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Abstract

Minimum cost spanning tree problems connect agents efficiently
to a source when agents are located at different points and the cost of
using an edge is fixed. We propose a method, based on the concept of
marginal games, to generate all extreme points of the corresponding
core. We show that three of the most famous solutions to share the
cost of mcst problems, the Bird, folk and cycle-complete solutions, are
closely related to our method.
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allocations, reduced game, Bird solution, folk solution, cycle-complete
solution.

JEL Classifications: C71, D63

1 Introduction

Minimum cost spanning tree (mcst) problems model a situation where agents
are located at different points and need to be connected to a source in order
to obtain a good or information. Agents do not care if they are connected
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directly to the source or indirectly through other agents who are. The cost
to build a link between two agents or an agent and the source is a fixed
number, meaning that the cost is the same whether one or ten agents use
that particular link. Mcst problems can be used to model various real-life
problems, from telephone and cable TV to water supply networks.

The core of mcst problems has been and early focus of attention, with
Bird (1976) and Granot and Huberman (1981) showing that it is always non-
empty and Granot and Huberman (1984) providing an algorithm to generate
multiple core allocations. We present an improvement over these results
by providing a method that allows to obtain the full set of extreme core
allocations.

The method is based on the concept of marginal games (Núñez and Rafels
(1998)), where we assign an agent her marginal cost to join the grand coali-
tion, remove her from the problem and update the stand-alone costs of the
remaining coalitions: they can either keep their original stand-alone cost or
the stand-alone cost of them with the departing player, net of her cost share.
This reduction is itself a special case of the Davis-Maschler reduction (Davis
and Maschler (1965)). Given an ordering of the agents, repeating the process
until all players are removed allows to find an extreme core allocation.

This method or very similar ones have been implemented for the assign-
ment problem (Núñez and Rafels (2003)) and shortest path problems (Bahel
and Trudeau (2014)), among others. In the non-cooperative setting, a similar
approach consists in ordering buyers according to a given permutation and
letting them buy goods in that order (Pérez-Castrillo and Sotomayor (2002),
Vidal-Puga (2004))

The method does not work as well on all problems. Núñez and Rafels
(1998) provide sufficient conditions for the method to always generate ex-
treme core allocations. Under stricter conditions, we obtain the full set of
extreme core allocations1. These conditions are not satisfied by mcst prob-
lems. We are still able to prove that the method generates the full set of
extreme core allocations, using a representation of marginal games as mini-
mum cost spanning tree problems with priced nodes. This new problem is a
generalization of both mcst problems and Steiner tree problems (Hwang and
Richards (1992), Skorin-Kapov (1995)).

1A related approach is that of (Tijs et al., 2011), which also looks for extreme core
allocations given some lexicographic order. However, their approach is explicitely based
on the core constraints and not on marginal games.
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By taking the average of these extreme core allocations for all permuta-
tions, we obtain a very natural cost sharing solution, that corresponds to the
barycenter of the core.2 If the game is concave, it also corresponds to the
Shapley value. We show that our procedure is very close to three well-known
cost-sharing solutions for mcst problems.

First, if we only consider permutations that correspond to the order in
which we connect agents in an optimal network configuration, we obtain
directly the Bird solution (Bird (1976)). The Bird solution was the first
solution to be shown to always be in the core and it is known for its simplicity,
as we may assign cost at the same time as we construct an optimal tree.

Secondly, we show that for elementary problems (where all costs are either
0 or 1), our solution corresponds to the cycle-complete solution (Trudeau
(2012)). The cycle-complete solution is obtained by modifying the cost of
some links before taking the Shapley value of the corresponding cost game:
we reduce the cost of edge (i, j) if there exists a cycle that goes through
nodes i and j and such that its most expensive edge is cheaper than the
direct edge (i, j). The modification is enough to make the corresponding cost
game concave, and thus the Shapley value stable.

Thirdly, we show that for elementary problems, if we modify the game
to make it monotonically increasing (so that an agent never reduces the cost
when joining a coalition) before applying our solution, we obtain the folk
solution (Feltkamp et al. (1994), Bergantiños and Vidal-Puga (2007)). The
folk solution is obtained in the same way as the cycle-complete solution, but
we look at paths instead of cycles. An interpretation of our result is that
the folk solution is the barycenter of the non-negative core (the set of stable
allocations such that no agent is subsidized).

Given that for the cycle-complete and folk solutions, we obtain cost shares
for a general problem by decomposing it in a series of elementary problems,
the results on their correspondence with our solution do not hold in general.
However, our method provides a new way to extend the cycle-complete and
folk solution from elementary problems to more general mcst problems.

The paper is divided as follows: Section 2 defines the minimum cost
spanning tree problems. In Section 3 we describe our method and show that
it generates extreme core allocations. We show that it generates the full set
of extreme core allocations in Section 4. Links with popular cost sharing

2This is an abuse of language, as some permutations might yield identical extreme core
allocations.
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solutions are explored in Section 5. Section 6 contains some discussions.

2 The model

A (cost sharing) game is a pair (N,C) where N = 1, . . . , n is a nonempty,
finite set of agents, and C is a characteristic function that assigns to each
nonempty coalition S ⊆ N a nonnegative cost C(N) ∈ R+ that represents
the price agents in S should pay in order to receive a service. In particular,
we assume that the agents in N need to be connected to a source, denoted
by 0. Let N0 = N ∪ {0}. For any set Z, define Zp as the set of all non-
ordered pairs (i, j) of elements of Z. In our context, any element (i, j) of Zp

represents the edge between nodes i and j. Let c = (ce)e∈Np
0

be a vector in

RN
p
0

+ with Np
0 = (N0)p and ce representing the cost of edge e. Let Γ be the set

of all cost vectors. Since c assigns cost to all edges e, we often abuse language
and call c a cost matrix. A minimum cost spanning tree problem is a triple
(0, N, c). Since 0 and N do not change, we omit them in the following and
simply identify a mcst problem (0, N, c) by its cost matrix c.

A cycle pll is a set of K ≥ 3 edges (ik, ik+1), with k ∈ {0, . . . , K − 1} and
such that i0 = iK = l and i1, . . . , iK−1 distinct and different than l. A path
plm between l and m is a set of K edges (ik, ik+1), with k ∈ {0, . . . , K − 1},
containing no cycle and such that i0 = l and iK = m. Let Plm(N0) be the
set of all such paths between nodes l and m.

A spanning tree is a non-orientated graph without cycles that connects
all elements of N0. A spanning tree t is identified by the set of its edges. Its
associated cost is c(t) =

∑
e∈t ce.

We call mcst a spanning tree that has a minimal cost. Note that the
mcst might not be unique. Let t∗(c) be a mcst and T ∗(c) be the set of all
mcst for the cost matrix c. Let C(N, c) be the cost of a mcst. Let cS be the
restriction of the cost matrix c to the coalition S0 ⊆ N0. Let C(S, c) be the
cost of the mcst of the problem (S, cS). Given these definitions, we say that
C is the stand-alone cost function associated with c.

An allocation is a vector x ∈ RN such that
∑

i∈N xi = C(N). For any
S ⊆ N, let x(S) =

∑
i∈S xi. Given S ⊆ N and x ∈ RN , we denote as xS ∈ RS

the restriction of x to RS.
For any cost matrix c, the associated cost game is given by (N,C) with

C(S) = C(S, c) for all S ⊆ N . We then say that C is a mcst game. We define
the set of stable allocations as Core(C). Formally, an allocation x ∈ Core(C)
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if x(S) ≤ C(S) for all S ⊆ N .

3 A method to find extreme core allocations

We provide a method that allows to find extreme allocations of Core(C). It
is based on the concept of marginal games (Núñez and Rafels (1998)). We
take an ordering of the agents and allocate to the last of them her marginal
cost to join the grand coalition. We then update the stand-alone cost of
remaining coalitions by giving them the option, instead of using their own
stand-alone cost, to use their stand-alone cost with the removed player, net
of her allocation. We then repeat the process by removing the next-to-last
player, and so on.

Formally, for all i ∈ N and all C, let bCi = C(N) − C(N \ {i}). For all
S ⊆ N, the ith-marginal game (N \ {i}, Ci) is given by Ci(∅) = 0 and

Ci(S) = min
{
C (S ∪ {i})− bCi , C(S)

}
for all ∅ 6= S ⊆ N \ {i}.

We label Cij(S) to mean (Ci)
j
(S), Cijk(S) to mean (Cij)

k
(S) and so on.

Let Π(N) be the set of permutations of N . Let π = (π1, . . . , πn) ∈ Π.
We define the reduced marginal cost vector of C related to permutation π,
denoted as yrπ(C), or simply yrπ, as follows:

yrππn = C(N)− C(N \ {πn}) = bCπn
yrππn−1

= Cπn(N \ {πn})− Cπn(N \ {πn−1, πn}) = bC
πn

πn−1

...

yrππ2 = Cπnπn−1...πn−3({π1, π2})− Cπnπn−1...πn−3(π1) = bC
πnπn−1...πn−3

π2

yrππ1 = Cπnπn−1...πn−2 ({π1}) = bC
πnπn−1...πn−2

π1
.

Núñez and Rafels (1998) provide a sufficient condition for yrπ to be an
extreme point of the core, and in fact for the set (yrπ)π∈Π to be the set
of extreme points of the core. The sufficient condition is that of almost-
concavity of the cost game: C(S) + C(T ) ≥ C(S ∪ T ) + C(S ∩ T ) for all
S, T ⊂ N such that S∪T 6= N. We thus have all concavity conditions except
those involving the grand coalition. We show with the following example
that this condition is not satisfied by games generated by mcst problems.
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Example 1 Let N = {1, 2, 3, 4} and c be as described in the following (i
horizontally, j vertically) and illustrated in Figure 1:

cij 1 2 3 4
0 1 6 5 5
1 6 4 2
2 5 5
3 5

0

1 2

34

1
5 5

6

6

4
2 5

5

5

Figure 1: Example of a minimum cost spanning tree problem.

It is easy to see that C({2}) = 6, C({2, 3}) = C({2, 4}) = 10 and
C({2, 3, 4}) = 15. We thus have that C({2, 3}) + C({2, 4}) < C({2, 3, 4}) +
C({2}), which contradicts the almost-concavity condition.

It turns out that we can interpret a reduced game as a particular type
of source connection problem. A mcst problem with priced nodes is a tupla
(N,P, y, c) where P ⊆ N are nodes that do not need to be connected and
y ∈ RP is the vector whose coordinates are the prices that nodes in P pay
(or receive, when negative) if they are actually connected. Nodes in P are
called priced nodes. Hence, the cost of (N,P, y, c) is defined as

C(N,P, y, c) = min
T⊆P
{C((N \ P ) ∪ T )− y(T )}

and the cost of a subset S ⊆ N \ P is given by

C(S, P, y, c) = min
T⊆P
{C(S ∪ T )− y(T )} .
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In particular, C(N,P, y, c) = C(N \ P, P, y, c).
As usual, the core of a mcst problem with priced nodes (N,P, y, c) is

the set of allocations x ∈ RN\P that satisfy xi(N \ P ) = C(N,P, y, c) and
xi(S) ≤ C(S, P, y, c) for all S ⊆ N \ P .

Notice that mcst problems with priced nodes generalize both mcst prob-
lems (when P = ∅) and minimum cost Steiner tree problems (when yi = 0
for all i ∈ P ).

For simplicity, when y ∈ RN , we write (N,P, y, c) instead of (N,P, yP , c).
Given π ∈ Π(N) and i ∈ N , let P πi = {πi, . . . , πn} be the set of nodes that
come after πi (including πi) in the order π. It is clear that Cπn...πi(S) =
C (S, P πi, yrπ, c) for all S ⊆ N \ P πi.

This correspondence allows us to prove that yrπ belongs to the core.

Theorem 1 For any mcst game (N,C) and any permutation π ∈ Π(N),
yrπ ∈ Core(C).

Proof. Given that Cπn...πi(S) = C (S, P πi, yrπ, c) for all S ⊆ N \ P πi, it
suffices to prove that yrπN\Pπi belongs to the core of (N,P πi, yrπ, c).

Let S ⊆ N \ P πi and let tS be a tree that connects all the nodes in S to
the source using a set T S ⊆ P πi of priced nodes. We need to prove

yrπ(S) ≤
∑
e∈tS

ce − yrπ
(
T S
)

or, equivalently,

yrπ
(
S ∪ T S

)
≤
∑
e∈tS

ce. (1)

Assume there exists t∗ ∈ T ∗(c) that is also an optimal tree in (N,N, yrπ, c).
Hence ∑

e∈t∗
ce − yrπ(N) ≤

∑
e∈tS

ce − yrπ
(
S ∪ T S

)
. (2)

Since
∑

e∈t∗ ce = yrπ(N), we have that (1) and (2) coincide.
We still need to prove that there exists t∗ ∈ T ∗(c) that is also an optimal

tree in (N,N, yrπ, c). We will prove a stronger result: that any t∗ ∈ T ∗(c)
is an optimal tree in any (N,P πi, yrπ, c). Assume w.l.o.g. π = 1 . . . n. For
notational convenience, let P π0 = ∅. We proceed by induction on i. For
i = 0, the result holds trivially. Assume the result holds for i − 1 ≥ 0. Let
t∗ ∈ T ∗(c). We have to prove that t∗ is an optimal tree on (N,P πi, yrπ, c),
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i.e. for each tree t that connects all the nodes in (N \P πi)∪T to the source,
with T ⊆ P πi, it holds that∑

e∈t∗
ce − yrπ

(
P πi
)
≤
∑
e∈t

ce − yrπ(T ). (3)

By induction hypothesis, t∗ is an optimal tree in (N,P πi−1, yrπ, c). As-
sume first i−1 ∈ T . Then,

∑
e∈t∗ ce−yrπ (P πi−1) ≤

∑
e∈t ce−yrπ (T ∪ {i− 1}),

which is equivalent to (3). Assume now i− 1 /∈ T . Hence∑
e∈t∗

ce − yrπ
(
P πi
)

=
∑
e∈t∗

ce − yrπ
(
P πi−1

)
+ yrπi−1

= C
(
N,P πi−1, yrπ, c

)
+ yrπi−1

= C
(
N \ P πi−1, P πi−1, yrπ, c

)
+ yrπi−1.

By definition, yrπi−1 = C (N \ P πi, P πi, yrπ, c) − C (N \ P πi−1, P πi, yrπ, c) and
C (N \ P πi−1, P πi, yrπ, c) = C (N \ P πi−1, P πi−1, yrπ, c). Hence the above ex-
pression equals C (N \ P πi, P πi−1, yrπ, c) which, by definition, is less or equal
than

∑
e∈t ce − yrπ(T ).

4 The set of extreme core allocations

We now have shown that our procedure generates allocations in the core. By
definition, they are also extreme core allocations, defined as follows:

Definition 1 An allocation y ∈ Core(C) is an extreme core allocation if
there does not exist y′, y′′ ∈ Core(C), y′ 6= y′′ and λ ∈ (0, 1) such that
y = λy′ + (1− λ)y′′.

We define the set of extreme core allocations as ExtCore(C). We next
show that the core allocations defined in the previous section actually consti-
tute the whole set of extreme core allocations. We proceed by first showing
that for any coalition, we attain the maximal allocation compatible with the
core. We need to prove two intermediary results before getting to the main
result of this section.

First, we define the cost function Ĉ and show that it has the same core
as C and that a coalition S cannot receive more than Ĉ(S) in any core
allocation.
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For all c ∈ Γ, let (N, Ĉ) be defined in the following way:

Step 0: Ĉ(S) = C(S) for all S such that |S| ≥ n− 1.

Step k: Ĉ(S) = min
{
C(S),minT⊂N\S Ĉ(S ∪ T ) + Ĉ(N \ T )− Ĉ(N)

}
for all S such that |S| = n− 1− k, for k = 1, . . . , n− 2.

Step n− 1: Ĉ(∅) = 0.

Hence, Ĉ(N) = C(N) and

Ĉ(S) = min
T⊂N\S

{
Ĉ(S ∪ T ) + Ĉ(N \ T )− C(N)

}
for all S ⊂ N .

To compute the alternative stand-alone cost Ĉ(S), we let S pick a partner
T and compute the sum of the costs of S with T and N \ T , to which we
substract the cost of the grand coalition.

Lemma 1 For all c ∈ Γ, Core(Ĉ) = Core(C).

Proof. Given that Ĉ(S) ≤ C(S) for all S ⊂ N and Ĉ(N) = C(N), it

is obvious that Core(Ĉ) ⊆ Core(C). We show that Core(C) ⊆ Core(Ĉ).

Suppose, on the contrary, that there exists y ∈ Core(C) and y /∈ Core(Ĉ).

Then, there exists S ⊂ N such that Ĉ(S) < y(S) ≤ C(S). Stated otherwise,
there exists ∅ 6= T ⊂ N \ S such that

Ĉ(S) = Ĉ(S ∪ T ) + Ĉ(N \ T )− Ĉ(N) < y(S) ≤ C(S).

Suppose first that |S| = n− 2. Then,

Ĉ(S) = C(S ∪ T ) + C(N \ T )− C(N) < y(S) ≤ C(S) (4)

as |S ∪ T | , |N \ T | ≥ n − 1. Since y ∈ Core(C), we must have that y(S) +
y(T ) + y(N \ (S ∪ T )) = C(N). We have the following core conditions:

y(S) + y(T ) ≤ C(S ∪ T )

y(S) + y(N \ (S ∪ T )) ≤ C(N \ T ).

Adding these two constraints, we obtain

2y(S) + y(T ) + y(N \ (S ∪ T )) ≤ C(S ∪ T ) + C(N \ T )

y(S) ≤ C(S ∪ T ) + C(N \ T )− C(N) = Ĉ(S).
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Therefore, we have a contradiction with (4).

We have thus shown that for y ∈ Core(C), we need y(S) ≤ Ĉ(S) if |S| =
n − 2. We can then use a recursive argument to show that if y ∈ Core(C)

implies that y(S) ≤ Ĉ(S) for all S such that |S| ≥ n− k, it also implies that

y(S) ≤ Ĉ(S) for all S such that |S| = n− k − 1. Thus, y(S) ≤ Ĉ(S) for all

S ⊆ N is a necessary condition for y ∈ Core(C) and Core(C) ⊆ Core(Ĉ).

Our next step is to show that for any S, there exists at least one permu-
tation π such that yrπ(S) = Ĉ(S). To do so, we once again use the mcst
with priced nodes representation.

We know, from the proof of Theorem 1, that yrπN\Pπi belongs to the core

of (N,P πi, yrπ, c) and, moreover, that any t∗ ∈ T ∗ (c) is an optimal tree in
any (N,P πi, yrπ, c).

For simplicity, and since N is fixed, we write Π instead of Π (N).
Let t∗ ∈ T ∗(c). We denote t∗ = {(i, i∗)}i∈N , where i∗ is the predecessor

of node i in t∗, i.e. i∗ is the adjacent node to node i in the (unique) path in
t∗ from node i to the source.

We then define i �∗ j as the partial relation in N given by “i precedes j
in t∗”, that is, i �∗ j iff j ∈ F ∗i, where F ∗i is the set of followers of node i in
t∗ (including node i).

Given P ⊆ N and π ∈ Π, we say that π is t∗-compatible with P if the
following two conditions hold:

External t∗-compatibility Nodes in S = N \ P that follow nodes in P in
t∗ are first in π:

πi �∗ πj
πi ∈ P
πj ∈ S

 =⇒ j < i.

Internal t∗-compatibility Nodes inside P follow in π the partial order �∗:

πi �∗ πj
πi, πj ∈ P

}
=⇒ i ≤ j.

It is clear that there always exists an order t∗-compatible with P . For
example, given P ⊆ N , S = N \P and π ∈ Π, we define π∗P ∈ Π inductively
as follows: If P = ∅, then π∗P = π. If P = {i}, then π∗P = [πS, i] is the
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order whose first components are the nodes in S (following order π) and the
last component is node i. Assume we have defined σ∗Q ∈ Π for any σ ∈ Π
and Q ⊂ N with |Q| < |P |. Let pπ1 ∈ P , or p1 for short, be the first node in
π satisfying p1 ∈ P and p∗1 /∈ P , where p∗1 is the adjacent node to p1 in the
(unique) path in t∗ from p1 to the source. Then, we apply the induction to

define π∗P =
[
πN\{p1}, p1

]∗P\{p1}.
Example 2 We revisit Example 1, with P = {1, 3, 4}.

Take t∗ = {(0, 1) , (1, 4) , (1, 3) , (3, 2)}. External t∗-compatibility implies
that nodes 1 and 3 should go after node 2. Internal t∗-compatibility implies
that nodes 3 and 4 should go after node 1. These two conditions together give
two unique t∗-compatible orders: [2, 1, 4, 3] and [2, 1, 3, 4].

If we choose an initial π in which 3 has preference over 4, we obtain
π∗P = [2, 1, 3, 4]. Otherwise, we obtain π∗P = [2, 1, 4, 3]. In both cases,
yrπ

∗P
= (0, 6, 4, 2).

The same happens if we take t∗ = {(0, 1) , (1, 3) , (1, 4) , (4, 2)} instead.

We say that π is c-compatible with P if there exists some t ∈ T ∗(c) such
that π is t-compatible with P .

In the previous example, yrπ({2}) = Ĉ({2}) = 6 for each π c-compatible
with {1, 3, 4}. We now show that this holds in general.

Theorem 2 Given S ⊆ N , we have yrπ(S) = Ĉ(S) for all π ∈ Π order
c-compatible with N \ S.

Proof. Fix t∗ = {(i, i∗)}i∈N ∈ T ∗(c). Given S ⊆ N and P = N \ S, let
π ∈ Π be an order t∗-compatible with P . We prove that the following two
statements hold:

(I) Either yrπ(S) = C(S) or there exists ∅ 6= T ⊂ P such that

(Ia) yrπ
a
(T ) = yrπ(T ) for all πa ∈ Π order t∗-compatible with T , and

(Ib) yrπ
b
(P \ T ) = yrπ(P \ T ) for all πb ∈ Π order t∗-compatible with

P \ T .

(II) yrπ(S) = Ĉ(S).

11



We proceed by induction on |P |. For P = ∅, both statements hold triv-
ially. Assume now both statements hold when |P | < α and suppose |P | = α
for some α > 0.

We first prove statement (I). Let p1 = πs ∈ P be the first element in P
according to π (that is, i < s implies πi /∈ P ). Hence, for all πi ∈ P \ {p1},
we have s < i. Under internal t∗-compatibility, we deduce p1 /∈ F ∗i for all
i ∈ P \ {p1}.

Let S ′ = S ∪ {p1} and P ′ = P \ {p1}. By applying t∗-compatibility, it is
straightforward to check that

yrπp1 = C (S ′, P ′, yrπ, c)− C (S, P ′, yrπ, c) . (5)

Let t′ be an optimal tree in (N \ {p1}, P ′, yrπ, c). That is:

S ⊆ t′(N)

p1 /∈ t′(N)

c(t′)− yrπ(t′(N) ∩ P ′) = min
T ′⊆P ′

{C(S ∪ P ′)− yrπ(T ′)}

where t′(N) ⊆ N \{p1} is the set of nodes that connect to the source through
t′.

In case there are more than one tree satisfying the above conditions, we
take t′ such that |t′(N)| is maximal among them.

Assume first S = t′(N), which means t′(N) ∩ P ′ = ∅ and C(t′) = C(S).
Hence

yrπ(S) = yrπ(S ′)− yrπp1
(5)
= yrπ(S ′)− C(S ′, P ′, yrπ, c) + C(S, P ′, yrπ, c)

= yrπ(S ′)− yrπ(S ′) + c(t′) = c (t′) = C(S)

and so statement (I) holds.
Assume now S ⊂ t′(N). Let T ′ = t′(N)\S. It is straightforward to check

that ∅ 6= T ′ ⊂ P . We will prove that (Ia) and (Ib) hold with this T ′. As a
previous step, we need to prove the following Claim:

Claim A: For all i ∈ N \ {p1}, i∗ ∈ S ∪ T ′ ⇒ i ∈ S ∪ T ′.

Assume, on the contrary, that there exists some i ∈ N \ {p1} such that
i∗ ∈ S ∪ T ′ and i /∈ S ∪ T ′. That is, i∗ ∈ t′(N) and i /∈ t′(N).
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Let Q =
{
j ∈ N \ T ′ : τ ∗ij ⊆ N \ T ′

}
, where τ ∗ij is the (unique) path form

node i to node j in t∗. Thus, Q is the set of followers of node i without
leaving P \ T ′. Hence, Q ⊆ P \ T ′. Since p1 /∈ F ∗j for all j ∈ P ′, we
deduce that p1 /∈ Q. Let R = {j ∈ N : j∗ ∈ Q} be the set of nodes in
S that immediately follow some node in Q (case R = ∅ is also possible).
Denote R = {r1, . . . , rk}. We define the set of edges E = {e1, . . . , ek} ⊂ Np

inductively as follows: Let e1 = (i1, i
′
1) ∈ Np be the first edge in the (unique)

path in t′ from r1 to the source such that i1 ∈ F ∗r1 and i′1 /∈ F ∗r1 . Let
e2 = (i2, i

′
2) ∈ Np be the first edge in the (unique) path in t′ from r2 to the

source such that i2 ∈ F ∗r1 ∪F ∗r2 and i′2 /∈ F ∗r1 ∪F ∗r2 . Let e3 = (i3, i
′
3) ∈ Np

be the first edge in the (unique) path in t′ from r3 to the source such that
i3 ∈ F ∗r1 ∪ F ∗r2 ∪ F ∗r3 and i′3 /∈ F ∗r1 ∪ F ∗r2 ∪ F ∗r3 . And so on. Thus, E is
the set of edges that connect R to the source in t′. Now,

t1 = (t∗ \ {(j, j∗)}j∈Q∪R) ∪ E (6)

is a tree that connects all the nodes in S to the source using nodes in P \Q.
Since t∗ is optimal in (S, P, yrπ, c), we deduce that

c(t∗)− yrπ(P ) ≤ c(t1)− yrπ(P \Q)

or, equivalently,
c(t∗) ≤ c(t1) + yrπ(Q). (7)

Now,
t2 = (t′ \ E) ∪ {(j, j∗)}j∈Q∪R (8)

is a tree that connects all the nodes in S to the source using nodes in T ′∪Q ⊆
P ′. Since t′ is optimal in (S, P ′, yrπ, c), we deduce that

c(t′)− yrπ(T ′) ≤ c(t2)− yrπ(T ′ ∪Q)

or, equivalently,
c(t′) ≤ c(t2)− yrπ(Q). (9)

By applying (7) and (9),

c
(
t2
) (9)

≥ c(t′) + yrπ(Q)
(7)

≥ c(t′) + c(t∗)− c(t1)

(6)
= c(t′) + c(t∗)− c(t∗) + c({(j, j∗)}j∈Q∪R)− c(E)

= c (t′) + c ({(j, j∗)}j∈Q∪R)− c (E)
(8)
= c

(
t2
)
.
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This implies c (t2) = c (t′) + yrπ(Q), so

c
(
t2
)
− yrπ(T ′ ∪Q) = c (t′)− yrπ(T ′)

and hence t2 is also an optimal tree in (S, P ′, yrπ, c) with |t2(N)| = |t′(N)|+
|Q|, which contradicts that |t′(N)| is maximum among these optimal trees
(notice that i ∈ Q 6= ∅). This contradiction completes the proof of Claim A.

We can now prove that (Ia) holds with T ′. Under the induction hypothesis

on statement (II), we have yrπ
a

(N \ T ′) = Ĉ(N \ T ′) for all πa ∈ Π order t∗-
compatible with T ′. On the other hand, if π is t∗-compatible with T ′, then we
can also apply the induction hypothesis on (II) to deduce that yrπ (N \ T ′) =

Ĉ(N \ T ′). Hence, it is enough to prove that π is indeed t∗-compatible with
T ′. We check both external and internal t∗-compatibility.

External t∗-compatibility : Let i, j such that πi �∗ πj, πi ∈ T ′ and πj ∈
N \ T ′. We have three cases: If πj ∈ S, then j < i because π is externally
t∗-compatible with P . If πj = p1, then πi �∗ p1 implies s < i because
πi ∈ T ′ ⊂ P and p1 = πs is the first element of P in π; by internal t∗-
compatibility with P , we deduce πi �∗ πs = πj, which is a contradiction.
Finally, if πj ∈ P \ (T ′ ∪ {p1}), then πj /∈ S ∪ T ′ ∪ {p1}; under Claim A, we
have π∗j /∈ S ∪ T ′; by applying Claim A iteratively, and since πi �∗ πj, we
conclude that πi /∈ S ∪ T ′, which is a contradiction because πi ∈ T ′.

Internal t∗-compatibility : Let i, j such that πi �∗ πj and πi, πj ∈ T ′.
Since T ′ ⊂ P , we have πi, πj ∈ P . Hence, i ≤ j because π is internally
t∗-compatible with P .

We now prove that (Ib) holds with T ′. By definition of yrπp1 , both t∗ and t′

are optimal trees in (N,P, yrπ). Hence, C(N)−yrπ(P ) = C(S∪T ′)−yrπ(T ′).
Equivalently,

yrπ(P \ T ′) = C(N)− C(S ∪ T ′). (10)

Let πb ∈ Π be an order t∗-compatible with P\T ′. We check that yrπ
b
(P\T ′) =

C(N) − C(S ∪ T ′). By the induction hypothesis on statement (II), we can
assume that nodes in P \T ′ follow the same order as in π. In particular, p1 is
still the first node in P \T ′ under πb. Denote P \T ′ = {p1, . . . , pL} following
order πb, i.e. when pi = πb

ib
and pj = πb

jb
, then i ≤ j ⇔ ib ≤ jb. Internal

t∗-compatibility assures that pi �∗ pj ⇒ i ≤ j. For each l ∈ {1, . . . , L}, let
Gl = {i ∈ S ∪ T ′ : i∗ = pl} be the set of nodes in S ∪ T ′ that immediately
follow pl in t∗ (case Gl = ∅ is also possible), and denote Gl = {gl1, . . . , glkl}.
We define the set of edges El = {el1, . . . , elkl} ⊂ Np inductively as follows:
Let el1 = (il1, i

′
l1) ∈ Np be the first edge in the (unique) path in t′ from gl1
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to the source such that il1 ∈ F ∗g
l
1 and i′l1 /∈ F ∗g

l
1 . Let el2 = (il2, i

′
l2) ∈ Np

be the first edge in the (unique) path in t′ from gl2 to the source such that
il2 ∈ F ∗g

l
1 ∪ F ∗gl2 and i′l2 /∈ F ∗g

l
1 ∪ F ∗gl2 . And so on. Thus, El is the set

of nodes that connect each Gl to the source in t′. We now define the trees
t0, t1, . . . , tL inductively as t0 = t′ and

tl =
(
tl−1 ∪ {(i, i′)}i∈Gl∪{pl}

)
\ El

for each l = 1, . . . , L. By optimality of t∗ and t′, each tl is also optimal in
(N, {pl+1, . . . , pL}, yrπ, c). Hence, we have

yrπpL = c
(
tL
)
− c

(
tL−1

)
= C(N)− C(N \ {pL})

yrπpL−1
= c

(
tL−1

)
− c

(
tL−2

)
= C(N \ {pL})− C(N \ {pL, pL−1})

...

yrπp1 = c
(
t1
)
− c

(
t0
)

= C(S ∪ T ′ ∪ {p1})− C(S ∪ T ′)

from where we deduce

yrπ
b

pL
= C(N)− C(N \ {pL})

yrπ
b

pL−1
= C(N \ {pL})− C(N \ {pL, pL−1})
...

yrπ
b

p1
= C(S ∪ T ′ ∪ {p1})− C(S ∪ T ′)

and, adding up these terms, we get

yrπ
b

(P \ T ′) = C (N)− C (S ∪ T ′) (11)

so that (Ib) comes from (10) and (11).

We now prove statement (II), i.e. yrπ(S) = Ĉ(S). Since yrπ ∈ Core(C) =

Core
(
Ĉ
)

, we have yrπ(S) ≤ Ĉ(S). When yrπ(S) = C(S), we have Ĉ(S) ≤

yrπ(S) because Ĉ(S) ≤ C(S). When yrπ(S) 6= C(S), under statement (I)
there exits ∅ 6= T ′ ⊂ P satisfying (Ia) and (Ib). We now apply the induction
hypothesis on statement (II) to deduce that for all πa ∈ Π order t∗-compatible

with T ′, and πb ∈ Π order t∗-compatible with P \ T ′, we have Ĉ(N \ T ′) =

yrπ
a
(N \ T ′) and Ĉ(S ∪ T ′) = yrπ

b
(S ∪ T ′). Under (Ia) and (Ib), we have
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yrπ
a
(T ′) = yrπ(T ′) and yrπ

b
(P \ T ′) = yrπ(P \ T ′), respectively. Hence,

Ĉ(N \ T ′) = yrπ(N \ T ′) and Ĉ(S ∪ T ′) = yrπ(S ∪ T ′). Thus,

Ĉ(S) = min

{
C(S), min

∅6=T ′′⊂P

{
Ĉ(S ∪ T ′′) + Ĉ (N \ T ′′)− C(N)

}}
≤ min

∅6=T ′′⊂P

{
Ĉ (S ∪ T ′′) + Ĉ (N \ T ′′)− C(N)

}
≤ Ĉ(S ∪ T ′) + Ĉ(N \ T ′)− C(N)

= yrπ(S ∪ T ′) + yrπ(N \ T ′)− C(N)

= yrπ(S ∪ T ′) + yrπ(N)− yrπ(T ′)− C(N)

= yrπ(S).

concluding the proof.
We are now ready for the main result of this section. Let ∆(c) be the

convex hull of the allocations (yrπ)π∈Π .

Theorem 3 For any mcst game (N,C), ExtCore(C) = ∆(c).

Proof. We proceed by contradiction. Assume ∆(c) 6= ExtCore(C). Since
each y ∈ ∆(c) is a core allocation, we have that there exists an extreme core
allocation x that does not belong to ∆(c). From this, we deduce that there
exists some S such that x(S) − y(S) has the same (nonzero) sign for each
allocation y ∈ ∆(c). That is, either x(S) − y(S) > 0 for all y ∈ ∆(c), or
x(S)− y(S) < 0 for all y ∈ ∆(c).

Then, S should be one of the sets that determine a saturate constraint
on a face of ∆(c). Since x /∈ ∆(c), then it should lay inside the opposite side
of the half-space.

We can assume x(S) − y(S) > 0 for all y ∈ ∆ because, in the opposite,
we instead consider T = N \ S.

We now take y such that y(S) = Ĉ(S). Existence of such a y ∈ ∆ is

guaranteed by Theorem 2. Then, x(S) > Ĉ(S) and thus, by Lemma 1, x

does not belong to Core(Ĉ) = Core(C). Hence the contradiction.
As a corollary, we now obtain a complete description of the core.

Corollary 1 For all c ∈ Γ, Core(C) = ∆(c).
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5 Link with cost sharing solutions

We show that while our method is new, it can be used to reinterpret the
three most famous cost-sharing solutions in the literature on mcst.

A cost sharing solution (or rule) assigns a cost allocation y(c) to any
admissible cost matrix c. We start by building a solution from the allocations
defined in the previous sections. Let

yr =
∑

π∈Π(N)

1

n!
yrπ

be the average of the reduced marginal cost vectors. By our previous section,
yr is the barycenter of Core(C).

5.1 The Bird solution

The Bird solution is defined as follows. Let Π∗(c) be the set of permutations
obtained in Prim’s algorithm. For all π ∈ Π∗(c), let yb,ππi = mink=0,...,i−1 cπkπi
where π0 = 0. The Bird solution is

yb =
1

|Π∗(c)|
∑

π∈Π∗(c)

yb,π.

Theorem 4 For all π ∈ Π∗(c), yb,π = yrπ.

Proof. Suppose π ∈ Π∗(c) and consider agent πn. We have

yrππn = C(N)− C(N \ {πn}) = min
k=0,...,n−1

cπkπi = yb,ππn .

Observe that by construction, C(S ∪{πn})−C(S) = mink∈S cπkπi ≤ C(N)−
C(N \ {πn}) for all S ⊆ N \ πn. Thus, Cπn(S) = min(C(S), C(S ∪ πn) +
C(N \ πn)− C(N)) = C(S) for all S ⊆ N \ {πn}.

Consider agent πj for j = 1, . . . , n− 1.

yrππk = Cπn,...,πj+1({π1, . . . , πj})− Cπn,...,πj+1({π1, . . . , πj−1})
= C({π1, . . . , πj})− C ({π1, . . . , πj−1})
= min

k=0,...,j−1
cπkπj

= yb,ππj
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Hence, yb,π = yrπ.
The Bird allocation is thus a very special case of our method, as it only

uses the reduced marginal cost vector of C related to permutation π if π is a
permutation corresponding to an order in which we construct the mcst using
Prim’s algorithm.

We thus obtain an alternative proof of the stability of the Bird allocation.
In addition, we can see that the permutations used for the Bird allocation
are such that there are no modifications to do on C before computing the
marginal cost vector. For other permutations, we will obtain that the corre-
sponding marginal cost vector (without modifying C) is not in the core.

5.2 The cycle-complete solution

To define the cycle-complete solution, we need to define irreducible and cycle-
complete cost matrices.

From any cost matrix c, we can define the irreducible cost matrix c̄ as
follows:

c̄ij = min
pij∈Pij(N0)

max
e∈pij

ce for all i, j ∈ N0.

From any cost matrix c, we can define the cycle-complete cost matrix c∗

as follows:

c∗ij = max
k∈N\{i,j}

c
N\{k}
ij for all i, j ∈ N

c∗0i = max
k∈N\{i}

c
N\{k}
ij for all i ∈ N.

where c
N\{k}
ij indicate the cost of edge (i, j) on the matrix that we first re-

stricted to agents in N \ {k} before transforming into an irreducible matrix.
The cycle complete matrix can also be defined using cycles (Trudeau

(2012)): for edge (i, j), we look at cycles that go through i and j. If there
is one such cycle such that its most expensive edge is cheaper than a direct
connection on edge (i, j), we assign this cost to edge (i, j).

The cycle-complete solution ycc is the Shapley value of (N,C).
Let Γe be the set of elementary cost matrices: for any c ∈ Γe and any

i, j ∈ N0, cij ∈ {0, 1} . We show that for elementary cost matrices, the cycle-
complete solution corresponds to yr.

Theorem 5 For any elementary cost matrix c ∈ Γe, yr = ycc.
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Proof. Trudeau (2012) showed that for elementary problems, Core(C) =
Core(C∗), where (N,C∗) is the mcst game associated to c∗, and that (N,C∗)
is concave. By the properties of the Shapley value for concave games, ycc

is the average over the set of permutations of incremental cost allocations,
with each of them being an extreme core allocation. It is obvious that the
incremental cost vector corresponding to order π is exactly yrπ. We thus have
that yr = ycc.

An alternative explanation of the above result is that the changes from
the original to the cycle-complete cost matrix are the same as those imposed
by our method. If node i has two free distinct paths to node j, say with the
help of S and T , she will obtain the cost savings with both coalitions. This
will result in Ĉ ({i, j}) = 0, the same result as if we modified directly the
matrix into a cycle-complete matrix.

5.3 The folk solution

The folk solution is the Shapley value of the cost game associated with the
irreducible cost matrix c̄ defined in the previous subsection. As for the cycle-
complete solution, we show a link between our method and the folk solution
in elementary mcst problems. To do so, we need to define the monotonically
increasing version of C, denoted as C+:

Definition 2 For all c ∈ Γ, let (N,C+) be defined in the following way:
Step 0: C+(N) = C(N).
Step k: For all S such that |S| = n− k,

C+(S, c) = min(C(S, c), min
i∈N\S

C+(S ∪ i), c)

for 0 < k < n.
Step n: C+(∅) = 0.

The transformation from C to C+ guarantees that there is never a nega-
tive cost to add an agent to a coalition. We show that applying our method
to C+ for an elementary problem yields the folk solution.

Theorem 6 For any elementary cost matrix c ∈ Γe, yr(C+) = yf , where
yr(C+) is yr defined from C+ instead of C.
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Proof. Consider a connected component T ⊆ N0. If 0 ∈ T, then C(T \
{0}) = 0. Otherwise, C(T \ {0}) = 1. Suppose that for S ∈ T \ {0} , C(S \
{0}) > C(T \ {0}). In such a case, c̄ is such that c̄ij = 0 for all i, j ∈ T. By
monotonicity, we must have that C(S \ {0}) = C(T \ {0}) for all S ⊆ T.
Therefore, in both cases, the changes are identical.

We next show that there are no other changes. If i, j belong to different
connected components, say T1 and T2, then c̄ij = cij. We also have that for
all R ⊆ T1 and S ⊆ T2, C(R ∪ S) = C(R) = C(S). Therefore, once we have
made the cost function monotonic within the connected components, it will
be monotonic over all coalitions, meaning that we do not need to make any
other changes.

After the modifications, to obtain yf we take the Shapley value of (N, C̄),
the cost game associated with c̄, or equivalently,

∑
π∈Π(N)

1
n!
yπ(C̄). Given

that (N, C̄) is concave (Bergantiños and Vidal-Puga (2007)), yrπ(C̄) = yπ(C̄)
for all π ∈ Π(N) and thus yr(C+) = yf .

We thus obtain the new result that for elementary mcst problems, the folk
solution is the barycenter of Core(C+). Since in elementary mcst problems
moving from Core(C) to Core(C+) is the same as restricting our attention
to non-negative core allocations, we can thus say that for elementary mcst
problems, the folk solution is the barycenter of the non-negative core.

Therefore, we obtain, for elementary cost matrices, a clear distinction
between the folk and cycle-complete solutions, based on whether or not they
disqualify core allocations where some agents receive strictly negative cost
shares.

6 Discussion

The result of the previous section on the folk and cycle-complete solutions
do not hold for non-elementary cost matrices. For those, we can compute
the folk and cycle-complete solutions by decomposing the cost matrix into a
series of elementary cost matrices and summing up. While that approach is
computationally advantageous, one of the disadvantage is that, in general,
we have that Core(C∗) is a strict subset of Core(C) and Core(C̄) is a strict
subset of Core(C+); the cycle-complete and folk solutions are no longer the
barycenters of, respectively, the core of C and the non-negative core of C.

If we are willing to forego the Piecewise Linearity property, we therefore
can use yr and yr(C+) as non-piecewise linear extensions of, respectively, the
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cycle-complete and folk solutions.

References

Bahel, E. and Trudeau, C. (2014). Stable lexicographic rules for shortest
path games. Economic Letters, 125:266–269.

Bergantiños, G. and Vidal-Puga, J. (2007). A fair rule in minimum cost
spanning tree problems. J. Econ. Theory., 137:326–352.

Bird, C. (1976). On cost allocation for a spanning tree: a game theoretic
approach. Networks, 6:335–350.

Davis, M. and Maschler, M. (1965). The kernel of a cooperative game. Naval
Research Logistics Quarterly, 12:223–259.

Feltkamp, V., Tijs, S., and Muto, S. (1994). On the irreducible core and the
equal remaining obligations rule of minimum cost spanning extension prob-
lems. Technical Report 106, CentER DP 1994 nr.106, Tilburg University,
The Netherlands.

Granot, D. and Huberman, G. (1981). On minimum cost spanning tree
games. Mathematical Programming, 21:1–18.

Granot, D. and Huberman, G. (1984). On the core and nucleolus of minimum
cost spanning tree problems. Mathematical Programming, 29:323–347.

Hwang, F. and Richards, D. S. (1992). Steiner tree problems. Networks,
22(1):55–89.
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Núñez, M. and Rafels, C. (2003). Characterization of the extreme core allo-
cations of the assignment game. Games Econ. Behav., 44(2):311–331.
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