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Abstract

We consider spatial competition when consumers are arbitrarily distributed

on a compact metric space. Retailers can choose one of finitely many locations

in this space. We first prove that a pure strategy equilibrium exists if the

number of retailers is large enough, while it need not exist for a small number

of retailers. Symmetric mixed equilibria exist for any number of retailers. We

then prove that the distribution of retailers tends to agree with the distribution

of the consumers both at the pure strategy equilibrium and at the symmetric

mixed one. The results are shown to be robust to the introduction of (i)

randomness in the number of retailers and (ii) different ability of the retailers

to attract consumers.

JEL Classification: C72, R30, R39.

Keywords : Hotelling games, location games on networks, pure equilibria, large games,

Poisson games, valence.
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1 Introduction

Consider a market with consumers and retailers. Consumers are distributed on the

unit interval and each one of them shops at the closest store. Retailers choose their

location in order to achieve the largest fraction of consumers. This model is called

the Pure Location Game and was initially considered by Hotelling (1929) for the

case of two retailers. This seminal paper has been extended and applied in different

fields such as industrial organization or spatial competition, giving rise to an immense

literature. Downs (1957) used Hotelling’s model to explain political competition.

As far as the equilibria of this game are concerned, two main regularities appear.

First, a pure strategy equilibrium may fail to exist. With at least four retailers

locating at the unit interval, there is no pure equilibrium if the consumers’ distribution

has either a strictly convex or a strictly concave density. This was shown by Osborne

and Pitchik (1986, Proposition 2) and is an immediate consequence of a theorem in

Eaton and Lipsey (1975).

The second stylized fact is that when the number of retailers becomes large, the

location of the retailers at the symmetric mixed equilibrium tends to coincide with the

distribution of the consumers on the space. This phenomenon where “retailers match

consumers” was first observed by Osborne and Pitchik (1986)1. A similar result is

present in Laster, Bennet, and Geoum (1999) and Ottaviani and Sorensen (2006) in

the context of professional forecasting.

Our paper extends the classical model in two directions. First, we allow the

consumers to be distributed on a general, possibly multidimensional, space. This

multidimensional space might account for location choices or various characteristics

of the product that consumers care about2. Our modelling approach is quite gen-

eral since we assume that the consumers’ distribution is arbitrary; an assumption of

nonatomicity is made only out of simplicity. Second, we remove the typical assump-

1Formally, Osborne and Pitchik (1986) prove that the symmetric equilibrium strategies satisfy
the claim assuming that the consumers are distributed in the interval [0,1] according to any twice
continuously differentiable distribution function.

2Our model can be reinterpreted in terms of political competition. Within the paper, we stick to
the interpretation of retailers/consumers for simplicity.
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tion that the action space of the retailers coincides with the support of the consumers’

distribution. Note that this assumption is not verified in many real-life applications,

for instance when zoning regulations are enforced3. In this case, specific commercial

activities may be allowed only in areas that would not produce negative externalities

on the population and guarantee the existence of services, like parking space, etc.. In

general there are several cases where the strategic behavior of the retailers is subject

to feasibility constraints. From a theoretical point of view, this restriction is present

in network economics in which retailers can locate only in some points of a graph,

e.g., its vertices. In other words, a particular case of our model are the network-based

models.

Building on these extensions, we first consider a simple version of the model,

where all retailers are symmetric. First, we prove that, when the number of retailers

is large enough, there exists a pure strategy equilibrium. Note that this result does

not depend on the underlying distribution of the consumers4. In this equilibrium,

the distribution of retailers gets closer to the real distribution of consumers as the

number of retailers grows. We then examine the properties of symmetric mixed

strategy equilibria (which must exist since the game is finite and symmetric). We

first prove that, as the number of retailers grows large, every symmetric equilibrium

must be completely mixed. In other words, in these equilibria, every feasible location

is occupied with positive probability. This implies that the expected payoff from

choosing each location must be equal for each retailer. A non-trivial consequence of

this is that the distribution of retailers induced by the symmetric mixed equilibrium

converges to the consumers’ distribution. This shows a strong analogy between the

non-symmetric pure equilibria and the symmetric mixed equilibrium.

Once we have considered the simple model with an exogenous number of symmet-

3Land use regulation has been extensively analyzed in urban economics, mostly from an applied
perspective. It is often argued that zoning can have anti-competitive effects and at the same time
be beneficial since it might solve problems of externalities (see Suzuki, 2013, for a recent work on
this area.)

4For an existence result in networks with uniformly distributed consumers, see Fournier and
Scarsini (2014). The existence of pure equilibrium seems to be harder to achieve when prices are
taken into account (see Heijnen and Soetevent, 2014, for a recent contribution on networks.)
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ric retailers, we then examine two extensions. The first extension deals with games

with a random number of players and the second one introduces ex-ante asymmetries

between the retailers.

As far as the first extension is concerned, it is well-known that games with a

large number of players can easily produce results that are not robust with respect

to the number of players. In order to check this robustness, we consider also a model

where the number of players is random, using Poisson games à la Myerson (1998,

2000). We show that in the unique equilibrium of the Poisson game retailers match

consumers when the parameter of the Poisson distribution is large enough, so retailers

do not even need to know the exact number of their competitors to play their (mixed)

equilibrium strategies.

Finally, we consider a richer model where the retailers are of two different types,

advantaged and disadvantaged. Consumers prefer advantaged retailers, so they are

ready to travel a bit more to shop at one of them rather than at a disadvantaged

one. Here we model the comparative advantage of the first type of retailers by an

additive constant. This is formally equivalent to the idea of valence in election models

(see Aragones and Palfrey, 2002, Aragonès and Xefteris, 2012, among others). We

show that, when the number of advantaged players increases, they play as if the

disadvantaged retailers did not exist, and these ones get a zero payoff, no matter

what they do.

In the whole paper we assume that competition among retailers is only in term of

location, not price. We do this for several reasons. First, there exist several markets

where price is not decided by retailers: think, for instance of newsvendors, shops

operating under franchising, pharmacies in many countries, etc.. Second, our model

without pricing can be used to study other topics, e.g., political competition, when

candidates have to take position on several, possibly related, issues. Finally several

of the existing models that allow competition on location and pricing are two-stage

models, where competition first happens on location and subsequently on price. Our

game could be seen as a model of the first stage. It is interesting to notice that

the recent paper by Heijnen and Soetevent (2014) deals with the second stage in a

5



location model on a graph, assuming that the first has already been solved.

Review of the Literature

We refer the reader to Fournier and Scarsini (2014) for a recent survey of the

literature on Hotelling games. Here we just mention the articles that are somehow

closer to what we do in our paper.

Eaton and Lipsey (1975) consider a Hotelling-type model with an arbitrary num-

ber of players, different possible structures of the space where retailers can locate,

and different distributions of the customers. Lederer and Hurter (1986) consider a

model with two retailers where consumers are non-uniformly distributed on the plane.

Aoyagi and Okabe (1993) look at a bidimensional market and, through simulation,

relate the existence of equilibria and their properties to the shape of the market.

Tabuchi (1994) considers a two-stage Hotelling duopoly model in a bidimensional

market. Hörner and Jamison (2012) look at a Hotelling model with a finite number

of customers.

Dürr and Thang (2007), Mavronicolas, Monien, Papadopoulou, and Schoppmann

(2008), Feldmann, Mavronicolas, and Monien (2009), and Gur, Saban, and Stier-

Moses (2014) consider a Hotelling model on graphs where retailers can locate only

on the vertices of the graph. Pálvölgyi (2011) and Fournier and Scarsini (2014)

consider Hotelling games on graphs with an arbitrary number of players. Heijnen

and Soetevent (2014) extend Hotelling’s model of price competition with quadratic

transportation costs from a line to graphs.

The paper is organized as follows. Section 2 introduces the model. Section 3

analyzes its equilibria. Section 4 considers the case of a random number of retailers.

Section 5 deals with the case of differentiated retailers. All proofs are in the Appendix.

2 The model

In this section we describe the basic location model, whose different variations

will be studied in the rest of the paper.
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Consumers. In this model consumers are distributed according to a measure λ on

a compact Borel metric space (S, d). For instance S could be a compact subset of R2

or a compact subset of a 2-sphere, but it could also be a (properly metrized) network.

Retailers. A finite set Nn := {1, . . . , n} of retailers have to decide where to set

shop, knowing that consumers choose the closest retailers. Each retailer wants to

maximize her market share. The action set of each retailer is a finite subset of S.

This means that, unlike what happens in a typical Hotelling-type model, retailers

cannot locate anywhere they want, but can choose only one of finitely many possible

locations. For instance they can set shop only in one of the existing shopping malls

in town.

Tessellation. More formally, defineK = {1, . . . , k} and letXK := {x1, . . . , xk} ⊂ S

be a finite collection of points in S. These are the points where retailers can open a

store. For every J ⊂ K call XJ := {xj : j ∈ J} and consider the Voronoi tessellation

V (XJ) of S induced by XJ . That is, for each xj ∈ XJ define the Voronoi cell of xj

as follows:

vJ(xj) := {y ∈ S : d(y, xj) ≤ d(y, x`) for all x` ∈ XJ}.

The cell vJ(xj) contains all points whose distance from xj is not larger than the

distance from the other points in XJ . Call

V (XJ) := (vJ(xj))j∈J

the set of all Voronoi cells vJ(xj). See, for instance, Figure 1. It is clear that for

J ⊂ L ⊂ K we have vJ(xj) ⊃ vL(xj) for every j ∈ J .

FIGURE 1 ABOUT HERE

Given that λ is the distribution of consumers on the space S, we have that

λ(vJ(xj)) is the mass of consumers who are weakly closer to xj than to any other
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(a) XK ⊂ [0, 1]2, K = {1, . . . , 10}. (b) V (XJ), J = {1, 2}.

(c) V (XJ), J = {3, 4, 5}. (d) V (XJ), J = {3, 4, 5, 6}.

(e) V (XJ), J = {1, 2, 7, 8, 9, 10}. (f) V (XJ), J = K.

Figure 1: Various Voronoi tessellations with different subsets of locations
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point in XJ . If price is homogeneous, these consumers will prefer to shop at location

xj rather than at other locations in XJ . Consumers that belong to r different Voronoi

cells vJ(xj1), . . . , vJ(xjr), are equally likely to shop at any of the locations xj1 , . . . , xjr .

To simplify the notation and the results, we assume that S is a compact subset of

some Euclidean space, that λ is absolutely continuous with respect to the Lebesgue

measure on this space and

λ(vK(xj)) > 0 for all xj ∈ XK . (2.1)

More general situations can be considered but they require more care in handling ties.

The game. We will build a game where Nn := {1, . . . , n} is the set of players. For

i ∈ Nn call ai ∈ XK the action of player i. Then a := (ai)i∈Nn is the profile of actions

and a−i := (ah)h∈Nn\{i} is the profile of actions of all the players different from i.

Hence a = (ai,a−i).

We say that a := (a1, . . . , an) ≈ XJ if for all locations xj ∈ XJ there exists a

player i ∈ Nn such that ai = xj and for all players i ∈ Nn there exists a location

xj ∈ XJ such that ai = xj.

For i ∈ Nn, the payoff of player i is ui : Xn
K → R, defined as follows:

ui(a) =
1

card{h : ah = ai}
∑
J⊂K

λ(vJ(ai))1(a ≈ XJ). (2.2)

The idea behind expression (2.2) is the following. Player i’s payoff is the measure

of the consumers that are closer to the location that she chooses than to any other

location chosen by any other player, divided by the number of retailers that choose

the same action as i. As Figure 1 shows, some locations may not be chosen by any

player, this is why, for every J ⊂ K, we have to consider the Voronoi tessellation

V (XJ) with a ≈ XJ rather than the finer tessellation V (XK). We examine a simple

example to clarify the idea.

Example 2.1. Let S = [0, 1], let λ be the Lebesgue measure on [0, 1], and let XK =

{0, 1/2, 1}. As mentioned before, for any given XJ , the Voronoi cell of location xj
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represents the set of points in [0, 1] that are closer to xj than any other point in XJ .

vJ(0) =


[0, 1] if XJ = {0},

[0, 1/2] if XJ = {0, 1},

[0, 1/4] if XJ = XK or XJ = {0, 1/2}.

vJ(1/2) =



[0, 1] if XJ = {1/2},

[1/4, 1] if XJ = {0, 1/2}

[0, 3/4] if XJ = {1/2, 1},

[1/4, 3/4] if XJ = XK .

vJ(1) =


[0, 1] if XJ = {1},

[1/2, 1] if XJ = {0, 1},

[3/4, 1] if XJ = XK or XJ = {1/2, 1}.

Hence

λ(vJ(0)) =


1 if XJ = {0},

1/2 if XJ = {0, 1},

1/4 if XJ = XK or XJ = {0, 1/2}.

λ(vJ(1/2)) =


1 if XJ = {1/2},

3/4 if XJ = {0, 1/2} or XJ = {1/2, 1},

1/2 if XJ = XK .

λ(vJ(1)) =


1 if XJ = {1},

1/2 if XJ = {0, 1},

1/4 if XJ = XK or XJ = {1/2, 1}.

Therefore the payoff for player i, if she chooses location 0 when the rest of the
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players’ pure actions are a−i is

ui(0,a−i) =
1

card{h : ah = ai}
φ(a−i),

where

φ(a−i) =


1 if a ≈ {0},
1
2

if a ≈ {0, 1},
1
4

if a ≈ XK or a ≈ {0, 1/2}.

The payoffs when she chooses either 1/2 or 1 can be similarly computed.

Remark 2.2. As mentioned before, the total demand for a location xj (i.e. share

of consumers that purchase the good from a given location) depends on the location

of all the retailers. The minimum value that this demand can assume is equal to

λ(vK(xj)) > 0, which happens when there is at least one retailer in each location

(i.e. when a ≈ XK). This represents one of the main differences with respect to

the classical model in which retailers can locate everywhere in the set S. In the

classical model the demand for a location could be made arbitrarily small. To see

why, consider the classical Downsian model in the interval [0, 1] with three players.

Assume, for instance that player 1 locates in x, player 2 locates in x − ε and player

3 locates in x + ε. Then the total demand for x can be rendered arbitrary small as

ε→ 0.

Consider a game where the consumers are distributed on S according to λ, the

set of players is Nn, the set of actions for each player is XK and the payoff of player

i is given by (2.2). Call this game Gn = 〈S, λ,Nn, XK , (ui)〉. Since the set of actions

coincides with the set of locations, we will use the two terms interchangeably.

With an abuse of notation, we use the same symbol Gn for the mixed extension of

the game, where, for a mixed strategy profile σ = (σ1, . . . , σn), the expected payoff

of player i is

Ui(σ) =
∑
a1∈XK

· · ·
∑

an∈XK

ui(a)σ1(a1) . . . σn(an).
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3 Equilibria

In the rest of this section, unless otherwise stated, we consider a sequence {Gn}
of games, all of which have the same parameters S, λ,XK . More precisely, our focus

is on the sequence of games when the number of retailers n grows.

We prove that when the number of retailers is large enough, (i) the game admits

a pure strategy equilibrium and (ii) the distribution of retailers in equilibrium ap-

proaches the distribution of consumers both in the pure strategy equilibrium and in

the symmetric mixed one.

3.1 Pure equilibria

We now show that, when the game is large, the game Gn admits pure equilibria.

As the next example shows, this result does not hold when the number of players is

small.

Example 3.1 (A game without pure equilibria). Consider a game Gn with n = 3,

S = [0, 1], λ the Lebesgue measure, and XK = {i/100 : i = 0, . . . , 100}. Assume

that the game admits a pure strategy equilibrium (a1, a2, a3), where, without any loss

of generality, a1 ≤ a2 ≤ a3. We see that, if a1 < a2 − 1/100, then player 1 has an

incentive to deviate to a2 − 1/100; if a2 + 1/100 < a3, then player 3 has an incentive

to deviate to a2 + 1/100. The profile a1 = a2 − 1/100 and a3 = a2 + 1/100 is not

an equilibrium, because player 2 can deviate to either a1 − 1/100 or to a3 + 1/100

and at least one of the deviations is profitable. If a1 = a2 and a3 > a1 + 1/100, then

player 3 can profitably deviate to a1 + 1/100. If a1 = a2 and a3 = a1 + 1/100, then

either player 3 can profitably deviate to a1− 1/100 or player 1 can profitably deviate

to a3 + 1/100. A similar argument excludes a1 < a2 = a3. Finally, if a1 = a2 = a3,

player 1 can deviate to either a1 − 1/100 or a1 + 1/100 and at least one deviation is

profitable. This proves by contradiction that there is no pure strategy equilibrium in

this game.

Example 3.2 (Weakly dominated locations). Consider a game Gn with n = 2, S =
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[0, 1], λ the Lebesgue measure, and XK = {0.45, 0.5, 0.55}. Then both 0.45 and 0.55

are weakly dominated by 0.5.

The existence of weakly dominated strategies becomes impossible when the num-

ber of players is large enough.

Proposition 3.3. Consider a sequence of games {Gn}n∈N. There exists n̄ such that

for all n ≥ n̄ no location in XK is weakly dominated.

When the number of players is large, pure equilibria exist and the share of players

in the different locations in equilibrium is approximately proportional to the measure

of the corresponding Voronoi cells. The following theorem makes this idea precise.

Theorem 3.4. Consider a sequence of games {Gn}n∈N. There exists n̄ such that for

all n ≥ n̄ the game Gn admits a pure equilibrium a∗. Moreover, for all n ≥ n̄, any

pure equilibrium is such that

nj(a
∗)

n`(a∗) + 1
≤ λ(vK(xj))

λ(vK(x`))
≤ nj(a

∗) + 1

n`(a∗)
. (3.1)

3.2 Mixed equilibria

We now consider the mixed equilibria of the game Gn.

Theorem 3.5. For every n ∈ N the game Gn admits a symmetric mixed equilibrium

γ(n) = (γ(n), . . . , γ(n)) such that

lim
n→∞

γ(n) = γ, (3.2)

with

γ(xj) =
λ(vK(xj))

λ(S)
for all j ∈ K. (3.3)

We can easily prove that (3.2) holds only asymptotically. For instance consider a

game Gn with n = 2, S = [0, 1], λ the Lebesgue measure, and XK = {0.45, 0.5, 0.55}.
Then the only symmetric equilibrium is the pure profile where both players choose

the location 0.5.
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Similarly, let S = [0, 1] with λ the Lebesgue measure on [0, 1] and XK = {0, 0.5, 1}.
For each n > 3, the game Gn admits a symmetric mixed equilibrium γ(n), where

γ(n)(0) = γ(n)(1) = pn, γ(n)(0.5) = 1− 2pn,

with pn as follows:

n 4 5 6 7 8 9 10 15 20

pn 0.113 0.167 0.196 0.214 0.225 0.232 0.237 0.247 0.249

As shown by the table, the probabilities in the symmetric mixed equilibrium converge

towards the ones described by Theorem 3.5.

It is interesting to notice that the outcome of pure equilibria mimics the expected

outcome of the mixed equilibria. In other words, the number of players who choose

an action in a pure equilibrium is close to the expected number of players who choose

the same action in the symmetric mixed equilibrium. Obviously no pure equilibrium

can be symmetric.

4 Games with a random number of players

In this section we consider games where the number of players is random and

we show how the results of the previous section extend to this case. In particular we

focus on Poisson games (see Myerson, 1998, 2000, among others). In these games, the

number of players follows a Poisson distribution. We call Pn = 〈S, λ,NΞn , XK , (ui)〉
the game where the cardinality of the players set NΞn is a random variable Ξn, with

P(Ξn = k) =
e−n nk

k!
,

that is, Ξn has a Poisson distribution with parameter n.

Just like in game Gn, in game Pn all players have the same utility function. So the

utility function of player i depends only on i’ s action and on the number of players

who have chosen xj for all j ∈ K.
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Quoting Myerson (1998), “population uncertainty forces us to treat players sym-

metrically in our game-theoretic analysis,” so each player choses action xj with proba-

bility σ(xj). As a consequence, all equilibria are symmetric. Properties of the Poisson

distribution imply that the number of players choosing action xj is independent of

the number of players choosing action x` for j 6= `.

The expected utility of each player, when she chooses action xj and all the other

players act according to the mixed action σ is

U(xj, σ) =
∑

y∈Z(XK)

∏
j∈K

(
e−nσ(xj)(nσ(xj))

y(xj)

y(xj)

)
U(xj, y),

where Z(XK) denotes the set of possible action profiles for the players in a Poisson

game. That is, Z(XK) is the set of vectors y = (y(xi))xi∈XK such that each component

y(xi) is a nonnegative integer that describes the number of players choosing action

xi.

In the rest of this section we consider a sequence {Pn} of games, all of which have

the same parameters S, λ,XK .

Theorem 4.1. For every n ∈ N the game Pn admits a symmetric equilibrium γ(n)

such that

lim
n→∞

γ(n)(xj) =
λ(vK(xj))

λ(S)
for all j ∈ K. (4.1)

The next example shows that in general the equilibria of Gn and Pn do not

coincide.

Example 4.2. Let S = [0, 1] with λ the Lebesgue measure on [0, 1] and XK =

{0.1, 0.5, 0.9}. We consider the equilibria of the games G3 (static) and P3 (Poisson).

In the game G3, there exists an equilibrium σ∗ in which each retailer locates in

0.5. Under σ∗ the payoff for each retailer equals 1/3 since they uniformly split the

consumers in S. A deviation towards 0.1 or 0.9 would give a payoff of 0.3 < 1/3, so

σ∗ is indeed an equilibrium of G3.
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We now prove that σ∗ is not an equilibrium in the game P3. We have

U(σ∗) =
1− e−3

3
≈ 0.316738,

U(0.1, σ∗) = U(0.9, σ∗) = e−3 +(0.3)(1− e−3) ≈ 0.334851.

This shows that a deviation to either 0.1 or 0.9 is profitable, hence σ∗ is not an

equilibrium of the game P3.

5 Competition with different classes of retailers

Up to now, we have considered a model where all retailers are equally able to

attract consumers. In other words, a consumer is indifferent between purchasing the

good at two different shops if they are equally distant from her location.

In many situations some retailers have a comparative advantage due, for instance,

to reputation. Therefore, ceteris paribus, a consumer may prefer one retailer over

another. Similar models have been studied in the political competition literature

with few strategic parties (see Aragones and Palfrey, 2002, among others). In this

literature the term “valence” is used to indicate the competitive advantage of one

candidate over another.

In the model that we analyze below, retailers can be of two types: advantaged (A)

and disadvantaged (D). We choose this dichotomic model out of simplicity. Results

are not qualitatively different when a finite number of types is allowed.

When choosing between two retailers of the same type, a consumer takes into

account only their distance from her and she prefers the closer of the two. When

choosing between a retailer of type A located in xA and a retailer of type D located

in xD, a consumer located in y will prefer the retailer of type A iff

d(xA, y) < d(xD, y) + β, with β > 0.

16



She will be indifferent between the two retailers iff

d(xA, y) = d(xD, y) + β.

Obviously the case β = 0 corresponds to the model examined in Section 2.

Different ways to model advantage of one type of players over another have been

considered in the literature (see Gouret, Hollard, and Rossignol, 2011, for a discus-

sion).

We now formally define a game Dn with differentiated retailers. For j ∈ {A,D},
call N j

n the set of retailers of type j and define nj = card(N j
n). Therefore

Nn = NA
n ∪ND

n ,

n = nA + nD.

For j ∈ {A,D} and i ∈ N j
n call aji ∈ XK the action of retailer i. Then the profile

of actions is

a := (aA,aD) := {(aAi )i∈NA
n
, (aDi )i∈ND

n
}.

For any profile a ∈ Xn
K define

nAj (a) := card{i ∈ NA
n : aAi = xj},

nDj (a) := card{i ∈ ND
n : aDi = xj}.

So nAj and nDj are the number of A and D players, respectively, who choose action

xj.

We say that (aA,aD) ≈ XJA,JD if for all locations xj ∈ XJA there exists a player

i ∈ NA
n such that aAi = xj and for all players i ∈ NA

n there exists a location xj ∈ XJA

such that aAi = xj and for all locations xj ∈ XJD there exists a player i ∈ ND
n such

that aDi = xj and for all players i ∈ ND
n there exists a location xj ∈ XJD such that

aDi = xj.
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Fix β > 0, and, for JA, JD ⊂ K, define

vAJA,JD(xj) := {y ∈ S : d(y, xj) ≤ d(y, x`) for all x` ∈ XJA and

d(y, xj) ≤ d(y, x`) + β for all x` ∈ XJD}

vDJA,JD(xj) := {y ∈ S : d(y, xj) ≤ d(y, x`)− β for all x` ∈ XJA and

d(y, xj) ≤ d(y, x`) for all x` ∈ XJD}.

For i ∈ Nn, the payoff of player i is ui : Xn
K → R, defined as follows:

ui(a
A,aD) =

1

card{h : aAh = aAi }
∑

JA,JD⊂K

λ(vAJA,JD(aAi ))1((aA,aD) ≈ XJA,JD), if i ∈ NA
n ,

1

card{h : aDh = aDi }
∑

JA,JD⊂K

λ(vDJA,JD(aDi ))1((aA,aD) ≈ XJA,JD), if i ∈ ND
n .

We call Dn := 〈S, λ,NA
n , N

D
n , XK , β, (ui)〉 a Hotelling game with differentiated

players.

Note that, in any pure strategy profile of the game Dn, a D-player gets a strictly

positive payoff only if she chooses a location that is not chosen by any advantaged

players.

The next example shows how substantially different the equilibria of a game Gn

and of a game Dn can be.

Example 5.1. Let S = [0, 1] with λ the Lebesgue measure on [0, 1] and XK =

{0, 1}. The game G2 admits pure equilibria. Actually any pure or mixed profile is an

equilibrium and gives the same payoff 1/2 to both players.

Consider now the game D2 with one advantaged and one disadvantaged players.

In the unique equilibrium of D2 both players randomize with probability 1/2 over the

two possible locations.

Indeed, in D2 there cannot be a pure equilibrium in which both players choose the

same location since the disadvantaged player would get 0 and hence would strictly

increase her payoff by deviating. Similarly, there cannot be a pure equilibrium in
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which players choose different locations, since the advantaged player would have an

incentive to deviate to the location chosen by the disadvantaged player. Therefore,

any equilibrium must be mixed. A simple computation proves that uniform random-

ization is the unique strategy profile that constitutes an equilibrium.

We first turn our attention to pure equilibria. The following theorem is the ana-

logue of Theorem 3.4 in the context of differentiated players.

Theorem 5.2. Consider a sequence of games {Dn}n∈N. There exists n̄ such that for

all nA ≥ n̄ the game Dn admits a pure equilibrium a∗. Moreover, for all nA ≥ n̄, any

pure equilibrium satisfies

nAj (a∗)

nA` (a∗) + 1
≤ λ(vK(xj))

λ(vK(x`))
≤
nAj (a∗) + 1

nA` (a∗)
. (5.1)

We now examine symmetric mixed equilibria in this model with differentiated

candidates. Given a game Dn, an equilibrium profile (γA,n,γD,n) is called (A,D)-

symmetric if

γA,n = (γA,n, . . . , γA,n), (5.2)

γD,n = (γD,n, . . . , γD,n). (5.3)

Theorem 5.3. For every n ∈ N the game Dn admits an (A,D)-symmetric equilibrium

(γA,n,γD,n) such that

lim
nA→∞

γA,n(xj) =
λ(vAK,JD(xj))

λ(S)
=
λ(vK(xj))

λ(S)
for all xj ∈ S, for all JD ⊂ K.

(5.4)

Moreover, in this equilibrium,

lim
nA→∞

∑
i∈ND

UD
i (γA,n,γD,n) = 0. (5.5)

Theorem 5.3 shows that, as the number nA of advantaged players grows, they

behave as if the disadvantaged players did not exist, so they play the same mixed
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strategies as in the game GnA . The disadvantaged players in turn get a zero payoff

whatever they do.

A Proofs

Section 3

Proof of Proposition 3.3. Pick any pair of locations xj, xh ∈ XK and consider the

strategy profile a1 = xj and ai = xh for i 6= 1. Then, given assumption (2.1), for

i 6= 1 and n sufficiently large, we have

u1(a) = λ
(
v{j,h}(xj)

)
≥ 1

n− 1
λ
(
v{j,h}(xh)

)
= ui(a),

which shows that xj is not weakly dominated. Given that the pair xj, xh was arbi-

trarily chosen, we have the result.

For any profile a ∈ Xn
K define

nj(a) := card{i ∈ Nn : ai = xj}

the number of players who choose action xj.

Lemma A.1. Consider a sequence of games {Gn}n∈N. There exists n̄ such that for

all n ≥ n̄, if a∗ is an equilibrium of Gn, then

nj(a
∗) > 0 for all xj ∈ XK . (A.1)

Proof. Assume by contradiction that for all n ∈ N, if the game Gn has a pure equi-

librium a∗, then there exists a location xj ∈ XK such that nj(a
∗) = 0. We know

that ∑
i∈Nn

ui(a
∗) = λ(S) <∞.
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Therefore there exists i ∈ Nn such that

ui(a
∗) ≤ λ(S)

n
.

If this player deviated to ai = xj, she would achieve the payoff

ui(ai,a
∗
−i) ≥ λ(vK(xj)) ≥

λ(S)

n
,

for n large enough. This contradicts the assumption that a∗ is a Nash equilibrium.

Lemma A.2. A strategy profile a∗ is an equilibrium of the game Gn such that

nj(a
∗) > 0 for all j ∈ K if and only if, for every j, ` ∈ K,

nj(a
∗)

n`(a∗) + 1
≤ λ(vK(xj))

λ(vK(x`))
≤ nj(a

∗) + 1

n`(a∗)
. (A.2)

Proof of Lemma A.2. Let a∗ be an equilibrium of Gn and let a∗i = x`. Assume, by

contradiction, that
λ(vK(xj))

nj(a∗) + 1
>
λ(vK(x`))

n`(a∗)
.

Then player i could profitably deviate from x` to xj. Therefore, for every j, ` ∈ K we

have
λ(vK(xj))

nj(a∗) + 1
≤ λ(vK(x`))

n`(a∗)
and

λ(vK(x`))

n`(a∗) + 1
≤ λ(vK(xj))

nj(a∗)
(A.3)

and, applying Lemma A.1, (A.2) follows.

To prove the converse implication, assume that (A.2) holds. Equivalently, (A.3)

holds for every j, ` ∈ K. As a consequence, no player can profitably deviate from xj

to x` or vice versa, for every j, ` ∈ K. Hence a∗ is an equilibrium.

Proof of Theorem 3.4. Given Lemmata A.1 and A.2, all we have to prove is that there
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exists n̄ such that for each n ≥ n̄ there exist integers n1, . . . , nk such that

∑
j∈K

nj = n, and, for all j ∈ K, nj > 0 and

nj
n` + 1

≤ λ(vK(xj))

λ(vK(x`))
≤ nj + 1

n`
. (A.4)

Define

βj =
λ(vk(xj))∑
`∈K λ(vk(x`))

and

n̄ := min{n | nβ` − 1 > 0 for all ` ∈ K}. (A.5)

If we sum the inequalities in (A.4) over j ∈ K, we get

n

n` + 1
≤ 1

β`
≤ n` + 1

n
,

which, after some simple algebra, becomes

nβ` − 1 ≤ n` ≤ (n+ k)β`, (A.6)

where k is the cardinality of K. Notice that nβ` − 1 > 0, by (A.5), and the set

of admissible values for n` is the set of all integers in an interval of length kβ` + 1.

Without any loss of generality, assume β1 ≤ β2 ≤ · · · ≤ βk.

We describe a simple algorithm that provides the desired n1, . . . , nk. For ` ∈ K
take

ñ` = bnβ`c.

If ∑
j∈K

ñj = n, (A.7)

then the vector ñ1, . . . , ñk is the desired vector. If not, increase ñk by 1 and check

whether (A.7) holds. If not, and if ñk−1 + 1 ≤ (n + k)βk−1, then increase ñk−1 by

one, and check whether (A.7) holds. Continue until either (A.7) holds or you reach
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an index h such that ñh+1 > (n+k)βh. If this happens go back to ñk and increase it

by 1. The procedure ends in finite time. Once we have a positive vector (ñ1, . . . , ñk)

that for all ` ∈ K satisfies (A.6) and hence (A.4), all we have to do is to devise a

strategy profile a∗ such that

nj(a
∗) = ñj.

The proof of Theorem 3.5 requires some preliminary results.

Lemma A.3. Consider a sequence of games {Gn}n∈N. There exists n̄ such that for

all n ≥ n̄, if γ(n) is a symmetric equilibrium of Gn, then γ(n) is completely mixed,

i.e.,

γ(n)(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some xj ∈ XK and

a symmetric equilibrium γ(n) of Gn such that γ(n)(xj) = 0. Given that λ(S) <∞, we

have that for all i ∈ Nn

Ui(γ
(n)) =

λ(S)

n
.

If player i deviates and plays the pure action ai = xj, then she obtains a payoff

Ui(ai,γ
(n)
−i ) ≥ λ(vK(xj)) ≥

λ(S)

n
,

for n large enough. This contradicts the assumption that γ(n) is an equilibrium.

Lemma A.4. Let (Y1, . . . , Yk) be a random vector distributed according to a multi-

nomial distribution with parameters (n− 1; γ
(n)
1 , . . . , γ

(n)
k ), with δ < γ

(n)
j < 1− δ, for

some 0 < δ < 1 and for all j ∈ K. Then

lim
n→∞

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

] = 1, for all j, ` ∈ K (A.8)

iff

lim
n→∞

γ
(n)
j = γ(xj) =

λ(vK(xj))

λ(S)
for all j ∈ K. (A.9)
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Proof. Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family Vj of all

corresponding Voronoi tessellations V (XJ). Call Ṽj the finest partition of S generated

by Vj, that is, the set of all possible intersections of cells vJ(xj) ∈ V (XJ) for V (XJ) ∈
Vj. It is clear that vK(xj) ∈ Ṽj.

For A ∈ Ṽj, call Ṽj(A) the class of all cells in Ṽj whose intersection with A is

nonempty. Then

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]
= E

[
λ(vK(xj))

Yj + 1

]

+ E

 1

Yj + 1

∑
A∈Ṽj

λ(A)1 (Yh = 0 if vK(xj) ∩ A 6= ∅)


≤ E

[
λ(vK(xj))

Yj + 1

]
+
∑
A∈Ṽj

λ(A)P (Yh = 0 if vK(xj) ∩ A 6= ∅)

= E
[
λ(vK(xj))

Yj + 1

]
+ o(1/n) for n→∞,

since P(Yi = 0) = (1− γ(n)
i )n = o(1/n) for n→∞. Therefore

lim
n→∞

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

] = lim
n→∞

E
[
λ(vK(xj))

Yj + 1

]
E
[
λ(vK(x`))

Y` + 1

]

= lim
n→∞

λ(vK(xj))

λ(vK(x`))

γ
(n)
`

γ
(n)
j

(A.10)

=
λ(vK(xj))

λ(vK(x`))

γ(x`)

γ(xj)

Given that
∑k

j=1 γ(xj) = 1, (A.10) holds if and only if (A.9) does.

Proof of Theorem 3.5. The game Gn is finite and symmetric, so it admits a symmetric

mixed Nash equilibrium γ(n) = (γ(n), . . . , γ(n)). Then, given Lemma A.3, for all
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j, ` ∈ K,

Ui(xj,γ
(n)
−i ) = Ui(x`,γ

(n)
−i ). (A.11)

Using (2.2) we obtain

Ui(xj,γ
(n)
−i ) =

∑
a1∈XK

· · ·
∑

an∈XK

ui(a1, . . . , ai−1, xj, ai+1, . . . , an)

γ(n)(x1)n1(a−i) . . . γ(n)(xj)
nj(a−i)+1 . . . γ(n)(xk)

nk(a−i)

= E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]
,

where (Y1, . . . , Yk) has a multinomial distribution with parameters (n−1; γ(n)(x1), . . . , γ(n)(xk)).

Notice that a ≈ XJ is equivalent to Yh = 0 for all h 6∈ J .

Therefore (A.11) holds if and only if

E

[
1

Yj + 1

∑
J⊂K

λ(vJ(xj))1(Yh = 0 for h 6∈ J)

]

= E

[
1

Y` + 1

∑
J⊂K

λ(vJ(x`))1(Yh = 0 for h 6∈ J)

]
,

which implies (A.8). Lemma A.4 provides the result.

Section 4

The next two lemmata are similar to Lemmata A.3 and A.4, respectively.

Lemma A.5. Consider a sequence of games {Pn}n∈N. There exists n̄ such that for

all n ≥ n̄, if γ(n) is a symmetric equilibrium of Pn, then γ(n) is completely mixed,

i.e.,

γ(n)(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some xj ∈ XK and

a symmetric equilibrium γ(n) of Pn such that γ(n)(xj) = 0. Given that λ(S) < ∞,
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we have that for each player i

Ui(γ
(n)) = E

[
λ(S)

Ξn

]
,

where Ξn has a Poisson distribution with parameter n. If player i deviates and plays

the pure action ai = xj, then she obtains a payoff

Ui(ai,γ
(n)
−i ) ≥ λ(vK(xj)) ≥ E

[
λ(S)

Ξn

]
,

for n large enough. This contradicts the assumption that γ(n) is an equilibrium.

Lemma A.6. Let (Ξ1, . . . ,Ξk) be a random vector of independent random variables

where Ξj has a Poisson distribution with parameter nγ
(n)
j , with δ < γ

(n)
j < 1− δ, for

some 0 < δ < 1 and for all j ∈ K. Then

lim
n→∞

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

] = 1, for all j, ` ∈ K (A.12)

iff

lim
n→∞

γ
(n)
j = γ(xj) =

λ(vK(xj))

λ(S)
for all j ∈ K. (A.13)

Proof. Given j ∈ K, consider all J ⊂ K such that j ∈ J and the family Vj of all

corresponding Voronoi tessellations V (XJ). Call Ṽj the finest partition of S generated

by Vj, that is, the set of all possible intersections of cells vJ(xj) ∈ V (XJ) for V (XJ) ∈
Vj. It is clear that vK(xj) ∈ Ṽj.

For A ∈ Ṽj, call Ṽj(A) the class of all cells in Ṽj whose intersection with A is
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nonempty. Then

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]
= E

[
λ(vK(xj))

Ξj + 1

]

+ E

 1

Ξj + 1

∑
A∈Ṽj

λ(A)1 (Ξh = 0 if vK(xj) ∩ A 6= ∅)


≤ E

[
λ(vK(xj))

Ξj + 1

]
+
∑
A∈Ṽj

λ(A)P (Ξh = 0 if vK(xj) ∩ A 6= ∅)

= E
[
λ(vK(xj))

Ξj + 1

]
+ o(1/n) for n→∞,

since P(Ξi = 0) = e−n = o(1/n) for n→∞. Therefore

lim
n→∞

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

] = lim
n→∞

E
[
λ(vK(xj))

Ξj + 1

]
E
[
λ(vK(x`))

Ξ` + 1

]

= lim
n→∞

λ(vK(xj))

λ(vK(x`))

γ
(n)
`

γ
(n)
j

(A.14)

=
λ(vK(xj))

λ(vK(x`))

γ(x`)

γ(xj)

Given that
∑k

j=1 γ(xj) = 1, (A.14) holds if and only if (A.13) does.

Proof of Theorem 4.1. Since the number of types and actions is finite, Myerson (1998,

Theorem 3) implies that the Poisson game Pn admits a symmetric equilibrium γ(n).

Given Lemma A.5, for all j, ` ∈ K,

Ui(xj,γ
(n)
−i ) = Ui(x`,γ

(n)
−i ). (A.15)

For j ∈ K call nj(a, ξ) the number of players who choose xj under strategy a when
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the total number of players in the game is ξ. Using (2.2) we obtain

Ui(xj,γ
(n)
−i ) =

∞∑
ξ=1

[ ∑
a1∈XK

· · ·
∑
aξ∈XK

ui(a1, . . . , ai−1, xj, ai+1, . . . , aξ)

γ(n)(x1)n1(a−i,ξ) . . . γ(n)(xj)
nj(a−i,ξ)+1 . . . γ(n)(xk)

nk(a−i,ξ)

]
e−n nξ

ξ!

= E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]
,

where (Ξ1, . . . ,Ξk) are independent random variables such that Ξj has a Poisson

distribution with parameter nγ(n)(xj). Notice that a ≈ XJ is equivalent to Ξh = 0

for all h 6∈ J .

Therefore (A.15) holds if and only if

E

[
1

Ξj + 1

∑
J⊂K

λ(vJ(xj))1(Ξh = 0 for h 6∈ J)

]

= E

[
1

Ξ` + 1

∑
J⊂K

λ(vJ(x`))1(Ξh = 0 for h 6∈ J)

]
,

which implies (A.12). Lemma A.6 provides the result.

Section 5

Lemma A.7. Consider a sequence of games {Dn}n∈N. There exists n̄ such that for

all nA ≥ n̄, if a∗ is an equilibrium of Dn, then

nAj (a∗) > 0 for all xj ∈ XK . (A.16)

Proof. Assume by contradiction that for all n ∈ N, if the game Dn has a pure equi-

librium a∗, then there exists a location xj ∈ XK such that nAj (a∗) = 0. We know

that ∑
i∈Nn

ui(a
∗) = λ(S) <∞.
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Therefore there exists i ∈ NA
n such that

ui(a
∗) ≤ λ(S)

nA + nB
.

If this player deviated to ai = xj, she would achieve the payoff

ui(ai,a
∗
−i) ≥ λ(vK(xj)) ≥

λ(S)

nA + nB
,

for nA large enough. This contradicts the assumption that a∗ is a Nash equilibrium.

Proof of Theorem 5.2. Given Lemma A.7, mutatis mutandis the proof is similar to

the proof of Theorem 3.4, and is therefore omitted.

Lemma A.8. Consider a sequence of games {Dn}n∈N. There exists n̄A such that for

all nA ≥ n̄A, if (γA,n,γD,n) is an (A,D)-symmetric equilibrium of Dn, then γA,n is

completely mixed, i.e.,

γA,n(xj) > 0 for all xj ∈ XK .

Proof. Assume by contradiction that for every n ∈ N there exists some xj ∈ XK and

an (A,D)-symmetric equilibrium (γA,n,γD,n) of Dn, such that γA,n(xj) = 0. Given

that λ(S) <∞, we have that for i ∈ NA
n

UA
i (γA,n,γD,n) ≤ λ(S)

nA
.

If player i ∈ NA
n deviates and plays the pure action ai = xj, then she obtains a payoff

UA
i (ai,γ

A,n
−i ,γ

D,n) ≥ λ(vK(xj)) ≥
λ(S)

nA
,

for nA large enough. Indeed, note that even if some D-players choose xj in γD,n,

the A player attracts all the consumers from xj. Therefore (γA,n,γD,n) is not an

equilibrium for nA large enough.
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Lemma A.9. Let (Y1, . . . , Yk) be a random vector distributed according to a multino-

mial distribution with parameters (n; γ
(n)
1 , . . . , γ

(n)
k ), with δ < γ

(n)
j < 1 − δ, for some

0 < δ < 1 and for all j ∈ K. Then

lim
n→∞

P(Yj = 0) = 0 for all j ∈ K.

Proof. The result is obvious, since

P(Yj = 0) = (1− γ(n)
j )n ≤ (1− δ)n → 0.

Proof of Theorem 5.3. Whenever a location xj is occupied by an advantaged player,

any disadvantaged player choosing xj gets a payoff equal to zero. Therefore (5.5)

is an immediate consequence of Lemmata A.8 and A.9. Moreover, asymptotically,

the actions of disadvantaged players do not affect the payoff of advantaged players.

Therefore an application of Lemma A.4 with nA replacing n provides (5.4).

References

Aoyagi, M. and Okabe, A. (1993) Spatial competition of firms in a two-dimensional

bounded market. Reg. Sci. Urban Econ. 23, 259–289.

Aragones, E. and Palfrey, T. R. (2002) Mixed equilibrium in a Downsian model

with a favored candidate. J. Econom. Theory 103, 131–161. Political science.

Aragonès, E. and Xefteris, D. (2012) Candidate quality in a Downsian model

with a continuous policy space. Games Econom. Behav. 75, 464–480.

Downs, A. (1957) An Economic Theory of Democracy. Harper and Row, New York.

Dürr, C. and Thang, N. K. (2007) Nash equilibria in Voronoi games on graphs.

In European Symposium on Algorithms.

30



Eaton, B. C. and Lipsey, R. G. (1975) The principle of minimum differentiation

reconsidered: some new developments in the theory of spatial competition. Rev.

Econ. Stud. 42, 27–49.

Feldmann, R., Mavronicolas, M., and Monien, B. (2009) Nash equilibria for

Voronoi games on transitive graphs. In Leonardi, S. (ed.), Internet and Network

Economics, volume 5929 of Lecture Notes in Computer Science, 280–291. Springer

Berlin Heidelberg.

Fournier, G. and Scarsini, M. (2014) Hotelling games on networks: efficiency of

equilibria. SSRN 2423345.

Gouret, F., Hollard, G., and Rossignol, S. (2011) An empirical analysis of

valence in electoral competition. Soc. Choice Welf. 37, 309–340.

Gur, Y., Saban, D., and Stier-Moses, N. E. (2014) The competitive facility

location problem in a duopoly. Mimeo.

Heijnen, P. and Soetevent, A. R. (2014) Price competition on graphs. Technical

Report TI 2014-131/VII, Tinbergen Institute.

Hörner, J. and Jamison, J. (2012) Hotelling’s spatial model with finitely many

consumers. Mimeo.

Hotelling, H. (1929) Stability in competition. Econ. J. 39, 41–57.

Laster, D., Bennet, P., and Geoum, I. (1999) Rational bias in macroeconomic

forecasts. Quart. Journal of Econ. 45, 145–186.

Lederer, P. J. and Hurter, Jr., A. P. (1986) Competition of firms: discrimina-

tory pricing and location. Econometrica 54, 623–640.

Mavronicolas, M., Monien, B., Papadopoulou, V. G., and Schoppmann, F.

(2008) Voronoi games on cycle graphs. In Mathematical Foundations of Computer

Science 2008, volume 5162 of Lecture Notes in Comput. Science, 503–514. Springer,

Berlin.

31



Myerson, R. B. (1998) Population uncertainty and Poisson games. Internat. J.

Game Theory 27, 375–392.

Myerson, R. B. (2000) Large Poisson games. J. Econom. Theory 94, 7–45.

Osborne, M. J. and Pitchik, C. (1986) The nature of equilibrium in a location

model. Internat. Econom. Rev. 27, 223–237.

Ottaviani, M. and Sorensen, P. N. (2006) The strategy of professional forecast-

ing. J. Financ. Econ. 81, 441–466.

Pálvölgyi, D. (2011) Hotelling on graphs. Mimeo.

Suzuki, J. (2013) Land use regulation as a barrier to entry: evidence from the Texas

lodging industry. Int. Econ. Rev. 54, 495–523.

Tabuchi, T. (1994) Two-stage two-dimensional spatial competition between two

firms. Reg. Sci. Urban Econ. 24, 207–227.

32


	Introduction
	The model
	Equilibria
	Pure equilibria
	Mixed equilibria

	Games with a random number of players
	Competition with different classes of retailers
	Proofs

