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When the �nancial market has frictions there must be multiple or ambiguous
risk-neutral probabilities. By providing a complete characterization of pric-
ing rules of �nancial markets with a �nite number of assets over a given state
space, we are able to describe how we can recover an underlying �nancial mar-
ket structure related to any �nitely generated pricing rule. We provide a novel
characterization for the set of ef�cient securities (that is, chosen by at least one
rational expected utility agent) revealed by any valuation rule, which allows
us to propose two meaningful notions of completeness: while a unique un-
derlying complete market means that it is possible to replicate any position by
trading ef�cient securities, the case of an underlying ef�cient complete market
means that all �nancial positions are replicable and ef�cient. Our main re-
sult shows that ef�cient complete markets (with bid-ask spreads) is the preva-
lent case that emerges from the universe of all �nitely generated pricing rules.
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Furthermore, any failure of ef�cient completeness requires valuation rules as-
sociate to sets of probabilities allowing disagreement about null events. In
particular, the assumption of a Savagian state space almost precludes incom-
pleteness. Journal of Economic Literature Classi�cation Number: D52, D53.
Key words: Ef�ciency; pricing rules; risk-neutral probabilities; asset pricing;
bid-ask spreads; complete markets; incompleteness.

Introduction

Much of academic research and empirical analysis on valuation of �nancial assets has been
done under the assumption of competitive and frictionless complete markets, i.e., all agents
act as price takers and can buy and sell all �nancial contracts over a given state space without
paying any transaction cost. In such context, securities admit a perfect replication and the well-
known linear pricing rule representation says that, by no-arbitrage, the price of any security can
be computed by its expected value with respect to a unique risk-neutral probability. However,
important evidences given by Hansen and Jagannathan (1991), Heaton and Lucas (1996), and
Luttmer (1996), among others, says that the empirical implications of no arbitrage models are
strongly affected by the presence of incompleteness and trading frictions like bid-ask spreads.
Overall, the incorporation of trade imperfections in competitive securities market and its in-
terplay with no-arbitrage is one of the most active research topics in economics and �nance
either theoretically or empirically. An important theoretical result in this line of investigation
is that market imperfections generate pricing rules that are not linear but still compatible with
the no-arbitrage assumption, as showed by Jouini and Kallal (1995). While in an arbitrage-free
and frictionless complete �nancial market the corresponding pricing rules is linear, under the
presence of incompleteness or frictions affecting tradeable securities, the no-arbitrage assump-
tion leads to the existence of a set of risk-neutral probabilities, which can be interpreted as a
kind of ambiguity about the stochastic discount factor. Furthermore, the multiple linear prices
characterization of super-replication prices gives that any security has its price computed by the
"largest" expected value based on the set of risk-neutral probabilities. We interpret this well-
known result as a caution valuation rule based on the market information compatible with am-
biguous risk-neutral probabilities. On the other hand, the axiomatic characterizations of pricing
rules given by Chateauneuf, Kast and Lapied (1996, CKL for short), Jouini (2000), Castagnoli,
Maccheroni and Marinacci (2002), among others, also �nd that the nonlinearity of pricing rules
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takes the special form of a maximum over a nonempty, closed and convex set of probabilities.
First, we provide a precise characterization of pricing rules of (arbitrage-free) �nancial mar-

kets1 with a �nite state space, and a �nite number of tradeable assets. All the previous works
characterizing pricing rules as mentioned above obtained a representation through a general
nonempty, closed and convex set of probabilities. However, taking into account the perspective
of empirical works where the set of attainable payoffs in a �nancial economy is generated by a
�nite set of assets (e.g., Subsection 3.3. in Luttmer (1996)), it is not hard to see that the corre-
sponding set of risk-neutral probability has its closure given by a polytope.2 This observation
clari�es that the previous works taking pricing rule as a primitive have characterized valuation
rules that goes beyond the scope of �nancial markets with a �nite number of assets. We �ll this
gaps by providing a condition over pricing rules equivalent to the polytope restriction, called
additivity over �nite small markets: there exists a �nite collection of sub-market spaces (or
small markets), where the bond is tradeable in any small market, the union of all small markets
recover the entail market space, and the pricing rules is additive over each small market. We
call all pricing rules under this characterization as a �nitely generated pricing rule.
Once we have characterized the class of �nitely generated pricing rule, we then provide an

existence result that guarantee that all of these valuation rules are indeed a super-replication
price of some arbitrage-free �nancial market. All those �nancial markets have in common the
presence of a bond without bid-ask spreads but all the other �nancial positions are potentially
associated to a bid-ask spread.
In Araujo, Chateauneuf and Faro (2012, ACF for short) we have shown that for a two-

period �nancial market with a �nite set of states of nature S, a pricing rule C : RS ! R reveals
an underlying market given by a potentially incomplete �nancial market with only frictionless
tradeable securities if, and only if, the set of frictionless securities FC coincides with the set of
undominated securities LC . Being more precise, we have

FC :=
�
X 2 RS : C (X) = �C (�X)

	
;

and
LC :=

�
X 2 RS : Y > X ) C (Y ) > C (X)

	
:

1Throughout the paper we impose no-arbitrage condition on the pricing rule, that is, on the underlyting �nancial
market. Accordingly we avoid using the term "arbitrage-free" or "no-arbitrage" repeatedly.

2Recall that a set of probabilitiesQ is a polytope if there exist a �nite number of probabilities P1; :::; Pk where
Q is generated by all convex combination of such measures, i.e. Q = co

�
fPigki=1

�
, where co is the convex hull

operator.

3



In this paper we show that undominated securities can be identi�ed with the set of ef�cient
securities. Ef�ciency of a security means that at least one rational expected utility agent chooses
such position in the �nancial market. This notion has been studied in the literature since Dyb-
vig's (1988a, 1988b) characterization of ef�cient trading strategies in the context of frictionless
complete markets. The Dybvig's seminal result shows that a position X is ef�cient if, and only
if, it provides at least as much net payoff in cheaper states of nature according the unique risk
neutral probability.3 In another seminal contribution, Jouini and Kallal (2001) shows that, even
the Dybvig's distributional price notion is not relevant anymore, the ef�ciency of a position X
is equivalent to the existence of a strictly positive linear pricing rule P providing the valuation
of X and it gives the right to at least as much net payoffs in cheaper states of nature according
P .
Building on the characterization of LC as the set of ef�cient securities, we introduce two

meaningful notions of completeness associated to a pricing rule.4 We say that C is a pricing
rule of a complete market of securities generated by ef�cient assets when Span (LC) = RS .5

Here, the idea is that the pricing rules reveals a collection of ef�cient securities that makes all
contingent claim replicable. Moreover, in order to capture the context where the marketed space
contains only ef�cient securities, we say that C is a pricing rule of an ef�cient complete market
of securities when LC = RS .6 To summarize, the fundamental difference between these notions
of completeness is that, although in both cases all �nancial positions are tradeable by trading
ef�cient securities, only in the case of an ef�cient complete market every security can be used
in a rational way.7

Next, one of our contribution is to provide a constructive way for �nding an underlying
market for any �nitely generated pricing rule C. By showing that the set of undominated secu-
rities LC can be decomposed in a �nite union of (polyhedral) convex cones, we get that the the
family of securities characterizing the underlying market emerges by invoking the well-known
Minkowski-Weyl's theorem.

3See also Peleg and Yaari (1975) and Dybvig and Ross (1982, 1986).
4It is worth noticing that, in general, LC is a cone but not necessarily convex.
5This is consistent with the fact (see Proposition 13) that Span (LC) is proved to be the smallest market space

generated by C.
6This is consistent with the fact in this case Span (LC) = LC = RS is the unique market space generated by

C. Theorem 8 shows, in special, that this is equivalent to the fact the closed and convex set of priors characterizing
C contains only strictly positive probabilities.

7An interesting weaker notion called "effectiveness" was proposed by Baccara et al. (2006). Actually, this
notion is equivalent to the notion of "zero inef�ciency cost" proposed by Jouini and Kallal (2001). For details, see
the discussion in Baccara et al. (2006), p. 67.
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Our main contribution in this paper shows that, in general, �nitely generated pricing rules
reveals an ef�cient complete market of securities. Indeed, we show that LC = RS holds if, and
only if, the set of probabilities Q characterizing the pricing rule C contains only strictly pos-
itive probabilities. Since any set of probabilities can be approximated by polytopes generated
by strictly positive probabilities,8 we can view the case of ef�ciently complete market as the
prevalent case of �nancial markets revealed by pricing rules. Furthermore, we show that ef�-
cient complete markets is equivalent to a property of pricing rules adapted from Kreps (1979)
and Epstein and Marinacci (2007) saying that for all X; Y; Z 2 RS ,

C (X ^ Z) > C (X ^ Y ^ Z)) C (X) > C (X ^ Y ) ,

and in this case we say that C satisfy the KEM property.
Below, we discuss an example that illustrates substantial part of our contribution.

The Ellsberg securities market

Consider a market where in principle any conceivable security or �nancial position is trade-
able. The special feature in this example is that the information about future contingencies
follows the famous Ellsberg urn likelihood structure. There is an urn that contains 30 red balls
and 60 other balls that are either green or blue. Hence, the state space is given by S = fr; g; bg
and a contingent claim X is a function from S to R, denoted by X = (x1; x2; x3). Given
that the probability of the state r is unambiguous, let us to assume that the Arrow security
frg� := (1; 0; 0) is ef�cient and frictionless, which allows us to consider that, w.l.o.g., its risk
neutral valuation reveals a price is given by 1=3. On the other hand, due to the ambiguity con-
cerning the likelihood of the states g and b, we aim to study how different risk neutral valuations
concerning such states can reveal different properties of the underlying market structure. In this
way, we consider all pricing rules C : R3 ! R such that the valuation of the Arrow security
related to state r is given by C (1; 0; 0) = 1=3. In the case of an extreme ambiguous risk-neutral
probability, any distribution of the type

�
1=3; �; 2

3
� �

�
are considered.9 In this case, the pricing

rule C is given by

C (X) = max

�
1

3
x1 + �x2 +

�
2

3
� �

�
x3 : � 2

�
0;
2

3

��
:

8Here, we are taking into account the well known result about the density of polytopes under the Hausdorff
metric.

9Note that we can consider the closure of the considered set of risk-neutral probabilities.
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From the main result in ACF (2012), since we have that

LC = FC =
�
x 2 R3 : x2 = x3

	
;

it follows that the underlying market is an incomplete market without bid-ask spreads. Actually,
the underlying market can be described by the following collection of assets and prices10

M = f (frg� ; 1=3) ; (fg; bg� ; 2=3)g .

In order to illustrate some of our results discussed above, consider the more general case of
pricing rules generated by the pairs give by � = (�1; �2) 2 [0; 1=3]� [0; 1=3],

Q� := f(1=3; �; 2=3� �) : � 2 [�1; 2=3� �2]g .

Note that the case where �1 = �2 = 0 gives the previous case of incomplete markets, while if
�1 = �2 = 1=3 then we obtain the pricing rule

C (X) =
1

3
(x1 + x2 + x3)

where FC = LC = R3, which reveals the frictionless ef�cient complete market

M = f(frg� ; 1=3) ; (fgg� ; 1=3) ; (fbg� ; 1=3)g .

When �1; �2 2 (0; 1=3) the pricing rule is given by

C (X) = max

�
1

3
x1 + �x2 +

�
2

3
� �

�
x3 : � 2 [�1; 2=3� �2]

�
:

Moreover, we obtain a unique underlying market of consisting all Arrow securities and of the
frictionless bond (with price one), where the pairs of bid-ask states prices

�
qAs ; q

B
s

�
s2S satisfy

11

qAr = 1=3 = q
B
r ; q

A
g = 2=3� �2; qAb = 2=3� �1; qBg = �1; qBb = �2:

Which indeed is complete, but can be proved to be ef�cient (i.e., LC = R3) in the prevalent
case that is for every (�1; �2) 2 (0; 1=3)� (0; 1=3).
10Given a subset E � S, E� denotes the f0; 1g-valued function such that E� (s) = 1 iff s 2 E.
11We note that follows that the bid-ask price of other bets are given by

qArg = 1� �2; qArb = 1� �1; qAgb = 2=3;
qBrg = 1=3 + �1; q

B
rb = 1=3 + �2; q

B
gb = 2=3:
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Also, it is worth noting that the case of complete market where ef�ciency fails to occurs in
the case where either �1 = 0 and �2 > 0 obtaining

C (X) = max
�2[0;2=3��2]

�
1

3
x1 + �x2 +

�
2

3
� �

�
x3

�
and, for instance, fr; bg� =2 LC ;

or �1 > 0 and �2 = 0 obtaining

C (X) = max
�2[�1;2=3]

�
1

3
x1 + �x2 +

�
2

3
� �

�
x3

�
and, for instance, fr; gg� =2 LC :

To summarize, the prevalent case is given by the collection of all pairs (�1; �2) 2 (0; 1]� (0; 1]

generating ef�cient complete markets. Otherwise, any failure of ef�cient completeness requires
valuation rules represented by sets of probabilities measures allowing disagreement on null
events.

Incomplete market models: A caveat

The previous example with an Ellsbergian securities market illustrates the fact that incom-
plete markets occurs in a Savagean context (i.e., any event is foreseen) only if some probability
consistent with the market gives probability zero to some event, which constitutes one of our
main messages in this paper. Keynes (1936, ch. 16) argued that the limited ability of agents
to cope with uncertainty leads to missing markets because they are reluctant to make more
than limited contractual commitments into the future and as a consequence some markets are
missing. Our result indicates that Keynes' theory of missing markets cannot be well accom-
modate as a robust phenomena by the Savagian state space approach. Indeed, one immediate
consequence of our result concerning the prevalence of ef�cient complete markets is that the
case of incompleteness is related to the context where market data must be consistent with a
disagreement about zero probabilities events. In this way, models with endogenous state space
or unforeseen contingencies might be more successful in obtaining incompleteness of �nancial
markets as the rule rather than the exception. Also, while some works only relates the possi-
bility of multiplicity of risk-neutral probabilities to incomplete markets, our work shows that
the case of ambiguous risk-neutral probabilities is in fact related to ef�cient complete markets
with bid-ask spreads. In this way, a natural question that arises is how methods for pricing a
new non-redundant derivative security, like the one proposed by Boyle, Feng, Tian, and Wang
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(2008) for incomplete markets without bid-ask spreads, can be applied to the case of �nancial
markets with multiple risk-neutral probabilities but with ef�cient completeness.
Our result concerning incompleteness is consistent with the relatively weak link obtained in

the literature between uncertainty aversion and incomplete markets. Recall that the well-known
inertia interval obtained by Dow and Werlang (1992) presents a statement on the optimal port-
folio choice corresponding to exogenously determined prices for a given initial sure position.
In their study about uncertainty aversion and incomplete markets, Mukerji and Tallon (2001)
observed that it does not follows from Dow and Werlang (1992) that no-trade constitute the
solution in a general equilibrium context. Actually it is simple to see in an Edgeworth box that,
in general, the area of mutually advantageous trade is nonempty for uncertainty averse agents
(given by mild convex preferences).12 Indeed, no-trade is an equilibrium outcome for such class
of economies if, and only if, endowment is Pareto optimal to begin with. The introduction of
ambiguity aversion in an economy through Choquet functionals or more general ones forms of
uncertainty aversion, in general, does not precludes the trade in risk sharing contracts and would
not be a reason for incomplete risk sharing.13

Mukerji and Tallon (2001) also studies if uncertainty aversion in a heterogeneous agent
CEU model might lead to an endogenous breakdown in markets for some assets. Following the
previous statement concerning Edgeworth box economies, Mukerji and Tallon (2001) observed
that more conditions must be imposed. They showed that a suf�cient condition is the intro-
duction of a idiosyncratic components, i.e., a component in asset payoffs that is independent
of the endowments in the economy and the payoff of any other asset as well. Under idiosyn-
cratic components, they showed that "when the assets available to trade risk among agents are
affected by idiosyncratic risk, and if agents perceive this idiosyncratic component as being am-
biguous and the ambiguity is high enough, then every equilibrium involves no trade over these
assets".14 Hence, Mukerji and Tallon (2001) shows how ambiguity aversion may endogenously
limit the scope of risk sharing obtainable through the bonds traded in an economy. However,
this conclusion can be viewed also as a negative result because they impose the strong con-
dition of idiosyncratic components. Indeed, Rinaldi (2009) showed that Mukerji and Tallon's
12See also the discussion provided by Ghirardato and Siniscalchi (2012) on this topic that takes into account a

broarder class of preferences.
13For example, Chateauneuf, Dana and Tallon (2000) proved, under common convex capacity, that risk sharing

proceeds just as in an economy with SEU agents.
14Note that this is to be contrasted with the situation in which agents are SEU, in which standard replication and

diversi�cation arguments ensure that full risk sharing may be obtained and the equilibrium is Pareto optimal, e.g.,
see Werner (1997).

8



result cannot hold for the class of smooth variational preferences of Maccheroni, Marinacci
and Rustichini (2006). Finally, Rigotti and Shannon (2012) shows that if ambiguity is modeled
using variational preferences then indeterminacies and no-trade are not the typical equilibrium
result. This results contrasts sharply with the conclusion about the possibility of endogenous
incomplete markets when agents have incomplete preferences a la Bewley (2002), as Rigotti
and Shannon (2005) have shown.

Our Main Result and the Empirical Literature

We fully characterize pricing rules of �nite �nancial markets and show that ef�cient com-
plete markets allowing, in general, bid-ask spreads is the prevalent case. Also incompleteness
of �nancial markets are revealed by the case of an ambiguous valuation that fails to satisfy the
fully agreement over null events (or, the mutually absolutely continuity condition). We con-
clude this Introduction with a brie�y discussion of some important result from the empirical
literature taking into account our �ndings.
Recall that in the case of frictionless market completeness, a central result in asset pric-

ing says that the stochastic discount factor can be identi�ed with the intertemporal marginal
rates of substitution of a representative agent.15 Indeed, an usual empirical strategy is to con-
nect intertemporal marginal rates of substitution to stochastic discount factors. An important
methodological constraint to the econometric evaluation of asset pricing models is that, for a
given �nancial data set, the typical case is the existence of multiple stochastic discount factors.
As well highlighted by Hansen, Heaton, Lee, and Roussanov (2007),

"only when the econometrician uses a complete set of security market payoffs will
there be a unique discount factor."

15See, for instance, LeRoy (1973), Lucas (1978), and Harrison and Kreps (1979). Also, given a prior objec-
tive probability P � over the state space, recall that each stochastic discount factor corresponds to a risk-neutral
probability and vice-versa. Indeed, given a stochastic discount factor d : S ! R the corresponding risk-neutral
probability P follows by taking, for all s0; P (s0) := dsP � (s0) =EP� (d), which gives that for all X 2 RS

EP (X) = EP� (dX) ,

where dX denotes the mapping de�ned by (dX) (s) := d (s)X (s) for all s 2 S. On the other hand, given a set
of risk-neutral probabilities Q, the induced set of stochastic discount factor is given by

DP� :=

�
d 2 RS : for some P 2 Q;

EP� (dX) = EP (X) , for all X 2 RS
�
.
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This observation is consistent with the fact that either an explicit economic model is assumed
that generated a discount factor, or an ad hoc identi�cation method should be taken a priori in
order to �nd a discount factor. In this way, dynamic macroeconomic equilibrium models have
been used in order to produce candidate discount factors. For instance, under incompleteness,
Hansen and Jagannathan (1991) suggested that stochastic discount factors have to be much more
volatile than the IMRSs of typical representative agent models. On the other hand, when data
on transaction costs are taken into account, estimates presented in Luttmer (1996) indicate that
the low variability of these IMRSs is consistent with asset returns indicating a smallest volatility
of the stochastic discounting factors. The dichotomy above between Hansen and Jagannathan
(1991) and Luttmer (1996) is consistent with our results: Incompleteness leads to a relatively
large ambiguity about the stochastic discount factors while transactions costs are consistent with
relatively mild levels of ambiguous stochastic discount factors.

Pricing Rules of Finite Financial Markets

We consider a single-period economy where the uncertainty is modeled by a �nite state space
S = fs1; :::; sng. Let � be the set of all probability measures on (S; 2S). Also, �+ denotes the
set of strictly positive probabilities or the set of probability measures with full support:

Supp [P ] := fs : P (s) > 0g = S.

Also, given a subset Q � � we denote Q+ := Q\�+ and Q@ = Q\ (�+)
c.

A mapping X : S ! R is a security that gives the right to X (s) units of consumption or
wealth in the second period in each state of nature s 2 S. A bet on the event A is given by the
security A� : S ! f0; 1g, where A� (s) = 1 iff s 2 A.
Following CKL (1996), Jouini (2000), Jouini and Kallal (2001), Castagnoli, Maccheroni

and Marinacci (2002), ACF (2012) we have the de�nition:16

De�nition 1 A mapping C : RS ! R is a pricing rule if
i) C is sublinear, i:e:,

C (�X) = �C (X) ; (positive homogeneous) ; and

C (X + Y ) � C (X) + C (Y ) ; (subadditive) ;
16The intuition of each property can be �nd in any of the previous quoted papers.
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for all X;Y 2 RS and all non-negative real number �;
ii) C is arbitrage free, i:e:, C (X) > 0 for any nonzero security X � 0;
iii) C is normalized, i:e:, C (S�) = 1;
iv) C is monotonic, i:e:, C (X) � C (Y ) for all X; Y 2 RS s.t. X � Y ;
v) C is constant additive, i:e:; C (X + kS�) = C (X) + k;for all X 2 RS and all real

number k.

It seems worth noticing that subadditivity is the property that captures the notion of a caution
valuation. It says that, in general, it is less expensive to purchase a portfolio of securities than
to purchase each security separately. Actually, the next well-know result can be viewed as a
valuation rule that captures the willingness to accept of a maxmin ambiguity averse17 and risk
neutral seller:

Theorem 2 Given a pricing rule C : RS ! R, there exists a unique closed and convex setQ of
probability measures, where at least one element is strictly positive, such that for any security
X

C (X) = max
P2Q

EP (X)

It seems important to take a caveat at this point. Usually, the set of attainable payoffs in a
�nancial economy is generate by a �nite set of assets (e.g., Subsection 3.3. in Luttmer (1996)).
Hence, the corresponding set of risk-neutral probability has its closure given by a polytope by a
well know result (e.g., Theorem 2.4.6 in Schneider (1993)). For instance, assume that #S = 3,
for all " > 0 such that Q = B

��
1
3
; 1
3
; 1
3

�
; "
�
� �, the corresponding pricing rule cannot be

related to a �nite �nancial market.
We call C a �nitely generated pricing rule if C is a pricing rule with the additional property

that the set of probabilities Q that characterizes C is given by a polytope. Next, we identify the
property that characterizes �nitely generated pricing rules.
17Maxmin ambiguity averse agents a la Gilboa and Schmeidler (1989) are characterized by a set of priors C

and a utility index u : R! R where utility functions can be written by U : R! R with

U (X) = min
P2C

EP (u (X)) :

Also, risk neutrality is captured by the fact that u (x) = x for all x 2 R. The willingness to pay is given by U (X)
and the willingness to accept is given by �U (�X). An alternative approach to maxmin expected utility model
have been provided by Gilboa, Maccheroni, Marinacci, and Schmeidler (2010).
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De�nition 3 A mapping C : RS ! R is additive over �nite small markets if there exist a �nite
collection of polyhedral cones fWlgLl=1 with the property that [lWl = RS , span fS�g � \lWl,
and given an index l 2 f1; :::; Lg for all X; Y 2 Wl

C (X + Y ) = C (X) + C (Y ) .

This property says that pricing rules should be additive over a �nite collection of suitable
regions of the marketed space. We might view each region where additivity holds as a particular
"small market" in which a unique fair linear price works. The notion of small markets can be
viewed in a similar way of 'small words' discussed by Savage (1954), and further analyzed
by Chew and Sagi (2006, 2008). This suggests that each small market can be associated with
a distinct restricted domain of contracts related to a suf�ciently simple source of uncertainty,
which can be referred as an event called 'small world'. For instance, a pricing rule can be
additive within bets over sub-events of a small world event, but equally likely complementary
events in another small world may not pricing in the same way. Therefore, it might be less
expensive to purchase a portfolio of bets on different small worlds than to purchase each of
those bets separately.
The next result shows that the previous condition is the essence of a polytope set of linear

pricing rules that emerges from the market data.

Theorem 4 Given a pricing rule C : RS ! R , the corresponding set of probabilities Q is a
polytope if, and only if, C is additive over �nite small markets.

The following result is very important because it allows us to say that a �nitely generated
pricing rule C is a pricing rule of a �nite (arbitrage-free) market of securities.18 In another way,
the polytope condition is not only necessary but also a suf�cient condition for C being a pricing
rule of a �nite �nancial market.

Theorem 5 The mappingC is a super-replication price of some arbitrage-free �nancial market
M =

�
Xj;

�
qAj ; q

B
j

�	m
j=0
if, and only if, the mapping C is a �nitely generated pricing rule.

One important consequence our Theorem 5 is that �nitely generated pricing rules can be al-
ways associated to incomplete markets or bid-ask spreads. Later, we will provide a constructive
result about how any �nitely generated pricing rules can reveal an underlying �nancial markets.
18See Appendix Part A for the de�nition and basic facts about �nite �nancial market of securities without

arbitrage opportunities.
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Ef�ciency and Market Completeness

Recall that given a pricing rule C : RS ! R, the induced set of frictionless securities is de�ned
by

FC :=
�
X 2 RS : C(X) + C(�X) = 0

	
:

Clearly, the fact that X 2 FC means that the security X can be bought and sold without any
frictions. Any pricing rule C gives rise to a linear subspace of frictionless securities FC .19

Given a pricing rule C, the induced set of undominated securities is de�ned by

LC :=
�
X 2 RS : Y > X ) C (Y ) > C (X)

	
:

An undominated securityX is characterized by the property saying that if some of its contin-
gent payoff is replaced by a higher payoff, then the resulting security is strictly more expensive
than the original one. As observed in ACF (2012), note that for all pricing rules C it follows that
any frictionless security X is undominated, i.e., FC � LC . The set of undominated securities
LC plays a fundamental role in our study.
Given a �nitely generated pricing rule, we show next that the revealed set of undominated

securities LC can be viewed as the set of ef�cient securities. Dybvig (1988a, 1988b) introduced
the notion of ef�cient securities in the following way: Given a uncertain endowment X0 2 RS

and a pricing rule C, a security X is ef�cient with respect to the pair (C;X0) if there exists
a risk averse von Neumann-Morgenstern rational agent endowed with some initial wealth X0

for which X is an optimal choice given the pricing rule C. Denoting by EffX0 (C) the set of
ef�cient securities induced by the pair (C;X0), Jouini and Kallal (2001) provides an important
characterization of the set of ef�cient securities

EffX0 (C) =

�
X 2 RS : C (X) = EP (X) for some P 2 Q+

and X (s) +X0 (s) > X (s0) +X0 (s0)) P (s) � P (s0)

�
.

The intuition behind this characterization of ef�cient securities is quite natural. Given a pricing
rule C, the set EffX0 (C) captures the collections of all securities evaluated through some
risk neutral probability P 2 Q+ with the additional property that larger payoffs are related to
cheaper state prices induced by P .20

The connection between LC and EffX0 (C) follows as:
19See Lemma 3 of ACF (2012).
20This approach assumes that rational agents considered in the primitive de�nition of ef�cient securities only

care about the distribution of payoffs because all the states of nature are equiprobable for their beliefs.
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Theorem 6 For any endowment X0 2 RS , we have that EffX0 (C) � LC . Also, given X 2
LC , there exists X0 2 RS such that X 2 EffX0 (C). In another way,

LC =
[

X02RS
EffX0 (C) .

Building on the previous characterization, we aim to provide an important distinction be-
tween two notions capturing completeness of �nancial markets. The �rst notion is a strong
condition saying that any �nancial position X is undominated, that is,

LC = RS .

In this case we say that C is a pricing rule of an "ef�cient complete market".
The second notion of completeness is less demanding. It just says that any �nancial position

can be generated by some portfolio that takes into account only undominated securities, that is,

Span (LC) = RS:

In this case, we say that C is a pricing rule of a "complete market of securities generated by
ef�cient assets".
In order to illustrate the main difference between both notions of complete markets, let us

consider the following

Example 7 There are two states of nature and assume that the pricing rule is given by

C (x1; x2) = max
�2[1=2;1]

f�x1 + (1� �)x2g :

We note that in this case the set of undominated securities is the convex cone given by

LC =
�
(x1; x2) 2 R2 : x2 � x1

	
= cone fS�;�S�; fs2g�g

Also, the set of frictionless securities satis�es FC = span fS�g. We note thatM is a complete
market but not an ef�cient complete market of securities. Actually, it is simple to show that C
is the super-replication price induced by the market of securities given by21

M = f(S�; 1) ; (fs2g� ; (0; 1=2))g .
21Note that the case of an Arrow security fsig� with bid-price qBs = 0 can be reinterpreted as the case of an

Arrow security with a unique price qs = qAs in which we have short-sales constraint concerning such security.
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Next, we present a result with very important consequences:

Theorem 8 The following conditions are equivalent:
(i) C is a pricing rule of a ef�cient complete market of securities.
(ii)The set of probabilities measures representingC contains only full support probabilities.
(iii) (KEM property) For all X; Y; Z 2 RS ,

C (X ^ Z) > C (X ^ Y ^ Z)) C (X) > C (X ^ Y ) .

One consequence of this result is that among the universe of all pricing rules, the prevalent
case is the class of pricing rules of ef�cient complete markets with bid-ask spreads.22 We do
not mean that real �nancial markets characterized by a system of contracts which involve only a
limited commitments into the future are the exception rather than the rule. Our message is that,
in a �nancial market with unforeseen contingencies, incompleteness is always a consequence of
an extreme form of ambiguity concerning linear valuation rule in the sense that the extended set
of risk-neutral probabilities consistent with the market should allows for a disagreement about
some zero probability event. Finally, the condition (iii) says that ef�cient complete markets
is equivalent to a property of pricing rules that we adapted from Kreps (1979) and Epstein
and Marinacci (2007), called KEM property. This property provides a useful way for testing
if a given pricing rule is related to a ef�cient complete market of securities. For instance,
in our previous example with two states of nature, by taking X = (1; 1) ; Y = (1; 0) and
Z = (�1=2; 1) we get that the KEM property is false.
One �rst consequence of our Theorem 8 is that incomplete markets implies in a very special

property of the set of linear valuation rules consistent with the market:

Corollary 9 If C is a pricing rule related to an incomplete market of securities then there
exists a linear pricing rule with non full-support in Q, i.e., Q@ 6= ;. Also, if a security X is not
tradeable we have that if C (X) = EP (X) with P 2 Q then P 2 Q@ .

Recall that one of the most well-known result concerning �nancial markets without fric-
tions on tradeable securities says that the case of complete markets is equivalent to the case
of a unique (strictly positive) risk-neutral probability. Under the possibility of frictions over
tradeable securities our Theorem 8 says that completeness is captured by the fact that all linear
22We note that the class of all polytope is dense when we consider the metric space of all convex bodies endowed

with the Hausdorff metric (See, for instance, Schneider (1993)).
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pricing valuation consistent with the market is strictly positive. The next result is an alternative
way of rewritten this characterization of ef�cient complete markets:

Corollary 10 C is �nitely generated pricing rule of an arbitrage-free ef�cient complete market
of securitiesM =

�
Xj;

�
qAj ; q

B
j

�	m
j=0

if, and only if, there exists a �nite set of risk neutral
probabilities fPigni=1 � �+ such that

C (X) = max
1�i�n

EPi (X) , for all X 2 RS .

Moreover, the market is frictionless (i.e. FC = LC) if, and only if, there is only one risk-neutral
probability.

Revealing Financial Markets from Finitely Generated Pricing
Rule

Next, we present one of our main result:

Theorem 11 If C is a �nitely generated pricing rule then C is a super-replication price of an
arbitrage-free �nancial market

M =
�
Xj;

�
qAj ; q

B
j

�	m
j=0
;

where Span
�
fXjgmj=0

�
= Span (LC). Moreover, the ef�cient market space LC can be rewrit-

ten as a �nite union of convex cones, where each one is generated by subset of securities X 0
js.

Finally, the pricing rule C is additive over each of such convex cones.

The next example shows how our constructive proof can be useful (see the proof in the
Appendix B).

Example 12 Consider the case of three states of nature S = fs1; s2; s3g and a �nitely gener-
ated pricing rule related to the set of priors given by

Q =: co (fP1; P2; P3g) ;

where Pi = 1
2
(S� � fsig�). In this case it is easy to see that,23 given X = (x1; x2; x3) 2 R3;

C (X) =
1

2
max fx1 + x2; x1 + x3; x2 + x3g ,

23Note that
Q = co (fP1; P2; P3g) = f(p1; p2; p3) 2 � : 0 � pi � 1=2 for all ig .
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and FC = Span (S�). Also, it is not hard to show that

LC =
�
X 2 R3 : # fi : xi = r for some r 2 Rg � 2

	
.

and hence, Span (LC) = R3, that is, any underlying market is a complete market generated by
ef�cient assets but this �nancial market is not an ef�cient complete market of securities. For
instance, we can take

S�; q0 = 1

fsig� ; qAi : = 1=2 > 0 =: qBi , (i = 1; 2; 3),

which has its superhedging price given by C. We note that

V1 = fX : x3 � x1 and x2 � x1g
V2 = fX : x3 � x2 and x1 � x2g
V3 = fX : x2 � x3 and x1 � x3g :

Also, considering

Ji0 :=
n
J � f1; 2; 3g : i0 2 J and co

�
fPjgj

�
\�+ 6= ;

o
;

and for all J 2 Ji0

V Ji0 =
�
X 2 Vi0 : EPi0 (X) = EPj (X) for all j 2 J

	
;

we obtain

V1 \ LC = fX : x3 = x1 and x2 � x1g [ fX : x3 � x1 and x2 = x1g
= V

f1;2g
1 [ V f1;3g1

V2 \ LC = fX : x3 = x2 and x1 � x2g [ fX : x3 � x2 and x1 = x2g
= V

f1;2g
2 [ V f2;3g2

V3 \ LC = fX : x2 = x3 and x1 � x3g [ fX : x2 � x3 and x1 = x3g
= V

f1;3g
3 [ V f2;3g3

and it easy to see that there are only three different convex cones (for instance, V f1;2g1 = V
f2;3g
3 ):

LC = fX : x2 � x1 = x3g [ fX : x3 � x1 = x2g [ fX : x1 � x2 = x3g
= cone (fS�;�S�; (0; 1; 0)g) [ cone (fS�;�S�; (0; 0; 1)g) [ cone (fS�;�S�; (1; 0; 0)g)

That is, LC is the union of three convex cones.
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One important step in the proof of Theorem 11 is that, given a pricing rule C : RS ! R,
LC can be written as a �nite union of convex cones. In special, when the set of probability
measures Q = co

�
fPigki=1

�
related to C is such that Pi 2 �+ for all i 2 f1; :::; kg it follows

that
LC =

[
1�i�k

Vi,

where Vi is the convex cone given by the set
�
X 2 RS : C (X) = EPi (X)

	
, which is a poly-

hedral set. By the Minkowski-Weyl's Theorem we obtain that each Vi is �nitely generated, that
is, there exist X i

1; :::; X
i
li
2 RS such that Vi is the cone generated by such securities, i.e.,

Vi = cone
��
X i
1; :::; X

i
li

	�
.

This fact makes clear that even for the case where #S = 3 we may have a �nancial market
with an arbitrary large number of non-redundant assets. Of course, this possibility excludes the
case of a �nancial market without bid-ask spreads by the well-known fact that the number of
non-redundant securities in an incomplete market of securities without bid-ask spreads cannot
be large than #S.
Now, let us come back to the case given by a "pricing rule" generated by a ball as we

have discussed before our Theorem 4 about �nitely generated pricing rules.24 Assuming, for
simplicity, that the ball contains only strictly positive probabilities, we can invoke a result from
Shneider and Wieacker (1981) showing that for an approximation small error of " > 0 we need
a polytope with many faces of order ("�1)(#S�2)=2, which is exponential in #S.25 In another
words, in order to approximate the ball capturing the potential set of risk-neutral probabilities
through a sequence of errors with order n�1, we should take a sequence of �nitely generated
pricing rules Ck represented by Qk = co

�
fPigki=1

�
such that k is of order n(#S�2)=2 . This

shows how complex should be a hypothetical underlying market related to a ball of risk-neutral
probabilities.

More on the Completeness of Financial Markets

Let C be a �nitely generated pricing rule as we have characterized in our Theorem 4. As
soon as FC = LC we known from ACF (2012) that the linear space of attainable claims or
24Note that if#S � 2 then any ball is a polytope. So, let us consider the case #S > 2.
25See also Cheang (2000) for an interesting discussion on the results about polytope and also for an alternative

strategy of taking approximation through half-spaces.
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else the marketed space of the underlying �nancial market induced from C, denoted by F , is
de�ned without any ambiguity as F = FC . So, in the case of no frictions (i.e., FC = LC), the
space of attainable claims is always FC and indeed one has completeness if, and only if, FC or
equivalently LC is equal to RS .
On the other hand, in general we have that FC � LC and in this case we should to analyze

the following possibilities in order to clarify the possibility of �nding an underlying complete
market of securities:
(a)When LC = RS we got that there is a unique possible market space F given by RS , and

in this case we say that the market is ef�ciently complete.
(b) In the case where LC 6= RS = Span (LC), we have obtained that there is a unique

possible marketed space F , namely F = Span (LC).
(c) Finally, when Span (LC) 6= RS , due to the next proposition, we get that the smallest

possible marketed space F related to C is given by Span (LC).

Proposition 13 For all �nitely generated pricing rules C, given any underlying marketMC

(i.e., CMC
= C) the inclusion Span (LC) � F holds.

We note that when Span (LC) 6= RS , we can apply our Theorem 11 for obtaining the
minimal marketMC =

�
Xj;

�
qAj ; q

B
j

�	m
j=0

such that F = Span (LC). Now, if we consider

another marketM0 =
�
Xj;

�
qAj ; q

B
j

�	m+1
j=0

by taking Xm+1 =2 Span (LC) with bid-ask prices
qAm+1 and qBm+1 such that

qBm+1 � �C (�Xm+1) and qAm+1 � C (Xm+1) ;

then C is also the super-replication price ofM0. Following the notion of effectiveness of a
new security as proposed by Baccara, Battauz and Ortu (2006, BBO for short),26 we get that
Xm+1 does not improve the super-hedging capability of investors. In this way, both markets
MC andM0 have the same super-replication price and the marketed space related toM0 is
large than F , but these asset markets provides the same set of ef�cient securities. Furthermore,
26As proposed by BBO (2006), effectiveness of a new security occurs when this new traded security is long

and short effective in the sense that it is optimal to take a long and a short position in the new security to super-
replicate some future cash�ow at the minimum cost. They show that no-arbitrage and effectiveness of X implies
that the ask price of X must be smaller then the minimum cost incurred to super-replicate the payoff from a long
position C (X), and the its bid price must be larger than the maximum that can be borrowed against a liability not
exceeding the one generated by a short position, which is given by�C (�X). Also, they observe that effectiveness
is a necessary condition for a position being ef�cient in the new market (BBO, 2006, p. 67).
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note that fromMC we can take the similar strategy applied for obtainingM0 and construct a
marketM00 =

�
Xj;

�
qAj ; q

B
j

�	m+n
j=0

with Xj =2 Span (LC) for all j 2 fm+ 1; :::; ng, such that
Span

�
fXjgm+n0=1

�
= RS and arbitrary bid-ask prices qAj and qBj such that

qBj � �C (�Xj) and qAj � C (Xj) :

Thus we get that the marketed space related toM00 is complete but the set of ef�cient securities
still given by LC .
In order to illustrate this case where C is associated to LC such that Span (LC) 6= RS ,

consider the following class of pricing rules, for all X 2 RS

C (X) = (1� ")
X
s2E0

X (s)P (s) + "P (E0)max
s2E0

X (s) + P (Ec0)max
s2Ec0

X (s) ;

where E0 is a nonempty proper subset of S, " 2 (0; 1) and P is a strictly positive probability.27

This pricing rule is the super-replication price of the �nancial marketM determinate by the
frictionless bond S� with price 1, the frictionless security given by the bet on Ec0; denoted by
(Ec0)

�, with price P (Ec0) 2 (0; 1), and all Arrow-securities fsg
�, s 2 E0, where the pair of

bid-ask prices for each s 2 E0 is given by�
qAs ; q

B
s

�
= ((1� ")P (s) + "P (E0) ; (1� ")P (s)) :

Hence,M is an incomplete market of securities (note that all Arrow-securities fsg� with s 2 Ec0
are not tradeable) with a frictionless bond such all tradeable Arrow-security has a positive bid-
ask spread as speci�ed above. Note also that the set of undominated securities satis�es

LC =
[
s2E0

cone (fS�; S�; fsg� ;�fsg�g) = Span (S�; fsg� ; with s 2 E0) ;

that is,M is minimal in the sense of generating the smallest marketed space compatible with
C.
Now, if we consider the �nancial marketM0 by adding all Arrow-securities fsg� with s 2

Ec0 with respective pairs of bid-ask prices given by
�
qAs ; q

B
s

�
= (P (Ec0) ; 0) then we get that

M0 is a complete market of securities but the super-replication capability of investor still as
the same as inM, and the set of ef�cient securities does not change after introducing such
Arrow-securities with frictions as described above.
27It can showed also that this pricing rule can be rewritten as a Choquet pricing rule with respect the concave

capacity vC induced from C de�ned by, for all A

vC (A) := C (A
�) .
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Complete markets with uniform bid-ask spreads

This section shows that for an interesting class of ef�cient complete market of securities, the
pricing rule is the epsilon contaminated one. We �nd a condition, called uniform bid-ask
spreads, equivalent to the epsilon-contaminated pricing rule asserting that the price of any se-
curity X : S ! R follows as

C (X) = (1� ")EP (X) + "max
s2S

X (s) ,

where, P 2 �+ is a risk-neutral probability and " 2 (0; 1). This pricing rule states that the price
of all securities are computed by taking always the same convex combination between its "pure
price" EP (X) and the worst scenario payoff for the seller point of view. We note that, since
LC = RS , any underlying marketM revealed by C must be an ef�cient complete market. Also,
since FC = Span fS�g any security that is not riskless has a positive bid-ask spread. Actually,
this class of pricing rules has a strong property in terms of market feature.

De�nition 14 We say thatM =
�
Xj;

�
qAj ; q

B
j

�	m
j=0

is a �nancial market of Arrow securities
with a frictionless bond and uniform bid-ask spreads if:
i) X0 = S

� with qA0 = qB0 = 1,m = #S, and for all j 2 S; Xj = fjg�.
ii) For all j 2 S, the bid-ask spread prices of Xj = fjg� is given by

qAj � qBj = ":

iii) The trade strategy given by selling all Arrow securities and buying the bond generate a
positive cost " > 0; i.e.,

1�
#SX
s=1

qBj = ".

In the condition (i) we just impose that the bond is tradeable without bid-ask spreads and all
Arrow securities are also available in the market. Condition (ii) says that every Arrow security
has the same bid-ask spread which could be viewed as a very pessimistic valuation rule. In
fact, in such �nancial markets, securities with lower bid price requires a relatively higher ask
valuation than those securities with biggest bid price, e.g., for a security market with uniform
bid-ask given by 0,05e , if for some Arrow security its bid price is 0,10e then its ask price is
0,15e (50% more) while for a Arrow security with bid price given by 0,20e its ask price is
0,25e (25% more). In fact, we note that for a general security X its bid-ask spread is given
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by " (maxS X (s)�minS X (s)). The third condition gives a relation between the frictionless
bond and the collection of Arrow securities, which provides a general rule for the feature of bid
and ask prices of Arrow securities.
Our result that characterizes complete market of Arrow securities with uniform bid-ask

spreads and a frictionless bond says that:

Theorem 15 A complete market of Arrow securitiesM satis�es the uniform bid-ask spreads
condition if, and only if,M is an underlying market of securities revealed by a pricing rule C
that can be represented by a strictly positive probability P and a constant " 2 (0; 1), in the
sense that for any security X

C (X) = (1� ")EP (X) + "max
s2S

X (s) :

It is worth noting that this pricing rule can be rewritten as the Choquet integral (see, for
instance, CKL (1996))

C (X) =

Z
Xdv;

where v is the concave capacity given by

v (A) =

�
(1� ")P (A) + "; A 6= ;

0; A = ;.

Actually, the risk-neutral capacity28 v gives the ask-price of each bet A� and its dual, de�ned by
v (A) = 1� v (Ac), describe the bid-price of each bet A�.
It seems interest also to note the set of risk-neutral probabilities is given by

Q = (1� ")P + "�;

which can be also rewritten as the convex hull of all probabilities given by the following convex
combination (1� ")P + "�fsg, s 2 S, that is

Q = co
��
(1� ")P + "�fsg

	
s2S

�
.

28ACF(2012) characterizes the class of all risk-neutral capacities related to pricing rules of incomplete markets
without bid-ask spreads. In the case of frictionless complete markets the risk-neutral capacity becames a risk-
neutral probability as in the fundamental theorem of asset pricing. See Cerreia-Vioglio, Maccheroni and Marinacci
(2015) for an alternative characterization of Choquet pricing rules of complete markets based on the put-call parity.
See also Castagnoli, Maccheroni, and Marinacci (2004).
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Appendix

Part A: Finite Arbitrage-Free Securities Markets.

We consider a model in which there is a �nite number of assets Xj 2 RS , 0 � j � m, with the
possibility of bid-ask spreads, which is modeled by a couple of prices for each asset j given by�
qAj ; q

B
j

�
, where qAj � qBj . Also, we assume that X0 = S

� := (1; :::; 1) is the riskless bond with
zero bid-ask spread, under the price normalization q0 = 1 (i.e., qA0 = qB0 = 1). Note that we are
not allowing bid-ask at liquidation.
A portfolio of an agent is identi�ed with a pair of vectors

�
�A; �B

�
2 R2(m+1), where �Aj

represents the number of units of asset j bought while �Bj represents the number of units of asset
j sold by the agent.
We recall that an arbitrage opportunity is a portfolio strategy with no cost that yields a

strictly positive pro�t in some states and exposes no loss risk.
Formally, a marketM =

�
Xj;

�
qAj ; q

B
j

�	m
j=0

offer no-arbitrage opportunity if for any port-

folio
�
�A; �B

�
2 R2(m+1)+ ,

mX
j=0

�
�Aj � �Bj

�
Xj > 0)

mX
j=0

�Aj q
A
j �

mX
j=0

�Bj q
B
j > 0,

mX
j=0

�
�Aj � �Bj

�
Xj � 0)

mX
j=0

�Aj q
A
j �

mX
j=0

�Bj q
B
j � 0.

An important result says that the market M =
�
Xj;

�
qAj ; q

B
j

�	m
j=0

offers no arbitrage
opportunity if and only if there exists a (strictly positive) probability P0 2 �+ such that
qBj � EP0(Xj) � qAj , 0 � j � m.
The set

QM = fP 2 �+ : qBj � EP (Xj) � qAj ; 8j 2 f0; :::;mgg;

is called the set of risk-neutral probabilities.
The pricing rule C generates by the market M =

�
Xj;

�
qAj ; q

B
j

�	m
j=0

is de�ned by the
super-replication price given by, for all X 2 RS

CM(X) = inf

(
mX
j=0

�
�Aj q

A
j � �Bj qBj

�
:

mX
j=0

�
�Aj � �Bj

�
Xj � X

)

= min

(
mX
j=0

�
�Aj q

A
j � �Bj qBj

�
:
mX
j=0

�
�Aj � �Bj

�
Xj � X

)
:29
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It is worth noticing that for a securities marketM offering no-arbitrage opportunity, the
super-replication prices can be also represented by (Jouini and Kallal (1995))

CM (X) = sup
P2QM

EP (X) ; for all X 2 RS:

Hence, by taking the closure of the set of risk neutral probabilities Q�
M := QM, we have

CM (X) = max
P2Q�M

EP (X) ; for all X 2 RS:

Given a �nancial marketM =
�
Xj;

�
qAj ; q

B
j

�	m
j=0
, we say thatM is complete if(

mX
j=0

�
�Aj � �Bj

�
Xj :

�
�A; �B

�
2 R2(m+1)+

)
= RS .

Part B: Proof of the Results in the Main Text

Proof of Theorem 4:
Assume that Q is a polytope, i.e., there exists a �nite set fPigki=1 s.t. Q = co

�
fPigki=1

�
.

First, we note that, for each i 2 f1; :::; kg

Vi :=
�
X 2 RS : C (X) = EPi (X)

	
is nonempty30. Also, Vi is a convex cone. Actually, we know that C (�X) = �C (X) for all X
and all � � 0. Also, X; Y 2 Vi

C (X + Y ) � C (X) + C (Y ) = EPi (X) + EPi (Y ) = EPi (X + Y ) � C (X + Y ) :

Hence, for all � � 0 and all X; Y 2 Vi

�X + Y 2 Vi.

Also, it is easy to see that each Vi is a polyhedral set, [iVi = RS and �S� 2 Vi for all i.

30We assume that given a polytope Q = co
�
fPigki=1

�
the number k is such that

k = min fn 2 N : Q = co (fPigni=1)g
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Now, assume that there exist a �nite collection of polyhedral cones fWlgLl=1 with the prop-
erty that [lWl = RS and such that for each l and for all X;Y 2 Wl

C (X + Y ) = C (X) + C (Y ) .

Note that for each l 2 f1; :::; Lg the mapping C : Wl ! R can be represented by some
Pl 2 � in the sense that31 C (X) = EPl (X) for all X 2 Wl.
We claim that Q = co

�
fPlgLl=1

�
. Indeed, since32

Q =
�
P 2 � : EP (X) � C (X) ;8X 2 RS

	
;

it is easy to see that co
�
fPlgLl=1

�
� Q. On the other hand, if there exists P0 2 Qnco

�
fPlgLl=1

�
then the Hahn-Banach separation theorem gives that there exists some Y 2 RS with

EP0 (Y ) > max
P2co(fPlgLl=1)

EP (Y ) .

Note that since [lWl = RS , there exist l0 s.t. Y 2 Wl0 and C (Y ) = EPl0 (Y ), but

C (Y ) � EP0 (Y ) > max
P2co(fPlgLl=1)

EP (Y ) � EPl0 (Y ) ;

a contradiction. Hence Q = co
�
fPlgLl=1

�
.

Proof of Theorem 5:
Assume that C is a super-replication price of an arbitrage-free �nancial market M =�

Xj;
�
qAj ; q

B
j

�	m
j=0
, that is, C can be write as

C (X) = max
P2Q�M

EP (X) ;

where
Q�
M := fP 2 � : qBj � EP (Xj) � qAj ; 8j 2 f1; :::;mgg;

contains at least one strictly positive probability.
31Recall that C is monotone and S� 2Wl for all l. So, we can apply the Lemma 1 in Kalai and Myerson (1977).
32Actually, Q is is the subdifferential of its support function at 0 (Schneider (1993), pp. 38), i.e., @C (0) = Q.

Recall that
@C (X) =

�
v 2 RS : C (Y ) � C (X) + �v (s) (Y (s)�X (s)) ; 8Y
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Hence

Q�
M =

 
m\
j=0

fY 2 RS : hY;Xji � qAj g
!
\
 

m\
j=0

fY 2 RS : hY;�Xji � �qBj g
!
;

that is, Q�M is a bounded intersection of �nitely many closed half-spaces and by Proposition
3.2.1 in Florenzano and Le Van (2001) the set Q�M is a polytope.
Now, assume that

C (X) = max
P2Q

EP (X) ;

where Q � � is a polytope. Again, by the Proposition 3.2.1 in Florenzano and Le Van (2001)
we have that there existm 2 N and Xj 2 RS and bj 2 R (j = 1; :::;m) such that

Q = fP 2 � : EP (Xj) � bj for all j 2 f1; :::;mgg .

Let
Q�M =

�
P 2 � : qAj � EP (Xj) � qBj for all j 2 f1; :::;mg

	
;

where
qAj := max

P2Q
EP (Xj) and qBj := min

P2Q
EP (Xj) .

It is straightforward to check that Q�M = Q, which completes the proof, since indeed it is
unmodi�ed if X0 = S� and qA0 = qB0 = 1 is added to the X 0

js in case S� does not initially
belong to the X 0

js.
Before the proof of Theorem 6, we provide an alternative and very useful characterization

of LC . This characterization says that a securityX is undominated if, and only if, there exists a
strictly positive linear pricing rule that prices it.

Theorem 16 The set of undominated securities generated by a �nitely generated pricing rule
C satis�es

LC =

�
X 2 RS : argmax

P2Q
EP (X) \�+ 6= ;

�
.

Proof of Theorem 16:
(�) : Assume that X is s.t. argmaxP2QEP (X) \ �+ 6= ;, that is, there exists P 2 Q+

such that C (X) = EP (X). Given any Y > X we get that

C (Y ) = max
Q2Q

EQ (X) � EP (Y ) > EP (X) = C (X) ;
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that is, X 2 LC .

(�) : Assume that X 2 RS satis�es argmaxP2QEP (X) \�+ = ;. In this case, it is clear
that X =2 Span (S�). We need to show that X =2 LC . We denote by fP1; :::; Pkg the set of all
extreme points and let w.l.o.g. fP1; :::; Plg = argmaxP2QEP (X) \ fP1; :::; Pkg.

Let P 2 co (fP1; :::; Plg) such that Supp [P ] =
l[

j=1

Supp [Pj]. Since EP (X) = EP1 (X) =

::: = EPl (X) = C (X), we get from our hypothesis that Supp [P ]  S.
Let A := Supp [P ]c and note that A 6= ;. Given " > 0, consider Y" := X + "A�. Hence,

for all j 2 f1; :::; lg we have that EPj (Y") = EPj (X) = C (X). Also, note that for all
j 2 fl + 1; :::; kg we have that

C (X) > EPj (X)

and
EPj (Y") = EPj (X) + "Pj (A) .

Hence,

C (Y") = max

�
max
1�j�l

EPj (X) ; max
l+1�j�k

�
EPj (X) + "Pj (A)

��

= max

8>><>>:C (X) ; maxl+1�j�k

2664
C(X)
>z }| {

EPj (X) + "Pj (A)

3775
9>>=>>; :

Moreover, we can choose " > 0 suf�ciently small such that C (Y") = C (X), but Y" > X which
implies that X =2 LC .
Proof of 6:
First, recall that we have showed the following alternative characterization of LC

LC =

�
X 2 RS : argmax

P2Q
EP (X) \�+ 6= ;

�
.

So, an immediate consequence is that for all X0 2 RS we have that EffX0 (C) � LC .
Now, considerX 2 LC . By the alternative characterization of LC , we know that there exists

P 2 �+ such that C (X) = EP (X). Consider the order D over S given by

s D s0 , P (s) � P (s0) .
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Take an enumeration of S given by fs1; :::; sng such that s1 D s2 D ::: D sn. Now, considerX0

given by the rule:

X0 (s1) : = 0; and for all k 2 f2; :::; ng
X0 (sk) : = X0 (sk�1) + jX (sk)j+X (sk�1) .

We note that for all k 2 f1; :::; n� 1g we have that

X (sk+1) + jX (sk+1)j � 0

) X (sk+1) +X
0 (sk) + jX (sk+1)j+X (sk)�

�
X (sk) +X

0 (sk)
�
� 0

) X (sk+1) +X
0 (sk+1) � X (sk) +X0 (sk) .

So, given s; s0 2 S such that P (s) > P (s0) then s = sk and s0 = sk+p for some k � 1 and
p � 1. Hence,

X (sk+p) +X
0 (sk+p) � ::: � X (sk) +X0 (sk) , i.e.,

X (s0) +X0 (s0) � X (s) +X0 (s) ,

which completes the proof.
Proof of Theorem 11:
Given C : RS ! R, consider the sets FC and LC . If FC = LC then by Araujo, Chateauneuf

and Faro (2012), C is the pricing rule of an arbitrage-free �nancial market

M =
�
Xj;

�
qAj ; q

B
j

�	m
j=0
,

where qAj = qBj for all j 2 f0; 1; :::;mg, and Span
�
fXjgmj=0

�
= FC .

Now, assume that FC  LC . We know that there exists a �nite set fP1; :::; Pkg � � such
that, by denoting Q = co (fP1; :::; Pkg),

C (X) = max
P2Q

EP (X) .

Given i 2 f1; :::; kg, we de�ne the set of securities priced by Pi as

Vi :=
�
X 2 RS : C (X) = EPi (X)

	
.

Note that for all i 2 f1; :::; kg, the set Vi is a convex cone. We also denote by

f1; :::; kg+ : =
�
i 2 f1; :::; kg : Pi 2 �+

	
, and

f1; :::; kg@ : =
�
f1; :::; kg+

�c .
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Let us show that LC is a �nite union of convex cones. First, we note that33

LC =

0@ [
i2f1;:::;kg+

Vi

1A [
0@ [
i2f1;:::;kg@

(Vi \ LC)

1A .
Since each Vi; i 2 f1; :::; kg+, is a convex cone we just need to show that for all i0 2 f1; :::; kg@

the set Vi0 \ LC is a �nite union of convex cones.
Given i0 2 f1; :::; kg@ consider the family of subsets

Ji0 :=
n
J � f1; :::; kg : i0 2 J and co

�
fPjgj2J

�
\�+ 6= ;

o
.

For all J 2 Ji0 consider the set given by

V Ji0 :=
�
X 2 Vi0 : EPi0 (X) = EPj (X) for all j 2 J

	
;

which allows to obtain that
Vi0 \ LC =

[
J2Ji0

V Ji0 .

Indeed, ifX 2 Vi0\LC thenC (X) = EPi0 (X) and there existsQ 2 �
+ s.t. C (X) = EQ (X).

We have that there exists � 2 �k�1
+ such that Q =

kX
i=1

�iPi. Now, consider

JQi0 :=
�
i 2 f1; :::; kg : �i > 0 and EPi (X) = EPi0 (X)

	
.

We note that if JQi0 = ; then EPi0 (X) > EPi (X) for all i s.t. �i > 0, which gives that

EPi0 (X) >

kX
i=1

�iPi = EQ (X) ;

a contradiction, which allows to conclude that JQi0 6= ; and we obtain X 2 V Ji0 where J = J
Q
i0
.

On the other hand, if there exists J 2 Ji0 s.t. X 2 V Ji0 then since

LC =

�
X 2 RS : argmax

P2Q
EP (X) 6= ;

�
;

we obtain that X 2 Vi0 \ LC .
33Note that

[
i2f1;:::;kg

Vi = RS . Also, for all i 2 f1; :::; kg+ ; Vi � LC .
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Hence, we have that there exists a collection of convex cones fW�g�2�, #� < 1, such
that

LC =
[
�2�

W�:

Note that for all � 2 � there exists i� 2 f1; :::; kg+ such that W� = Vi� or there exist i� 2
f1; :::; kg@ and J� 2 J� s such thatW� = V

J�
i�
.

From the de�nition of Vi and V J�i� we have that all W� are polyhedral sets. Hence, by the
Minkowski-Weyl's Theorem (See Rockafellar (1970), Theorem 19.1) we obtain that allW� are
�nitely generated, that is, there exist X�

1 ; :::; X
�
l�
2 RS such that

W� = cone
��
X�
1 ; :::; X

�
l�

	�
.

Summing up, this construction gives us the following �nite collection of �nite sets of securities�
X�
1 ; :::; X

�
l�

	
�2�.

Consider the �nancial marketM given by such family of securities, where the respective
prices are given by34

8 � 2 �, 8j 2 f1; :::; l�g :
qBj : = �C

�
�X�

j

�
= min

1�i�k
EPi

�
X�
j

�
and qAj := C

�
X�
j

�
= max

1�i�k
EPi

�
X�
j

�
.

Note that since S� 2 LC , we can assume that for some � 2 � and some j 2 f1; :::; l�g one
of the Xj is S� and indeed that both the corresponding bid and ask prices are equal to 1. The
(extended) set of risk neutral probabilities of this market is given by

Q�
M =

�
Q 2 � : 8� 2 � and 8j 2 f1; :::; l�g ; qBj � EQ

�
X�
j

�
� qAj

	
:

First, we note that Q � Q�
M. Assume that P 2 Q = co (fP1; :::; Pkg). Hence, there exists

� = (�1; :::; �k) 2 �k�1
+ such that

P =
kX
i=1

�iPi:

Give � 2 � and j 2 f1; :::; l�g

min
i2f1;:::;kg

EPi
�
X�
j

�
�

kX
i=1

�iEPi
�
X�
j

�
� max

i2f1;:::;kg
EPi

�
X�
j

�
;

34Indeed, someX�
j may appear several times and therefore a suitable market would consider of all the different

X�
j .

30



that is,
qBj � EP

�
X�
j

�
� qAj ,

which shows that Q � Q�
M. Hence, the marketM is arbitrage-free. Let CM be the super-

replication price generated by the marketM. By the inclusion above we have that CM � C.
We need to show the reverse inequality, i.e. that the equality CM = C holds.
First, let us show that for allX 2 LC , CM (X) = C (X). IfX 2 LC then there exists � 2 �

such that X 2 W�. We note that C : W� ! R is such that there exists i� 2 f1; :::; kg such that
C (X) = EPi� (X) for all X 2 W�. We note that that there exists � =

�
�1; :::; �l�

�
2 Rl�+ such

that

X =

l�X
j=1

�jX
�
j .

Hence,

C (X) = EPi� (X) =

l�X
j=1

�jEPi�
�
X�
j

�
=

l�X
j=1

�jq
A
j � CM (X) :

Thus, for all X 2 LC , CM (X) = C (X).
Now, assume that there exists X 2 RS such that CM (X) > C (X). By our previous

conclusion that CM and C coincide over LC we get that X =2 LC . Now we claim that there
exists Y 2 LC such that Y > X and C (Y ) = C (X). We note that it is enough to show that
for any security X , setting

EX :=
�
Y 2 RS : Y > X and C (Y ) = C (X)

	
;

there exists Y 2 FC \ EX .
We note that since X =2 LC one gets EX 6= ;. Let us now prove that EX is bounded from

above, otherwise there would exist a sequence fYkgk�1, Yk 2 EX , 8k � 1 and s0 2 S such that
limk Yk (s0) = +1. Since there exists P0 2 Q+ we get that

lim
k
C (Yk) � lim

k
EP0 (Yk) = lim

k

X
s2S

P0 (s)Yk (s)

�
X
s 6=s0

P0 (s)X (s) + lim
k
P0 (s0)Yk (s0) =1,
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but C (Yk) = C (X), 8k � 1, which gives a contradiction.
Let us now show that EX has a maximal element for the partial order � on RS . Thanks

to Zorn´s lemma we just need to prove that every chain (Y�)�2� in EX has an upper bound.
De�ne Y by

Y (s) := sup
�2�

Y� (s) ;8s 2 S;

since EX is bounded from above it implies that Y 2 RS . It remains to check that C (Y ) =
C (X). Let " > 0 be given, and let si 2 S, hence there is �i 2 � such that Y (si) � Y�i (si)+",
since (Y�)�2� is a chain there is n � 1 and e� 2 f�1; :::; �ng such that Ye� � Y � Ye� + "S�,
therefore C

�
Ye�� � C (Y ) � C

�
Ye�� + ", since C �Ye�� = C (X) it turns out that C (Y ) =

C (X).
Let now Y0 be a maximal element of EX , the proof will be completed if we show that

Y0 2 LC , since indeed we already have Y0 > X and C (Y0) = C (X).
Let Y1 be an arbitrary security such that Y1 > Y0 and let us show that C (Y1) > C (Y0).

Note that Y1 > X since Y1 > Y0 and Y0 > X , therefore since Y0 is a maximal element in EX
and Y1 > Y0 we have C (Y1) > C (X) hence C (Y1) > C (Y0) since C (Y0) = C (X), which
completes the proof of our claim.
Hence, there exists Y 2 LC such that Y > X and C (Y ) = C (X). So,

CM (Y ) = C (Y ) = C (X) < CM (X) ,

a contradiction with the fact that CM is monotone and Y > X . Therefore, we can conclude that

CM (X) = C (X) for all X 2 RS .

Let us show �nally that Span
��
X�
j

	
j2f1;:::;l�g

; � 2 �
�
= Span (LC). Since for all � 2 �

and for all j 2 f1; :::; l�g we have that X�
j 2 LC it is clearly that

Span
��
X�
j

	
j2f1;:::;l�g

; � 2 �
�
� Span (LC) .

Let now X 2 Span (LC), then

X =

w0X
w=1

�wXw

for some w0 2 N, where �w 2 R and Xw 2 LC for all w 2 f1; :::; w0g. Hence, for each
w 2 f1; :::; w0g there exists some �w 2 � and some 
�

w
=
�

�

w

1 ; :::; 

�w

l�w

�
2 Rl�w+ such that

Xw =

l�wX
l=1


�
w

l X
�w

l ;
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which gives that

X =

w0X
w=1

�wXw =

w0X
w=1

l�wX
l=1

�
�w


�w

l

�
X�w

l 2 Span
��
X�
j

	
j2f1;:::;l�g

; � 2 �
�
.

Proof of Theorem 8:
First, we show that (i) , (ii): Suppose that it is not true that Q � �+. Hence, there

exists P 2 Q such that Supp [P ] 6= S. Take E := Supp [P ] which allows to obtain that
C (E�) � P (E) = 1, that is, E� =2 LC because S� > E� and C (S�) = C (E�), and we
conclude that LC 6= RS . Hence, if LC = RS then Q � �+. For the converse, assume that
Q � �+. For all X 2 RS , if Y 2 RS is such that Y > X then EP (Y ) > EP (X) for all
P 2 Q, and using the fact that Q is a nonempty and compact set we obtain that there exists
P � 2 Q with C (X) = EP � (X), and

C (Y ) = max
P2Q

EP (Y ) � EP � (Y ) > EP � (X) = C (X) .

Now, we show that (ii) , (iii): First, we note that, since Q\ �+ 6= ;, the fact that Q

contains only full support probabilities is equivalent to the fact that all probabilities in Q are
mutually absolutely continuous.
Assume that all measures in Q are mutually absolutely continuous, and let us to prove that

C satis�es the KEM property.35

So let X; Y; Z 2 RS; such that C (X) = C (X ^ Y ). There exists P � 2 Q such that

C (X ^ Y ) = EP � (X ^ Y ) � EP � (X) � C (X) = C (X ^ Y ) ;

hence,
EP � (X) = EP � (X ^ Y ) ;

so, for all s 2 S = Supp [P �] ; Y (s) � X (s), which implies that

Y (s) ^ Z (s) � X (s) ^ Z (s) for all s 2 S;

and then we get the following state-wise equality

X (s) ^ Y (s) ^ Z (s) = X (s) ^ Z (s) for all s 2 S;
35Note that KEM property can be rewriteen as, for all X;Y; Z 2 RS ;

C (X) = C (X ^ Y )) C (X ^ Z) = C (X ^ Y ^ Z) .
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allowing to conclude that
C (X ^ Z) = C (X ^ Y ^ Z) .

For obtaining the converse, assume that there exists P1; P2 2 Q and an event E � S such
that

P1 (E) = 0 < P2 (E) .

Hence, taking F = Ec

P1 (F ) = 1 > P2 (F ) :

Let P3 2 argmaxP2Q fP (E)g, hence P3 (E) � P2 (E) > 0. We also note that S� ^ F � = F �

and
C (S� ^ F �) = C (F �) = 1 = C (S�) :

On the other hand,
F � ^ S� ^ E� = 0 and S� ^ E� = E�;

so that
C (S� ^ F � ^ E�) = 0 < P3 (E) = C ( S� ^ E�) ;

that is,
C (S�) = C (S� ^ F �) and C ( S� ^ E�) > C (S� ^ F � ^ E�) ;

contradicting the KEM condition.
Proof of Proposition 13:
In order to show that Span (LC) � F , we note that It is enough to show that LC � F .

Assume thatM =
�
Xj;

�
qAj ; q

B
j

�	m
j=0

is a market, as discussed in our Appendix A, such that

C = CM, that is, F = Span
�
fXjgmj=0

�
and

C (X) = min

(
mX
j=0

�
�Aj q

A
j � �Bj qBj

�
:

mX
j=0

�
�Aj � �Bj

�
Xj � X

)
.

Assume that X =2 F . Note that

C (X) =
mX
j=0

�
�
A

j q
A
j � �

B

j q
B
j

�
;

for some portfolio
�
�
A

j ; �
B

j

�
2 R2(m+1)+ such that

Pm
j=0

�
�
A

j � �
B

j

�
Xj � X . Since X =2 F we

obtain that
Pm

j=0

�
�
A

j � �
B

j

�
Xj > X . Hence, by taking Y :=

Pm
j=0

�
�
A

j � �
B

j

�
Xj we obtain
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that Y > X and

C (Y ) = min

(
mX
j=0

�
�Aj q

A
j � �Bj qBj

�
:

mX
j=0

�
�Aj � �Bj

�
Xj � Y

)

�
mX
j=0

�
�
A

j q
A
j � �

B

j q
B
j

�
= C (X) ,

that is, by monotonicity, C (X) = C (Y ), which shows that X =2 LC . In another words, if
X 2 LC then X 2 F .
Proof of Theorem 15:
First, assume thatC (X) = (1� ")EP (X)+"maxs2S X (s), we note that FC = span fS�g

and LC = RS , in special, the bond is frictionless and all position X is ef�cient with positive
bid-ask spread if X is not constant.
Now, consider the following �nancial market induced from C. Take X0 := S�; m = #S

and Xj := fjg� where j denotes the state of nature j 2 S. Also, qA0 = qB0 = 1 and for any
j 2 f1; :::;mg set the ask price and the bid price, respectively,

qAj = C (fjg
�) and qBj = �C (�fjg

�) ,

that is,
qAj = (1� ")EP (fjg

�) + " and qBj = (1� ")EP (fjg
�) .

Hence, the extended set of risk-neutral probabilities is given by

Q�
M = fQ 2 � : (1� ")P (s) � Q (s) � (1� ")P (s) + " for all s 2 Sg .

We also note that

Q = (1� ") fPg+ "� = co
��
(1� ") fPg+ "�fsg

	
s2S

�
is a polytope and Q = Q�

M, which concludes this part of the proof.
Now, consider a ef�cient complete market of Arrow securitiesM that satis�es the uniform

bid-ask spreads condition, that is, X0 = S� with price q0 = 1 and for all j 2 f1; :::;#Sg ;

Xj = fjg�, where there is a " 2 (0; 1) such that qAj � qBj = " and 1�
#SX
s=1

qBs = ".

By de�ning for all s 2 S,

P (s) :=
qBs
1� " =

qAs � "
1� " ;
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and we note that

#SX
s=1

P (s) =

#SX
s=1

 
#SX
s=1

qBs

!
1� " = 1.

Also, it is easy to show that QM = (1� ") fPg+ "�, which entails that

C (X) = (1� ")EP (X) + "max
s2S

X (s) .
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