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Abstract

We investigate experimentally whether social learners appreciate the redundancy

of information conveyed by their observed predecessors’ actions. Each participant

observes a private signal and enters an estimate of the sum of all earlier-moving par-

ticipants’ signals plus her own. In a first treatment, participants move single-file and

observe all predecessors’ entries; Bayesian Nash Equilibrium (BNE) predicts that each

participant simply add her signal to her immediate predecessor’s entry. Although 75%

of participants do so, redundancy neglect by the other 25% generates excess imitation

and mild inefficiencies. In a second treatment, participants move four per period; BNE

predicts that most players anti-imitate some observed entries. Such anti-imitation oc-

curs in 35% of the most transparent cases, and 16% overall. The remaining redundancy

neglect creates dramatic excess imitation and inefficiencies: late-period entries are far

too extreme, and on average participants would earn substantially more by ignoring

their predecessors altogether. (JEL B49)

Keywords: social learning, redundancy neglect, experiments, higher-order beliefs

∗Eyster: Department of Economics, London School of Economics; Rabin: Department of Economics and
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1 Introduction

The theory of how people learn by observing the actions and beliefs of others underlies an

extensive and ongoing research program. Beginning with Banerjee (1992) and Bikhchandani,

Hirshleifer and Welch (1992), a literature on observational learning identifies how a rational

person who observes the behavior of another person with private information and similar

tastes may follow that person, even contrary to her own private information. Yet Eyster

and Rabin (2014) show ways that the logic of social inference requires that rational agents

greatly limit the scope of their imitation. If the actions a person observes are themselves

influenced by social learning, then the person should recognize the redundancy inherent in

prior actions and imitate only selectively. Hence extensive imitation is a mistake. Indeed, in

most settings full rationality dictates that players should anti -imitate some of whom they

observe.

Accounting for redundancy proves challenging even in settings devoid of rational anti-

imitation. Experimental evidence by Kübler and Weizsäcker (2004) and others demonstrates

such failure. Even pre-dating the experimental evidence, doubts about whether people fully

adjust for redundancy motivated researchers to develop models of redundancy neglect. De-

Marzo, Vayanos and Zwiebel (2003), for instance, model the idea that people may treat as

independent repeated hearings of the same opinion, and show that this “persuasion bias”

generates inefficiency. Eyster and Rabin (2010) and Eyster and Rabin (2014) explore impli-

cations in simple herding contexts of the assumption that people do not fully account for the

redundancy in others’ actions, showing that in most settings this can lead to long-run incor-

rect and overconfident beliefs. By neglecting that those whom they imitate are themselves

imitating, people end up being so over-influenced by potentially misleading early actions

that long-run beliefs can converge to full confidence on the wrong state.

In this paper, we report on both the behavioral and efficiency properties of social learn-

ing in experiments that are designed to be conducive to efficient learning when rationality
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is common knowledge, yet amenable to the detection of redundancy neglect when partici-

pants succumb to it. Our experiments are simple and—if it is common knowledge that all

participants are strategically sophisticated—do not require the use of Bayes’ rule. In each

of the two treatments, each participant privately observes an integer (or “signal”) as well as

the public entries of all preceding participants. She then makes an entry herself and gets

paid for entering a number as close as possible to her own signal plus those of all earlier-

moving participants. Given common knowledge of rationality, participants can recover the

sum of their predecessors’ signals from the entries they observe through simple arithmetic.

The experiment is designed to mimic realistic challenges people might face when applying

the logic of social learning, without demanding complicated math or inference of those who

understand the logic.

The lessons learned about rationality and redundancy neglect are varied. We identify

relatively mild effects of redundancy neglect in one treatment, and more redundancy neglect

with much more severe consequences in the other treatment. In the first treatment, where—

as in previous experiments—participants move single-file, 75% of participants employ their

Bayesian-Nash-Equilibrium (BNE) strategies of simply adding their own signal to the pre-

vious entry. Most of the remaining 25% deviate in the direction of redundancy neglect,

although some also deviate by ignoring their predecessors. This leads the 75% doing the

“right” thing to over-imitate; they would be better off by down-weighting their immediate

predecessors. On the other hand, participants benefit from social learning—they do better

than they would by ignoring their predecessors—and two notable markers of redundancy

neglect, overinfluence of initial movers and long-run extreme beliefs, appear neither strongly

nor statistically significantly. In our second treatment, even mild redundancy neglect can be

very socially harmful. Here, participants move four at a time, which creates a large set of

informational redundancies (like many natural settings, but unlike all previous experimental

settings that we know of), such that BNE predicts frequent anti-imitation. Deviations from

these strategies are far more common. Early signals are heavily over-counted and push later
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entries towards costly extremities. On average, participants lose from social learning—they

would do better by ignoring others’ entries and announcing only their own signals. Neverthe-

less, we also uncover evidence of complex rational behavior: almost 16% of moves requiring

anti-imitation conform to BNE. Although anti-imitation occurs infrequently, and although

our experiments vindicate prior theoretical findings that very little over-imitation suffices to

lead societies seriously astray, this is the first evidence we know of where people rationally

anti-imitate.1

We specified few statistical tests or hypotheses before running the experiments, but

predicted that redundancy neglect would lead to over-imitation and hence work against the

BNE prediction of limited imitation (in the single-file treatment) and anti-imitation (in the

multi-file treatment). In our analysis, we formally investigate the presence of an extreme

form of redundancy neglect modeled in Eyster and Rabin (2010), which they call “BRTNI

play” (an acronym for “best response trailing näıve inference”) and which we did hypothesize.

BRTNI play requires that a player in period t add the entries of all players through period

t − 1 to her own signal. This extreme prediction would quickly generate absurdly high

(positive or negative) entries in our setting that should appear implausible to participants.

Eyster and Rabin (2014) give a general definition of redundancy neglect, which encompasses

BRTNI play as well as much milder forms of over-counting. In the present context, their

general definition of redundancy neglect (roughly) requires that all players’ entries equal

their signals plus some non-negative weighting of all previous entries whose weights sum to

more than one. Whatever its exact form, redundancy neglect predicts that early signals

exert undue influence on later moves. This general pattern is (at best) weakly confirmed in

1We cannot fail to be impressed by the two participants who perfectly follow the BNE strategy in period
6, which calls for summing the entries of the four immediate predecessors, before subtracting off 3 times
the entries of the four prior movers, adding 9 times the entries of the four players prior, subtracting off 27
times the entries of the four prior players, and finally adding 81 times the entries of the first four movers.
(However, they may have arrived at the correct answer through the conceptually simpler procedure of
iteratively determining signals: each period-1 signal equals entry; each period-2 signal equals entry minus
the sum of period-1 signals; each period-3 signal equals entry minus the sum of period-1 and period-2 signals;
etc. Unfortunately, given other participants’ behavior, this strategy fares poorly.

3



our first treatment and strongly confirmed in our second treatment.

Section 3 summarizes the results of the first, single-file treatment, where BNE predicts

that every player should simply enter her signal added to her immediate predecessor’s en-

try. When done correctly by all players, every action equals its target, and all players earn

the maximum payoff. For ease of reference, we shall refer to players who play this “naive

Bayesian” strategy as Nebi. As indicated above, the data reveal the presence of far more

Nebi than BRTNI players: from t = 3 onwards, when the two behavioral rules make dif-

ferent predictions, Nebi outnumbers BRNTI 14:1. The even simpler rule of following one’s

own signal—the prediction of Eyster and Rabin’s (2005) fully-cursed equilibrium as well as

Stahl and Wilson (1994) and Nagel’s (1995) Level-1—appears approximately as frequently

as BRTNI. About 88% of decisions accord to one of these three types of behavior. The re-

maining 12% either follow different rules or make errors—including, for example, sign errors

when reporting intended entries or when adding their private signals. In aggregate, these

deviations produce over-imitation: 72% of participants who miss their target do so in the

direction predicted by BRTNI and other forms of redundancy neglect. Across all decisions

in this treatment, participants would earn more by adding their signal to a number 31%

closer to zero than number apparently used. A player whose predecessors are not Nebis does

not maximize expected payoff by being Nebi; in fact, the 75% of participants who are Nebi

would do better shading by 10%. Yet participants do not over-imitate strongly enough to

negate the advantages of following others: they earn 76% of the maximum sum possible,

whereas ignoring other players would only deliver 71% of the maximum payment.2

Section 4 summarizes the results in the second, multi-file treatment. Here, BNE reasoning

once again demands only simple arithmetic of the players (and once again predicts full

efficiency), but it involves peculiar-looking behavior. In period 1, optimal behavior remains

2Yet Eyster and Rabin (2014) show how even mild over-counting of the sort of observed in this experiment
can, when extrapolated to longer time horizons, produce severe long-term effects. That is, the theory that
motivates this experiment and finds support in its data predicts severe long-run costs from even the mildest
of over-counting.
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trivial—a participant must just enter her signal. In period 2, she should just add her signal

to the four entries observed in period 1. But in period 3, because all four period-2 entries

incorporate the signals of all four period-1 players, BNE dictates that each player must add

her own signal to the sum of period-2 entries minus three times the sum of period-1 entries.

Without such subtraction, period-3 players would inefficiently quadruple count each period-1

signal. BNE actions in periods 4 to 6 take more complicated and even less intuitive forms,

but all involve a mix of adding and subtracting observed entries.3 Surprisingly, we find that

participants anti-imitate upwards of 35% of the time in period 3 and 10% in periods 4 to

6. Nonetheless, Nebi play occurs much less frequently in this treatment, and less frequently

than BRTNI play during periods for which the two models make different predictions: from

t = 3 onwards, BRTNI outnumbers Nebi 3:2. Behavior corresponds less well overall to

particular rules of thumb in this game: even including initial periods, BRTNI and Nebi

jointly account for only 55% of the data, and including the “cursed”or Level-1, follow-your-

own-signal rule only brings explained behavior up to 58% of the data. Nevertheless, the

cumulative effect of the non-BNE decisions is strong and clear. 78% of deviations from

target veer off in the direction predicted by BRTNI. Participants make entries with much

greater magnitude than those predicted by BNE, and on average they would earn more by

strongly shading their interpretation of prior entries towards zero—optimally shading by

98%. Moreover, participants earn less than they would by relying purely on their private

signals, even including period 2 in which participants clearly benefit from observing the first

movers.

Section 5 reports the results of two sets of regressions testing the BNE predictions.

In the first set, we regress participants’ entries in the various periods on earlier signals.

BNE predicts that all coefficients should equal one, whereas redundancy neglect predicts

3The precise formula (see earlier footnote) is of course tied to the particular situation, but we once again
emphasize that the BNE prediction of anti-imitation is not an artifact of clever or sinister experimental
design, but rather inherent to almost all non-single-file settings.

5



that players in period t should implicitly weight signals of periods t − 2, t − 3, . . . with

coefficients larger than one. Although the regression analysis in the single-file treatment

paints a very mixed but more positive picture of BNE, the analysis in the multi-file case

confirms the redundancy neglect portrayed by the descriptive analysis. Nine out of the ten

point estimates of these coefficients exceed 1, with estimates ranging from 3.0 to 19.6. In

the second set of estimations, we regress entries on past entries (and current signals) to

uncover players’ strategies. In the multi-file treatment, BNE predicts that players in period

t assign negative coefficients to entries in periods t− 2 and t− 4. Although we discuss above

and below evidence that some individuals engage in anti-imitation, there is no suggestion of

average anti-imitation. While two of the six relevant point estimates are negative, they are

very far from statistical significance.

Putting our approach in perspective of the literature, we note that our experiments differ

in at least three ways from the standard experimental set-up developed by Anderson and

Holt (1998) and subsequent papers studying herding. First, by giving participants targets

equal to the sums of signals received, our design isolates the redundancy-neglect error as

much as possible from both statistical and computational errors. Second, the rich signal

and action spaces allow us to finely identify the rules used by most participants; only rare

happenstance leads different rules to generate identical responses. Third, and most important

from an economics perspective, we move away from the traditionally studied but misleading

narrow band of herding settings where the behavior predicted by BNE closely resembles

a less-rational tendency to imitate, and where welfare costs of over-imitation are limited.

By disentangling rational imitation from irrational over-imitation, our experiment better

informs our understanding of many social-learning tasks than settings that have until now

been the focus of experimental research.

But there are several obvious limitations to our design. First, insofar as people do suffer

from various statistical biases, neutralizing those biases does not enhance realism. Second,

despite the strict BNE being “statistics-free” in this setting, once participants (rightly) start
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to doubt the common knowledge of rationality, the relative likelihood of signals matters. (Yet

the data patterns will suggest that most initial departures from BNE predictions cannot be

attributed to statistical issues.) Third, although our game is ‘logically equivalent to’ the task

of social inference, that does not mean that we have tested responses to more naturalistic

social inference. Perhaps people avoid neglecting redundancy when seeing groups of people

reveal their beliefs about best behavior rather than adding numbers. Or conversely, perhaps

the experiment lays bare the logic of redundancy in a way that no real-world situation would,

so that the experimental results under-estimate real-world redundancy neglect. As such, we

view this experiment only as a first attempt to move herding experiments towards more

realistic observation structures.

We conclude the paper in Section 6. We first discuss further how our experiment fits into

other research that studies a broader array of herding environments. We reiterate that the

multi-file treatment is not designed to provide evidence that BNE fails in a consequential

way. (But fail it does.) Rather, our aim is to shift focus from very special settings where

BNE happens to be difficult to distinguish from intuitive imitative behavior towards the far

more common settings in which BNE predicts behavior different from intuitive behavior.

Our data show that consideration of different and seemingly more realistic social-learning

environments may lead to very different conclusions about BNE’s fit as well as about the

efficiency of social outcomes. We conclude Section 6 and the paper by discussing how some

of the traditional models of limited rationality proposed in the behavioral game theory

literature have difficulty accounting for our results.

2 Experimental Design

In each of the two experimental treatments, “single-file” and “multi-file”, twelve participants

interact. In each period t = 1, ..., T , one participant in the single-file treatment, and four
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participants in the multi-file treatment, receive private information. T = 24 in the single-

file treatment, and T = 6 in the multi-file treatment, in order that each participant in

each treatment receive private information exactly twice. Each participant’s information is

generated by simulating 100 coin flips that are mutually independent as well as independent

of all other random draws in the experiment. The signal of participant i in period t comes

from the difference between the number of heads and the number of tails of this participant’s

current set of coin flips. Upon receiving his or her signal, the participant makes an “entry”

ei,t, whose payoff

πi,t = max{0, 24− 0.25× |ei,t − tari,t|}, (1)

depends upon the target tari,t, given by the sum of all signals in periods 1 through t−1 plus

the participant’s own signal. That is, in the single-file treatment, the target is simply the sum

of signals up to the current period. In the multi-file treatment, participant i’s target excludes

signals of the other three participants moving concurrently.4 The payoff function penalizes

deviations from the target in a linear fashion up to the point where a participant’s entry

lies 96 away from the target, beyond which there is no punishment for further error.5 Upon

completion of each period, all participants receive an updated list of all previous entries.

Our social-learning environment corresponds to the logical structure of three different

types of observational-learning settings. First, it approximates the standard model of two-

state social learning when the action space is the continuum such that actions reveal poste-

riors. Expressed in log-likelihood-ratio terms, each player in such a model would optimally

add her private belief (the log likelihood ratio of her signal) to her predecessor’s posterior.

Second, our experimental setting approximates a situation with a binary state about which

4Including these three signals would not change the optimal strategy in the game.
5Despite facing flat incentives, participants whose guesses veer way off target lack any obvious alternative

strategy to simply providing their best guess. Missing the target by more than 96 is a substantial error:
because the standard deviation of a player’s signal is 10, and that of the target in period t is 2

√
25t in single-

file and 2
√

(t− 1)100 + 25 in multi-file, both of which lie below 49 for each t, a participant who simply
entered her signal would make a less substantial error more than 95% of the time.
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each person receives a signal corresponding to 100 coin flips, where each flip is extremely

weakly correlated with the true state. For example, flips might land heads 51% of the time in

State 1 and 49% of the time in State 2. With nearly equal beliefs over the likelihood of two

states, Bayesians would update in a manner that is approximately linear in the difference

between heads and tails realizations. In this sense, the experimental design also encapsulates

the salient features of social learning under weak private signals. The signal structure also

lends itself to a third, direct interpretation under which the value of some asset is literally

the sum of the signals. This “wallet-game” signal structure has been tested in other ex-

perimental settings (as a form of common-values auctions (Avery and Kagel (1997)) and

corresponds to situations in which separate people observe the value of separate components

of an asset—e.g., people care about the sum of everyone’s money but only know the contents

of their own wallets. Since the best guess for the final sum coincides with the running total,

this interpretation works equally well for a target equal to the sum of all signals as it does

for the sum of all present and past signals.6 Finally, a potential attraction of using our

simple arithmetic set-up is that the underlying model speaks to a new set of applications—

social learning games where information about the target is fully revealed by the sequence

of consecutive actions.

The 168 participants are students at University College London. Seated at visually

separated computer terminals, they first receive and read the experimental instructions and

complete a brief understanding test before beginning the computerized games.7 In seven

of the 14 sessions, participants play the single-file game, and the remaining 7 sessions they

play the multi-file game. Each session includes 12 participants who play either single-file or

multi-file three times in a row, resulting in a total of 21 repetitions of each of the two games.

Because participants receive no feedback about the true value of the target until after all

6In the context of social learning, Çelen and Kariv (2005) model the state in this way—as the sum of
all signals—yet employ a binary action space and payoff functions with the property that players care only
about the state’s sign rather than its magnitude.

7The experiment uses z-Tree (Fischbacher (2007)). The instructions are available in Online Appendix 2.
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decision-making, the experimental design does little to promote learning across the three

games per player and precludes us from addressing learning across repetitions. Nevertheless,

Appendix A includes additional results that separate the data between the three games per

session.

To test the instructions, and in order to ascertain whether participants could complete

the desired number of games in the ninety minutes allotted to the experiment, we initially

piloted the experiment. The first pilot sessions revealed a lack of sufficient time for our

desired four games per treatment, but sufficient time for three games. We therefore changed

our experiment to include only three games, and made some minor alterations to instructions,

post-experimental questionnaire and the payment procedure. We then ran one more pilot

on each treatment, after which we changed no other facets of the experiment. The data of

the pilot sessions are not, and were not meant to be, included in the data analysis.

Our primary hypothesis was that participants in both experiments would neglect re-

dundancy by explicitly overcounting early actions and thereby implicitly overcounting early

signals. Despite our lack of a formal specification of redundancy neglect more general than

BRTNI when designing the experiments, we hypothesized that participants’ entries would

drift above or below their targets in a manner predictable from first-period signals. BRTNI

predicts such “momentum”, as do many other types of overcounting. Specifically, we hy-

pothesized that positive (negative) first-period signals would be predictive of the event that

later entries lie above (below) their targets. This would be violate BNE and other rational-

expectation predictions. In addition, we hypothesized that participants in the multi-file

treatment would not anti-imitate as per BNE, leading them to implicitly overcount early

signals. Because BNE in the single-file game lacks anti-imitation, we anticipated that devi-

ations from BNE would be stronger in the multi-file game. If so, then players would earn

especially meager payoffs in the multi-file treatment.

Because extreme redundancy neglect might generate entries so large that they could not

plausibly be near the target, we expected that at least some participants would recognize
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that something was amiss and employ some form of correcting behavior. In addition, BRTNI

players would understand that entries whose magnitudes exceed 100 could not possibly reflect

private signals alone. For neither case did we formulate hypotheses on how participants would

adjust their behavior. Rather than to study such mechanisms, our aim was to explore the

presence of redundancy neglect, in a setting designed to be inhospitable to it. Our statistical

analysis thus sticks closely to the a priori formulated empirical questions.

3 Descriptive Analysis of the Single-File Treatment

Figures 1 and 2 show the evolution of entries across periods in the single-file game through

the mean and median, respectively, of the absolute values of entries and targets across the

21 single-file games.8

Figure 1: Single-file mean absolute entries and targets

8By using absolute values of each entry, the figures treat positive and negative entries symmetrically.
One may worry about a potential bias towards making positive-valued entries, but such a bias cannot be
discerned in our data. In the single-file treatment, the random signals happen to be negative (49%) more
often than positive (43%), leading to an overall tendency towards negative entries (56% negative, versus
41% positive). The asymmetry in signals is particularly strong in t = 1, where 15 out of 21 (71%) of signals
happen to be negative.
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Figure 2: Single-file median absolute entries and targets

Figure 1 shows that after a few periods in which the mean entry nearly coincides with the

mean target, a large disparity emerges before swiftly vanishing. The underlying fluctuation

of entries derives solely from one game, Game 34. In it, several participants (those in periods

3, 4, 7, 9, 10) act like BRTNI by adding up all previous entries, running entries up above

1800 before subsequent players make corrections by choosing entries near zero. Although

this episode strongly affects the mean across all 21 games, Game 34 is unusual: Figure 2

shows that across games the median entry closely tracks the median target. Overall, mean

and median entries in the single-file game depart only mildly from Nebi play, namely from

best responding to BNE play from everyone else. The tables in Online Appendix 1 provide

a full account of all raw data in each game, showing that in three of 21 games all entries

nearly coincide with their targets.9

But, as Game 34 indicates, there are some systematic deviations from optimal behavior,

including redundancy neglect. In Table 1 we organize the individual entries by classifying

them according to their exact consistency with the Level-k family of models. In our games,

9In one game, all entries match targets exactly; in another, the same would be true but for someone who
flips the sign of his or her private signal; in the third game, someone appears to have made the mildest of
arithmetic mistakes (mis-summing −36 and −8 to −46).
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several members of this family correspond to natural prototypical behaviors: “fully cursed”

behavior is equivalent to Level 1 (following only one’s own signal); BRTNI (full redundancy

neglect) coincides with Level 2; best responding to BRTNI/Level 2 is Level 3; and Nebi in

period t agrees with Level k for k > t− 1. For each model, the table reports the number of

decisions consistent with the model’s specified strategy.10

10Because participants move twice per game, in the second half of the game they may treat their own past
actions differently than those of other players. Due to the subtlety of this asymmetry, we adopt expansive
definitions of cursed, BRTNI, Level-3 and Nebi play, coding an action as consistent with Level-k regardless
of whether players treat their past actions differently than those of other players. Likewise, we code an entry
as consistent with Level-k if the player best responds to the beliefs that others play a Level-(k− 1) strategy
and that these others treat their own prior actions the same as they would treat entries by other players.
Altogether, this necessitates allowing for two different versions of fully cursed and Nebi strategies (accounting
for own previous signal versus not), three different versions of BRTNI (ignoring multiple entries per player,
accounting only for own previous entries, and accounting for own and others’ previous entries) and four
different versions of Level-3 (ignoring multiple entries per player, accounting only for own previous entries,
accounting for own and others’ previous entries but ignoring that others account for their predecessors’
previous entries, and full accounting for all previous entries). In all cases the simplest version of the Level-k
model has the highest consistency rate; allowing for the more sophisticated versions makes only a minor
difference.
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Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 21 21 21 21 0

t=2 1 18 18 18 2

t=3 1 6 14 14 2

t=4 1 5 0 15 2

t=5 1 2 0 17 1

t=6 2 1 1 15 3

t=7 1 1 0 17 2

t=8 1 1 0 17 3

t=9 1 2 0 18 1

t=10 0 1 0 14 6

t=11 3 1 0 11 6

t=12 1 0 0 14 6

t=13 4 0 0 16 3

t=14 4 1 0 14 5

t=15 0 0 0 15 6

t=16 3 0 0 16 3

t=17 1 1 0 20 0

t=18 2 0 0 15 5

t=19 1 1 0 19 1

t=20 0 0 0 18 3

t=21 0 0 0 12 9

t=22 1 0 0 15 6

t=23 3 0 0 17 4

t=24 2 2 0 17 2

Total in t ≥ 3 33 25 15 246 79

Total in t ≥ 4 32 19 1 332 77

Total 55 64 54 385 81

Table 1: Single-file entries consistent with different behavioral models

14



In each of the first three periods, where two or more models make the same prediction,

Table 1 codes participants as following more than one type. From period 4 onwards, however,

the different models are identified by different predictions except in a small number of cases

(20 of 441, or 4.5%, of classifications) where serendipity produces signals and previous entries

that align just so. The behavior of 16 of the 81 participants classified as “Other” can be

attributed to one of the models in the table by allowing for the possibility that the participant

inadvertently flips the sign of his or her private signal, the model’s predicted action minus

the signal (namely his or her inference from others according to the model), or both.

A striking feature of the table is that the large majority of entries is consistent with Nebi

play, i.e. näıve BNE play, or equivalently with a Level-k model where k > t − 1. Of the

504 entries in our data set, 385 are consistent with this prediction, and the proportion is

constant in t even in the latter half of games. Such sophistication stands in stark contrast

to all other estimates of level-k of which we are aware.11 The single-file game is so simple

that participants appear to understand the logic of BNE—they simply add their own signal

to the previous period’s entry—and can apply it even in late periods in the game. This

behavioral rule does not require anti-imitation and, in the single-file game, is optimal if and

only if everyone else follows it. Because not everyone does adhere to Nebi play, for late

movers the Nebi strategy is not empirically optimal. Indeed, in the last 21 rounds, while

75% follow their Nebi strategy, only 17% hit their target—because the play has previously

departed from Nebi play. While playing Nebi may be arithmetically simple, best-responding

to predecessors who play differently presents greater challenges.

Our best guess is that exactly zero participants think in terms of Level 3 in this game.

Of the 504 choices, 54 match Level 3. But 53 of those occur in t = 1 and t = 2, where

Level-3 play coincides with Level-2/BRTNI and Nebi play, or in t = 3, where it agrees with

11Nebi’s high hit rate reveals that the vast majority of participants do not round their entries to multiples
of 10, or similar. To the extent that a minority of participants do round, we would under-estimate Nebi’s
consistency with the data.
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Nebi. Of the 441 choices beginning in t = 4, Nebi play appears 332 times, and Level-3 just

once.12

The table also shows that BRTNI’s precise prediction of strong redundancy neglect at-

tracts support only in the earlier rounds, and only in a relatively small proportion of cases.

Moreover, Appendix A shows that BRTNI’s hit rate tends to decrease in the participants’

experience of playing the game.

This, however, still leaves open the possibility that other forms of redundancy neglect

occur—as we discussed above, a large set of behaviors would lead to overcounting. We return

to the issue of overcounting in Section 5 and here merely document that the point prediction

of BRTNI often gets the qualitative difference from BNE right: of the 377 entries off target,

270 (72%) veer off in the direction of BRTNI.13 Figure 3 shows the distribution of entries

relative to their targets. Even apart from its outliers, the figure illustrates an asymmetry in

the deviation from target, with a tendency towards BRTNI (for scaling purposes, the figure

excludes six outliers in the right tail that deviate in the same direction as BRTNI).

Altogether, the evidence in the single-file game suggests that most participants employ

the Nebi strategy. Thus, they are able to use the actions of others to their own benefit.

Average earnings are GBP 18.25, whereas simply relying on one’s own signal would pay

GBP 16.99 on average. Nevertheless, the presence of a small minority of participants who

do not follow BNE—and tend to neglect redundancy—drags overall behavior away from the

target. Under the maintained hypothesis that participants use their own signals correctly,

we can decompose the entry ei,t of a participant i with signal si,t as ei,t = si,t + (ei,t − si,t);
12The 332 surely exaggerates how many people were thinking through the logic of BNE in choosing their

actions. But even the single hit of Level 3 is exaggerated: it occurs in Round 6 of Game 40, where the Level-3
prediction coincidentally matches the player’s signal. Because this same participant later on in Round 18
also plays her own signal, where it differs from the Level-3 action, she appears to be cursed (Level 1) instead
of Level 3.

13As described in Footnote 10, we frequently report (as we do here) a simplified variant of BRTNI that
does not fully match BRTNI’s proper definition, which would have her assume that any predecessors’ second
move is the sum of that predecessor’s two signals, rather than simply her second signal. It matters little for
our analysis here or elsewhere whether we use the full or simplified definition.
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Figure 3: Single-file entry minus target. Positive values indicate deviations of the same sign
as BRTNI’s deviation. For scaling purposes, the 127 entries on target (zero deviation), and
six outliers in the right tail, are not depicted.

the term ei,t − si,t measures what the participant infers about the target from predecessors.

We consider a class of alternative rules e′i,t(γ) := si,t + γ(ei,t − si,t), where γ ≥ 0 is shading

factor, and identify the value of γ that maximizes the participant’s payoff. A value of γ < 1

indicates that the participant overshoots the target by over-inferring from predecessors; a

value of γ > 1 indicates that the participant undershoots the target by under-inferring

from predecessors. For all participants, we find that γ = 0.69 maximizes payoffs: the

average participant over-infers, and would have earned GBP 18.51 (instead of GBP 18.25)

by shading her inference by 31%. Yet this disguises very substantial heterogeneity, namely

between those who exhibit Nebi play and those who do not. For non-Nebi players, we find

that γ = 0.28 would have earned GBP 17.16 (instead of GBP 15.12). For those who play

the Nebi strategy, γ = 0.90 would have earned them GBP 19.33 (instead of GBP 19.28).
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4 Descriptive Analysis of the Multi-File Treatment

Figures 4 and 5 are the multi-file analogs to Figures 1 and 2. They depict the mean and

median entries relative to their targets across periods. The median in period t of Figure 5

corresponds to the median across the 21 games of the average of the four period-t entries,

while the mean in period t of Figure 4 represents the mean across the 21 games of the average

of the four period-t entries.

Figure 4: Multi-file mean absolute entries and targets

Players in the multi-file games deviate much more from their targets than players in the

single-file games, and later players do not correct earlier players’ errors. Like in most single-

file games, in most multi-file games the (absolute) target lies between 10 and 70 in the final

period. Yet participants make entries whose magnitude is higher by an order of magnitude.

The average absolute t = 6 entry surpasses 600 and this is not driven by outliers: in a

majority of games, the final-period average exceeds 500. The deviations from target begin

to accumulate in t = 3, the first period in which redundancy neglect can have an impact,

and by t = 5 most games have mean entries that outstrip their targets by tenfold.

Although participants make choices that are too extreme on average, in several games
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Figure 5: Multi-file median absolute entries and targets

a subset of players do appear to recognise that entries are too extreme and take corrective

action. Typically, however, they do not influence the crowd’s belief enough to prevent later

participants from making even more extreme entries. Table 2 gives an example in the form

of Game 17.14 The table shows for each period the sum of previous signals (
∑4

i=1

∑t−1
t′=1 si,t′)

as well as each player’s signal si,t (in brackets)—summing the two gives the target—as well

as the player’s entry.

∑4
i=1

∑t−1
t′=1 si,t′ s1,t e1,t s2,t e2,t s3,t e3,t s4,t e4,t

t=1 [0] [-8] -8 [-10] -10 [-6] -6 [6] 6

t=2 [-18] [-2] -20 [-6] -36 [16] 2 [0] -18

t=3 [-10] [-4] -24 [-8] -98 [6] -12 [-6] -96

t=4 [-22] [8] -24 [-8] -150 [-6] -34 [6] -26

t=5 [-22] [4] -16 [-2] -40 [6] -584 [2] -534

t=6 [-12] [-18] -34 [-16] -1654 [10] -2046 [-4] -1732

Table 2: Signals and entries in Game 17

14We selected this game as typical in its variability of behavior; Online Appendix 1 provides a full account
of the data.
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Entries in the first two periods equal or approximate the targets, as most reasonable

models would predict. From period 3 onwards, however, Nebi play prescribes anti-imitation:

the players should realize that the negative entries in t = 2 share a common source in the

form of t = 1 entries. Accounting for this redundancy, while at the same time gleaning

information about t = 2 signals from t = 2 play, requires t = 3 players to imitate entries in

t = 2 and anti-imitate those in t = 1. Yet two of the four players in t = 3 do not follow

this logic and report entries consistent with BRTNI: they simply add their signal to the

sum of previous entries. In t = 4, three of the four players behave in ways more moderate

than BRTNI, and only one player chooses an extreme entry of −150, consistent with further

redundancy neglect. In t = 5 and t = 6, several entries are even more extreme. One of

them, the entry of −2046 in t = 6, is actually Nebi play from a participant who, while rather

smart, makes the game’s most severe prediction error! Overall, the example shows that in

spite of some players’ attempts to moderate behavior along the way, the significant number

of strong redundancy neglectors propagates extreme beliefs.

For comparison with single file, the following table reports the consistency of the data

with the various members of the Level-k family of models. It too indicates that these

models fit the data very differently in the multi-file treatment than they do in the single-file

treatment.
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Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 81 81 81 81 3

t=2 3 67 67 67 14

t=3 3 18 29 29 37

t=4 4 22 0 16 44

t=5 1 29 0 6 49

t=6 1 8 0 2 73

Total in t ≥ 3 9 77 29 53 203

Total in t ≥ 4 6 59 0 24 166

Total 93 225 177 201 220

Table 3: Multi-file entries consistent with different behavioral models,

Table 3 shows that Nebi fits the data well in t = 1 and t = 2, periods in which its

prediction coincides with BRTNI and Level 3, and even in t = 3, where it makes a different

prediction than BRTNI. Indeed, 63% of entries in the first three rounds hit their targets,

and in the third game of each session, Nebi play, which includes anti-imitation, occurs

more frequently than the simpler BRTNI play. In periods 4, 5, 6, Nebi involves intricate

imitation as well as anti-imitation. The fact that 24
252
≈ 10% of decisions in the second half

of the experiment match Nebi demonstrates a high degree of sophistication amongst some

participants. However, in each of t = 4, 5, 6, BRTNI fits a higher proportion of entries than

Nebi or the other models.15

Just as in the single-file treatment, BRTNI behavior diminishes with experience (see the

tables in Appendix A). But regardless of whether participants follow BRTNI or another form

of redundancy neglect, they make far too many extreme entries, which Appendices A and B

15Of the 220 unexplained observations, 11 can be explained by enriching one of the proposed models by
allowing participants to flip signs of their private signals or flip the signs of what they infer from their
predecessors, or both.
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document for nearly all games.

Overall, only 6% of entries from the final three periods hit their target. Figure 6 depicts

these deviations from target. Just like in the single-file treatment, BRTNI predicts the

systematic direction of the deviations: 78% of deviations lie on BRTNI’s side of zero.

Figure 6: Multi-file entries off target. Positive values indicate deviations of the same sign
as BRTNI’s deviation. For scaling purposes, the 172 entries on target (zero deviation), 56
outliers in the right tail, and 4 outliers in the left tail are not depicted.

Altogether, the multi-file treatment induces strong herding that leads participants

severely astray. 44% of the data are consistent with BRTNI, and much more are consistent

with a general propensity to neglect redundancy, which leads to ever increasingly extreme

and off-target predictions. Participants in later periods make entries which reveal that they

estimate the targets to lie in extremely unlikely regions. Such misestimation comes at a price:

participants in the last three periods earn an average of GBP 8.90, whereas the simple strat-

egy of reporting one’s own signal would have earned GBP 16.60. Across all periods in the

multi-file treatment, participants earned an average of GBP 14.93, whereas reporting their

signals would have earned them GBP 18.32. Not only do participants learn sub-optimally,

but they mislearn so acutely that they would be better off without the possibility of learning!

To our knowledge, this is the first experiment to document such an effect.
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Finally, Figure 7 illustrates how early signals come to excessively influence later play by

establishing a relationship between the sign of t = 1 signals and later deviations from target.

It depicts the average entries and targets (not their absolute values) in multi-file games

whose first four signals sum to something positive versus the average entries and targets in

multi-file games whose first four signals sum to something negative. Because the signals are

iid, the sign of the first four signals does not predict later signals, and, hence, the targets

(dotted line) remain stable on average after t = 1. The entries, however, differ dramatically

depending upon the sign of the sum of first-period signals. Early positive signals generate

positive momentum whereby later entries tend to exceed their targets, increasingly so over

the course of the game. Figure 20 in Appendix A gives an analogous picture for single file

that shows no significant momentum.

Figure 7: Average entry and target in multi file, separate by period and by the sign of the
sum of t = 1 signals in the same game.

Overall, whereas entries approximate targets fairly well in the single-file treatment whose

observation structure is standard in the literature, we find much stronger evidence for redun-

dancy neglect in the multi-file treatment. This discrepancy suggests that our experimental

setup per se does not induce strong deviations from target; rather, only in the multi-file
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treatment in which sequential rationality predicts anti-imitation do participants strongly

and reliably fail at rational inference.

5 Regression Analysis

In this section, we present linear regressions that test for both the presence and of redundancy

neglect and anti-imitation. We focus on the multi-file treatment and only briefly report

results on the single-file treatment, where three-quarters of participants adhere to Nebi play.

Although our regressions organize the data in a simple manner, because they impose a

rather rigid structure on how players react to one another, they fail to address the substantial

heterogeneity in behavior identified in Section 4. For example, our linear-in-entries regres-

sion framework does not accommodate the possibility that players in period t may follow

a moderate action by one previous player in period t′ while at the same time ignoring an

extreme action by another previous player in period t′′. Moreover, it does not account for the

co-existence of different sets of players prone to redundancy neglect to different degrees. The

linear regressions merely summarize the central tendencies in behavior: even if participants

in the multi-file treatment rarely match Nebi’s prediction precisely, they may still show a

propensity to anti-imitate where appropriate. Likewise, even if BRTNI precisely fits only

a minority of data, the regressions may uncover that players have a general tendency to

over-imitate.

Our first set of results investigates over-imitation in the multi-file treatment by describing

the connection between early signals and later entries. This parallels Figure 7’s nonpara-

metric description. We regress the participants’ period-t entries, ei,t, on the period-t signals

they receive, si,t, as well as on the sum of all signals in every prior period t′, st′ =
∑4

i=1 si,t′ .

Nebi predicts that all coefficients should equal one, since all signals are correctly accounted

for in equilibrium.16 BRTNI makes the same predictions for t = 1 and t = 2. For periods

16Nebi/BNE also predicts that a constant regressor has a zero coefficient, and we therefore omit the
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t ≥ 3, BRNTI makes two distinct qualitative predictions.17 First, it predicts that for each

i and t′ < t − 1, the estimated effect of st′ on ei,t should exceed one. Second, it predicts

that for each i and t′ < t, the effect of st′ on ei,t+1 should exceed the effect of st′ on ei,t.

Moreover, Eyster and Rabin (2014) show that any rule whereby players neglect redundancy

makes the first prediction above. In addition, any rule like BRTNI whereby players correctly

weight their immediate predecessors, and fail to anti-imitate, makes the second prediction.

Since signals are exogenous and mutually independent in our design, these hypotheses can

be well tested with a regression; all coefficients have causal interpretations. Table 4 presents

the regression results, where player indexes are omitted from the dependent variables et for

conciseness.

e1 e2 e3 e4 e5 e6

s1 - 1.025 (0.056) 2.983 (0.426) 3.073 (0.832) 13.513 (3.113) 19.609 (5.447)

s2 - - 0.999 (0.231) 3.951 (1.307) 9.112 (2.459) 10.101 (10.426)

s3 - - - 1.066 (0.914) 6.711 (3.912) 10.362 (7.240)

s4 - - - - - 4.786 (3.750) -1.553 (9.511)

s5 - - - - - 3.683 (5.912)

st 0.912 (.070) 1.067 (.106) 1.359 (0.812) -1.555 (2.358) -0.702 (7.238) 1.195 (15.480)

R2 0.83 0.90 0.69 0.25 0.44 0.19

obs. 84 84 84 84 84 84

Table 4: Multi-file regressions of period-t entries on current and past signals. Standard errors
in parentheses are clustered by session.

For t′ = 1, 2, signals in t′ affect the entries in t′ + 1 with weights of approximately

one, as predicted by BNE and BRTNI. This suggests that on average, players in early

rounds correctly imitate their immediate predecessors. However, these same signals attract

estimated coefficients far larger than one in periods t′ + 2, t′ + 3, . . . (the smallest point

constant. Empirically, the inclusion of a constant regressor leaves the results essentially unchanged.
17BRTNI predicts that for each i and t, ei,t = si,t +

∑
t′<t et′ , where et′ =

∑4
i=1 ei,t′ . This prediction

implies that ei,t = si,t +
∑

t′<t 5t−1−t′st′ , so that third-period entries correctly weight s2 but quintuple-count
s1; fourth-period entries correctly weight s3, quintuple-count s2, and overcount s1 twenty-five fold; etc.
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estimate being 3.0 and the largest 19.6). In addition, along each of the first rows in the

table, the estimated coefficients increase monotonically, as predicted by BRTNI and many of

its relatives in the family of redundancy-neglect models. The fact that participants implicitly

over-count early signals so dramatically illustrates how far behavior deviates from Nebi. Late

actions implicitly weight the early signals very heavily, consistent with a substantial degree

of redundancy neglect. For t′ = 3, 4, the regressions’ large standard errors render all of the

estimated coefficients statistically insignificant. Indeed, in these periods, participants’ own

signals do not have significant effects on their actions.

Table 5 presents analogous regressions for the single-file treatment. To readily compare

coefficients with the multi-file treatment, we group periods t = 1, . . . , 4 into “super-period”

t̃ = 1, periods t = 5, . . . , 8 into super-period t̃ = 2, and so forth. This coarse time structure

suppresses the sequencing of moves within super-periods in order to facilitate comparison of

the coefficients to those of Table 4. We regress the participants’ super-period-t entries, ei,t,

on the period-t signals they receive, si,t, as well as on the sum of all signals in every prior

super-period t
′
, st′ =

∑4
i=1 si,t′ . Table 5 presents the regression results, where, as in Table

4, player indexes are omitted from the dependent variables et for conciseness.

e1 e2 e3 e4 e5 e6

s1̃ - 1.302 (0.697) 5.751 (4.849) 1.672 (1.027) 1.664 (.701) 0.680 (1.897)

s2̃ - - 1.036 (0.875) 1.211 (1.166) 1.376 (.956) -1.942 (.911)

s3̃ - - - 1.502 (.558) 1.584 (.289) 0.017 (1.112)

s4̃ - - - - 0.496 (.477) 2.553 (.589)

s5̃ - - - - - -0.382 (1.145)

st 0.782 (.155) 1.380 (.437) 0.017 (2.933) 0.500 (.569) 1.228 (.388) -1.337 (2.358)

R2 0.18 0.25 0.16 0.41 0.64 0.20

obs. 84 84 84 84 84 84

Table 5: Single-file regressions of super-period-t entries on current and past signals. Standard
errors in parentheses are clustered by session.
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BNE/Nebi play predicts that all coefficients should equal one, since all signals are cor-

rectly accounted for in later periods. Despite most point estimates across the first five

super-periods exceeding one, the differences from one are statistically insignificant. (In the

sixth super-period, two of the estimated coefficients of the effect of past signal on actions take

the wrong sign, and all have wide confidence intervals.) Moreover, the regressions provide

no indication that early signals exert increasingly strong influence on later and later actions.

We now turn to a direct test of anti-imitation. When players move multi-file, BNE

calls for them to anti-imitate some of their predecessors in order to avoid inefficiently over-

counting early signals. Our next regression looks for evidence of anti-imitation in the multi-

file treatment; since Nebi, BRTNI, and most other models of interest do not predict anti-

imitation in the single-file treatment, we exclude it from this part of the analysis.18 We

regress participants’ period-t entries ei,t on their period-t signals si,t and on lagged entries,

et′ with t′ < t. BNE and Nebi predict a coefficient on si,t equal to one and coefficients on et′

that oscillate and diverge, with predicted levels of 1,−3, 9,−27, 81 for t′ = t − 1, t − 2, t −

3, t− 4, t− 5, respectively. BRTNI predicts that every entry should get the same coefficient

of 1. Other rules embedding different forms of redundancy neglect predict that all of the

coefficients should be non-negative, and that their sum should exceed one. Table 6 shows the

regression results, where once again player indexes are omitted from the dependent variables

et for conciseness.

18Note, however, that Level-3 does predict anti-imitation in the single-file treatment.
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e1 e2 e3 e4 e5 e6

e1 - 0.925 (0.041) 0.088 (1.057) - 3.908 (7.569) -11.623 (8.605) 38.315 (16.924)

e2 - - 0.700 (0.300) 2.037 (1.918) 3.102 (2.214) -12.636 (4.502)

e3 - - - -0.011 (.307) 0.456 (.403) 0.928 (.857)

e4 - - - - 0.519 (.149) 0.299 (.339)

e5 - - - - - 0.254 (.122)

st 0.912 (.070) 0.956 (.104) 1.245 (0.663) -0.611 (2.515) -1.277 (3.817) -1.460 (13.209)

R2 0.83 0.95 0.70 0.24 0.54 0.28

obs 84 84 84 84 84 84

Table 6: Multi-file regressions of period-t entries on current signals and past entries. Standard
errors in parentheses are clustered by session.

The coefficients clearly differ from the anti-imitation pattern predicted by BNE/Nebi

play: of the six predicted negative coefficients, four have estimated positive signs. Altogether,

most coefficients in the table are estimated to be insignificantly different from zero, and most

differ significantly from Nebi’s prediction. Anti-imitation should appear most simply in the

third period, where BNE/Nebi call for it for first time. Given behavior in t = 1 and t = 2,

participants in t = 3 should anti-imitate the actions in t = 1. However, the coefficient of

e1 in the regression of e3 is close to zero and differs significantly from the Nebi-predicted

value of −3. Overall, the regressions of Table 6 confirm that the central tendency of the

data patterns does not include anti-imitation.

6 Conclusion

Our experiments are designed to separate possible errors in inference that one may make

when observing others’ actions from possible unrelated errors in Bayesian updating. We

find considerable amounts of inference errors, but their prevalence and importance differ

between our two treatments. In the single-file treatment, most participants behave in a

manner consistent with BNE, and they benefit from learning from others. Nevertheless,
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collectively they exhibit statistically significant degrees of excessive imitation. In the multi-

file treatment, participants engage in substantial over-imitation that produces outcomes

dramatically different from BNE predictions. Participants commit inference errors in such

abundance that the average participant would earn more if she did not have the opportunity

to learn from others’ behavior and simply entered her signal.

We attribute the deviations from optimality mainly to redundancy neglect, through which

people fail to appreciate that their predecessors already incorporate prior observations. As

perhaps redundantly discussed in several earlier sections, this type of behavior can take many

different precise forms. Eyster and Rabin (2010) model the extreme version of BRTNI players

who fully neglect that their predecessors’ actions incorporate inferences made from their

own predecessors; BRTNIs interpret every predecessor’s action at face value, as reflecting

that player’s private information alone. This prediction dovetails with prior experimental

literature on social-learning games, in which taking others’ play at face value features as one

of the most discussed behavioral patterns, alongside a pattern of too frequently following

one’s own signal. (See, inter alia, discussions by Kübler and Weizsäcker (2004) and March

and Ziegelmeyer (2015) on the connections and interplay of the two effects.) The finding

that people fail to think through how others think through still others’ behavior also relates

to large body of evidence from many different contexts on higher-order reasoning (see, e.g.,

the early contributions of Stahl and Wilson (1994) and Nagel (1995)).

Our experimental evidence adds to the discussion in two ways. First, our experiments

illustrate how errors in higher-order reasoning can lead people to neglect certain correlations.

Enke and Zimmermann (2015) provide evidence that experimental participants neglect the

correlation in signals when these signals draw upon a common source. By ignoring the

commonality of the underling source of information, participants in their experiment double

count that source, similar to how our experimental participants, by neglecting the redun-

dancy in their predecessors’ behavior, double count earlier participants’ actions.

Second, our experiment sheds light on several solution concepts in the behav-
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ioral/experimental literature that it was not designed to explore. For this reason, our

experiment might prove especially informative: we designed the game because of its eco-

nomic importance and the importance of a type of error in reasoning that only partly cor-

responds to these general solution concepts, rather than to vindicate or bash any one of

them. Variants of redundancy neglect that are weaker than BRTNI/Level 2 may clearly

better explain the behavior—and its consequences—than BNE, yet it is noteworthy that

overall BNE clearly outperforms any variant of cognitive-hierarchy or Level-k models that

we are aware of. Out of hundreds of choices observed, only once did behavior match Level 3

when failing to match Level 1 or Level 2. Indeed, far more behavior matched Level 22 than

Level 1 or Level 2, although of course we think that Level 22 is not the right conceptualiza-

tion. The data patterns also suggest that models which incorporate decision noise such as

Quantal Response Equilibrium (McKelvey and Palfrey (1996)) or noise-enhanced versions of

cognitive-hierarchy models like Camerer, Ho and Chong (2004) would fare no better: in the

games’ rich action spaces they would fail to match the data as frequently as does BNE, at

least in the single-file treatment.19 Not only would these models miss systematic deviations

made out or proportion to the errors’ low costliness, but their very raison d’être—the (gener-

ally quite compelling) notion that players who make mistakes may optimize with respect to

other players’ mistakes—may turn out backwards here because our many Nebi participants

very often fail to take into account their predecessors’ over-counting (or other mistakes).

Once again, we did not aim to test any of these models, and refrain from doing so ex post.

Yet as much as all of these models deserve credit for improving fit in many games, it may

also be worth noting examples such as our games in which the enhanced solution concepts

offer worse predictions than traditional solution concepts.

19In a related discussion, Goeree, Palfrey, Rogers and McKelvey (2007) show how random noise can
help overcome informational-externalities in social-learning games and how, therefore, QRE leads to greater
efficiency than BNE in traditional coarse-action settings. In our settings, because BNE yields the first best,
QRE can only lessen efficiency.
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A Additional tables and graphs

The following figures correspond to Figures 1, 2, 4 and 5, but depict behaviour in the first,

second, and third games of each session separately. In the single-file treatment, they show

that entries are more extreme in the first two games of each session than in the final game;

in the multi-file treatment, they show no discernible pattern.

The first three figures should be compared to Figure 1.

Figure 8: Single-file mean absolute entries and targets for first games

31



Figure 9: Single-file mean absolute entries and targets for second games

Figure 10: Single-file mean absolute entries and targets for third games

.
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The next three figures should be compared to Figure 2.

Figure 11: Single-file median absolute entries and targets for first games

Figure 12: Single-file median absolute entries and targets for second games
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Figure 13: Single-file median absolute entries and targets for third games

.
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The next three figures should be compared to Figure 4.

Figure 14: Multi-file mean absolute entries and targets for first games

Figure 15: Multi-file mean absolute entries and targets for second games
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Figure 16: Multi-file mean absolute entries and targets for third games

The next three figures should be compared to Figure 5.

Figure 17: Multi-file median absolute entries and targets for first games
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Figure 18: Multi-file median absolute entries and targets for second games

Figure 19: Multi-file median absolute entries and targets for third games

.

37



The following tables are the analogues of Table 1, broken down by game.

Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 1 5 5 5 1

t=3 0 4 3 3 0

t=4 0 4 0 3 0

t=5 1 0 0 5 1

t=6 1 1 1 4 1

t=7 1 1 0 5 0

t=8 0 1 0 5 1

t=9 1 1 0 5 0

t=10 0 1 0 4 2

t=11 2 1 0 2 2

t=12 1 0 0 3 3

t=13 2 0 0 5 1

t=14 1 0 0 4 3

t=15 0 0 0 6 1

t=16 2 0 0 6 0

t=17 0 0 0 7 0

t=18 1 0 0 3 3

t=19 1 1 0 6 0

t=20 0 0 0 5 2

t=21 0 0 0 4 3

t=22 1 0 0 5 2

t=23 1 0 0 6 1

t=24 1 1 0 5 1

Total in t ≥ 3 17 16 4 101 27

Total in t ≥ 4 17 12 1 98 27

Total 25 28 16 113 28

Table 7: Single-file entries consistent with different behavioral models for first games
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Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 0 6 6 6 1

t=3 1 2 6 6 0

t=4 0 1 0 5 2

t=5 0 1 0 6 0

t=6 1 0 0 6 0

t=7 0 0 0 6 1

t=8 1 0 0 7 0

t=9 0 1 0 7 0

t=10 0 0 0 4 3

t=11 1 0 0 4 2

t=12 0 0 0 6 1

t=13 1 0 0 6 0

t=14 1 0 0 5 2

t=15 0 0 0 6 1

t=16 0 0 0 4 3

t=17 0 0 0 7 0

t=18 1 0 0 6 1

t=19 0 0 0 7 0

t=20 0 0 0 6 1

t=21 0 0 0 5 2

t=22 0 0 0 4 3

t=23 2 0 0 5 2

t=24 1 1 0 6 0

Total in t ≥ 3 10 6 6 124 24

Total in t ≥ 4 9 4 0 118 24

Total 17 19 19 137 25

Table 8: Single-file entries consistent with different behavioral models for second games

39



Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 7 7 7 7 0

t=2 0 7 7 7 0

t=3 0 0 5 5 2

t=4 1 0 0 7 0

t=5 0 1 0 6 0

t=6 0 0 0 5 2

t=7 0 0 0 6 1

t=8 0 0 0 5 2

t=9 0 0 0 6 1

t=10 0 0 0 6 1

t=11 0 0 0 5 2

t=12 0 0 0 5 2

t=13 1 0 0 5 2

t=14 2 1 0 5 0

t=15 0 0 0 3 4

t=16 1 0 0 6 0

t=17 1 1 0 6 0

t=18 0 0 0 6 1

t=19 0 0 0 6 1

t=20 0 0 0 7 0

t=21 0 0 0 3 4

t=22 0 0 0 6 1

t=23 0 0 0 6 1

t=24 0 0 0 6 1

Total in t ≥ 3 6 3 5 121 28

Total in t ≥ 4 6 3 0 116 26

Total 13 17 19 135 28

Table 9: Single-file entries consistent with different behavioral models for third games
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The following tables are the analogues of Table 3, broken down by first, second and third

games.

Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 28 28 28 28 0

t=2 3 21 21 21 4

t=3 3 9 1 1 18

t=4 4 9 0 1 15

t=5 0 7 0 2 19

t=6 0 3 0 0 25

Total in t ≥ 3 7 28 1 4 77

Total in t ≥ 4 4 19 0 3 59

Total 38 77 50 53 81

Table 10: Multi-file entries consistent with different behavioral models for first games

Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 27 27 27 27 1

t=2 0 20 20 20 8

t=3 0 4 12 12 12

t=4 0 7 0 5 17

t=5 1 13 0 2 13

t=6 0 4 0 1 23

Total in t ≥ 3 1 28 12 20 65

Total in t ≥ 4 1 24 0 8 53

Total 28 75 59 67 74

Table 11: Multi-file entries consistent with different behavioral models for second games
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Period Cursed BRTNI Level 3 Nebi Other

(k = 1) (k = 2) (k = 3) (k > t− 1)

t=1 26 26 26 26 2

t=2 0 26 26 26 2

t=3 0 5 16 16 7

t=4 0 6 0 10 12

t=5 0 9 0 2 17

t=6 1 1 0 1 25

Total in t ≥ 3 1 21 16 29 61

Total in t ≥ 4 1 16 0 13 54

Total 27 73 68 81 65

Table 12: Multi-file entries consistent with different behavioral models for third games
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The following Figure 20 is analogous to Figure 7 but uses the single-file data. It shows the

between-game average entries and targets in single file and by period, separated according

to a positive versus negative sum of the first four signals in the same game. Apart from the

episode in Game 34, entries do no discernibly deviate from target. This also implies that

having a positive versus negative sum of early signals does not induce a systematic deviation

from target.

Figure 20: Average entry and target in single file, separate by period and by the sign of the
sum of t = 1, ..., 4 signals in the same game.
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