (This is immediate given that these values correspond to

precisely the cooperative payoff (with N or 1 player) for a cut-off that is within a distance

of order ∆ of the cut-off l∗, with a continuation payoff at that cut-off which is itself within

∆ times a constant of the safe payoff.)

This also immediately implies (as for the case λ0 > 0) that for fixed l > lm, both α = 0, 1

can be enforced at all beliefs in [lm, l] for all ∆ < ∆̄, for some ∆̄ > 0: the gain from a deviation

is of order ∆, yet the difference in continuation payoffs (selecting as a continuation payoff

a value close to the maximum if no player unilaterally defects, and close to the minimum

if one does) is bounded away from 0, even as ∆ → 0.27 Hence, all conclusions extend: fix

l ∈ (l∗,∞); for every ǫ > 0, there exists ∆̄ > 0 such that for all ∆ < ∆̄, the best SSE payoff

starting at belief l is at least as much as the payoff from all players choosing α = 1 at all

beliefs in (l∗ + ǫ, l) (using s as a lower bound on the continuation once the belief l∗ + ǫ is

reached); and the worst SSE payoff starting at belief l is no more than the payoff from a

player whose opponents choose α = 1 if and only if l ∈ (l∗, l∗ + ǫ), and 0 otherwise.

The first part of the Proposition follows immediately, picking arbitrarily p ∈ (p∗1, p
m) and

p̄ ∈ (pm, 1). The second part follows from the fact that (i) p∗1 < p∆1 , as noted, and (ii) for

any p ∈ [p∆1 , p], player i’s payoff in any equilibrium is weakly lower than his best-reply payoff

27This obtains by contradiction. Suppose that for some ∆ ∈ (0, ∆̄), there is l̂ ∈ [lm, l] for which

either α = 0 or 1 cannot be enforced. Consider the infimum over such beliefs. Continuation payoffs

can then be picked as desired, which is a contradiction as it shows that at this presumed infimum

belief α = 0, 1 can in fact be enforced.
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against κ(p) = 1 for all p ∈ [p∗1, p], as easily follows from (D.7), the optimality equation for

w.28

E Two-State Automata in Continuous Time

Consider an automaton (κ, η) as defined in Section 5.3 and any profile of strategies (kn)
N
n=1

in LN . The first stage of the game is a reward stage with the initial state-belief pair (1, p).

While this stage lasts, the state remains unchanged and the belief evolves according to Bayes’

law:

ṗt = −(λ1 − λ0)pt (1− pt)
N∑

n=1

kn(1, pt);

see Keller and Rady (2010) for a derivation of this law of motion. The stage ends at the first

time τ ≥ 0 at which there is a breakthrough on a risky arm or kn(1, pτ ) 6= κ(1, pτ ) for some

n. In particular, the stage ends at time 0 if kn(1, p) 6= κ(1, p) for some n.

If the first stage ends because of a breakthrough, another reward stage starts at time τ

with the initial state-belief pair (1, j(pτ−)). Play then proceeds exactly as in the first stage.

If a reward stage ends because kn(1, pτ ) 6= κ(1, pτ ) for some n, a punishment stage starts

at time τ with the initial state-belief pair (0, pτ ). While this stage lasts, the state remains

unchanged and the belief evolves according to

ṗt = −(λ1 − λ0)pt (1− pt)

N∑

n=1

kn(0, pt).

The stage ends at the random time min{τ ′, τ ′′} where τ ′ is the time of the first breakthrough

on a risky arm in that stage and τ ′′ a random time in [τ,∞] with

P(τ ′′ ≤ t) = 1− exp

(
−

∫ t

τ

N∏

n=1

1kn(0,ps)=κ(0,ps) η(ps) ds

)
.

Conditional on no breakthrough occurring, therefore, the rate of transition out of the punish-

ment stage is η(pt) if all players act as prescribed by κ(0, ·), and zero otherwise. If τ ′ ≤ τ ′′,

another punishment stage starts at time τ ′ with initial state-belief pair (0, j(pτ ′−)). If τ
′′ < τ ′,

a reward stage starts at time τ ′′ with the initial state-belief pair (1, pτ ′′).

The pair (κ, η) is an equilibrium if and only if the payoff functions u = uκ,η(1, ·|κ),

u = uκ,η(0, ·|κ), the state-contingent strategies κ = κ(1, ·) and κ = κ(0, ·) and the transition

28Consider the possibly random sequence of beliefs visited in an equilibrium. At each belief, a flow

loss of either −(1− δ)m or −(1− δ)l is incurred. Note that the first loss is independent of the number

of other players’ experimenting, while the second is necessarily lower when at each round all other

players experiment.
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rate η satisfy the following four conditions at all beliefs p:

u(p) = s+ κ(p) [Nb(p, u)− c(p)] , (E.9)

u(p) > u(p) or

u(p) = u(p) ≥ s+ (N − 1)κ(p)b(p, u) + (1− κ(p)) [b(p, u)− c(p)] (E.10)

u(p) = s+ κ(p) [Nb(p, u)− c(p)] +
η(p)

r
[u(p)− u(p)] , (E.11)

u(p) ≥ s+ (N − 1)κ(p)b(p, u) + (1− κ(p)) [b(p, u)− c(p)] . (E.12)

Equations (E.9) and (E.11) characterize a player’s payoffs when conforming to the strategy

suggested by the automaton. Inequalities (E.10) and (E.12) state that there is no incentive

to deviate from that strategy. In the reward state, such a deviation amounts to applying an

impulse control that immediately moves the state-belief pair from (1, p) to (0, p). Whenever

u(p) > u(p), the resulting discrete drop in continuation payoffs suffices to deter deviations. If

u(p) = u(p), however, the rate at which continuation payoffs change when a player conforms

must be at least as large as when he deviates, hence the second part of (E.10).

If the action κ(p) suggested in the punishment state satisfies

(2κ(p)− 1) [b(p, u)− c(p)] ≥ 0,

then (E.12) holds for any nonnegative η(p); the harshest possible punishment is then gener-

ated by setting η(p) = 0. If

(2κ(p)− 1) [b(p, u)− c(p)] < 0,

then we must have u(p) > u(p) in (E.10), and (E.11) implies (E.12) for any

η(p) ≥
r (1− 2κ(p)) [b(p, u)− c(p)]

u(p)− u(p)
.

In this case, it is without loss of generality to set η(p) equal to this lower bound. In either

case, we see that conditions (E.11)–(E.12) can be replaced by the equation

u(p) = s+ (N − 1)κ(p)b(p, u) + max
k∈{0,1}

k [b(p, u)− c(p)] . (E.13)

For any p ∈ [p∗N , p∗1], the strategies κ = 1p>p and κ = 1p=1 can be supported in an equi-

librium. In fact, the corresponding payoff functions u = VN,p and u = V ∗
1 satisfy conditions

(E.9) and (E.13) by construction, and (E.10) holds because b(p, u) ≤ c(p) on [0, p], u > u on

(p, 1), and b(p, u) = b(p, u) = 0 > c(p) at p = 1.
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Murto, P. and J. Välimäki (2013): “Delay and Information Aggregation in Stop-

ping Games with Private Information,” Journal of Economic Theory, 148, 2404–

2435.

Sadzik, T. and E. Stacchetti (2015): “Agency Models with Frequent Actions,”

Econometrica, 83, 193–237.

55


