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Abstract

We solve a general class of dynamic rational-inattention problems in which an agent

repeatedly acquires costly information about an evolving state and selects actions. The

solution resembles the choice rule in a dynamic logit model, but it is biased towards

an optimal default rule that does not depend on the realized state. We apply the

general solution to the study of (i) the sunk-cost fallacy; (ii) inertia in actions leading

to lagged adjustments to shocks; and (iii) the tradeoff between accuracy and delay in

decision-making.

1 Introduction

Timing of information plays an important role in a variety of economic settings. Delays in

learning contribute to lags in adjustment of macroeconomic variables, in adoption of new

technologies, and in prices in financial markets. The speed of information processing is a
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crucial determinant of response times in psychological experiments. In each of these cases,

the timing is shaped in large part by individuals’ efforts to acquire information.

We study a general dynamic decision problem in which an agent chooses both what

and how much information to acquire. In each period, the agent can choose an arbitrary

signal about a payoff-relevant state of the world before taking an action. The state follows

an arbitrary stochastic process, and the agent’s flow payoff is a function of the histories

of actions and states. Following Sims (2003), the agent pays a cost to acquire information

that is proportional to the reduction in her uncertainty as measured by the entropy of her

beliefs. We characterize the stochastic behavior that maximizes the sum of the agent’s

expected discounted utilities less the cost of the information she acquires.

We find that the optimal choice rule coincides with dynamic logit behavior (Rust, 1987)

with respect to payoffs that differ from the agent’s true payoffs by an endogenous additive

term.1 This additional term, which we refer to as a “predisposition”, depends on the

history of actions but does not depend directly on the states. Relative to dynamic logit

behavior with the agent’s true payoffs, the predisposition tends to increase the probability

assigned to actions that perform well on average across all states of the world given the

history of actions up to that point.

If states are positively serially correlated, the influence of predispositions can resemble

switching costs; because learning whether the state has changed is costly, the agent relies

in part on her past behavior to inform her current decision, and is therefore predisposed

toward repeating her previous action. More generally, we show that the agent behaves as

if she observes the realized state in each period and faces a “switching cost” that depends

only on her sequence of actions (and not on the state of the world).

Our results provide a new foundation for the use of dynamic logit in empirical research

with an important caveat: the presence of predispositions affects extrapolation of behav-

ior based on identification of utility parameters from data. An econometrician applying

standard dynamic logit techniques to the agent in our model would correctly predict her

behavior in repetitions of the same decision problem. However, problems involving differ-

ent payoffs or distributions of states typically lead to different predispositions, which must

be accounted for in the extrapolation exercise. The difference arises because the standard

approach takes switching costs as fixed when other payoffs vary, whereas in the switching

cost interpretation of our model, the costs vary as other parameters change.

1This result extends the static logit result of Matějka and McKay (2015) to the dynamic setting.
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We characterize the optimal behavior as the solution of a collection of interconnected

static rational inattention (henceforth RI) problems. In each state at time t, the distribu-

tion of actions at depends only on the history of past actions at−1 = (a1, . . . , at−1), and

solves a static RI problem with payoffs

ut
(

at−1, at, θ
t
)

+ δEθt+1

[

Vt+1

(

at−1, at, θ
t+1
)

| θt
]

,

where ut is the flow payoff, Vt+1 the continuation value, θτ is the history of states up to

time τ , and δ is the discount factor. These static RI problems resemble those corresponding

to the Bellman equation with beliefs as a state variable insofar as they involve flow utilities

plus continuation values. However, they differ in that the continuation values for each

action are fixed as the agent varies her information acquisition strategy (and therefore her

beliefs following any given action). We show that the effect on beliefs does not affect the

solution, allowing us to treat the continuation value after each action as fixed and consider

only variation in the actions themselves. This result is what allows us to use static RI

techniques: a standard dynamic programming approach using beliefs as the state variable

leads to static problems that do not fit into the RI framework.

The key step behind the reduction to static problems is to show that the dynamic RI

problem can be reformulated as a control problem with observable states. In the control

problem, the agent first chooses her predispositions at the ex ante stage. Then, after

observing the realized state in each period, she chooses her distribution of actions, and

incurs a cost according to how much she deviates from her chosen predisposition.2 The

control problem is simpler than the original problem insofar as it does not require updating

of beliefs. This feature allows us to optimize at each stage without accounting for the effect

on subsequent beliefs.

We illustrate the general solution in three applications. In the first, the agent seeks to

match her action to the state in each of two periods. We show that positive correlation

between the states can lead to an apparent sunk cost fallacy: the agent never switches

her action from one period to the next, and her choice is, on average, better in the first

period than in the second. The correlation between the states creates a relatively strong

incentive to learn in the first period because the information she obtains will be useful in

both periods. Acquiring more information in the first period in turn reduces the agent’s

incentive to acquire information in the second, making her more inclined to choose the

2Mattsson and Weibull (2002) study essentially the same problem for fixed predispositions.
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same action.3

Our second application can be interpreted as a simple model of lagged adjustments to

shocks. The state, which is either good or bad, follows a Markov chain. The agent chooses

in each period whether or not to invest, preferring to invest if and only if the current state

is good. When state transitions are rare, adjustment to shocks is slow and the expected

reaction lags are proportional to the time between transitions; high persistence discourages

the agent from closely monitoring the state. As volatility increases and transitions become

more frequent, the speed of adjustment also increases. Relative adjustment speeds are

driven by underlying incentives: if the incentive to disinvest when the state is bad is

stronger than the incentive to invest when it is good, then lags in adjustment are shorter

for bad shocks than for good ones.

The final application concerns a classic question in psychology, namely, the relationship

between response times and accuracy of decisions. The state is binary and fixed over time.

The agent chooses when to take one of two actions with the goal of matching her action to

the state. Delaying is costly, but gives her the opportunity to acquire more information.

We focus on a variant of the model in which the cost of information is replaced with a

capacity constraint on how much information she can acquire. The solution of the problem

gives the joint distribution of the decision time and the chosen action. We find that delay

is associated with better decisions. In addition, the expected delay time is non-monotone

in the agent’s capacity, with intermediate levels being associated with the longest delays.

We focus throughout the paper on information costs that are proportional to the re-

duction in entropy of beliefs. There are two related reasons for this choice. The first is

tractability. With entropy-based costs, it is not necessary to consider all possible signals;

we can restrict attention to signals that associate at most one signal realization to each

action.4 In particular, each action history is associated with a unique belief, thereby avoid-

ing a substantial complication that arises from the need to track beliefs in solving many

dynamic models with exogenous information (such as hidden Markov models). Entropy-

based costs are also important for the control problem reformulation, and hence for the

reduction to static RI problems.

The second reason for using this cost function is that it isolates intertemporal incentives

3As in Baliga and Ely (2011), the agent’s second-period beliefs are directly linked to her earlier decision,
although the effect here arises due to costly information acquisition rather than forgetting.

4In the static case, this property holds under much weaker conditions on the cost function; see the
discussion in Section 2.2.
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arising from the decision problem as opposed to incentives to smooth or bunch information

acquisition because of the curvature of the cost function. In a problem involving a one-time

action choice, the cost function we use has the feature that the number of opportunities

to acquire information before the choice of action is irrelevant: the cost of multiple signals

spread over many periods is identical to the cost of a single signal conveying the same

information (Hobson, 1969). Although varying the cost function could generate interesting

and significant effects, our goal is to first understand the problem in which we abstract

away from these issues.5

This paper fits into the RI literature. This literature originated in the study of macroe-

conomic adjustment processes (Sims, 1998, 2003). More recently, Mackowiak and Wieder-

holt (2009, 2010) and Matějka (2010) study sluggish adjustment in dynamic RI models.

Luo (2008) and Tutino (2013) consider dynamic consumption problems with RI. Each of

these papers focuses either on an environment involving linear-quadratic payoffs and Gaus-

sian shocks or on numerical solutions. A notable exception is Ravid (2014), who analyzes

a class of RI stopping problems motivated by dynamic bargaining. In general static RI

models, Matějka and McKay (2015) show that the solution generates static logit behavior

with an endogenous payoff bias. Our dynamic extension of this result links it back to the

original motivation for the RI literature.

Although optimal behavior in our model fits the dynamic logit framework, the foun-

dation is quite different from that of Rust (1987). He derives the dynamic logit rule in

a complete information model with i.i.d. taste shocks that are unobservable to the econo-

metrician. Our model has no such shocks and focuses on the agent’s information. This

difference accounts for the additional payoff term in our dynamic logit result.

While information acquisition dynamics appear to be central to many economic prob-

lems, they are rarely modeled explicitly. Exceptions outside of the RI literature include

Compte and Jehiel (2007), who study information acquisition in sequential auctions, and

Liu (2011), who considers information acquisition in a reputation model. In both cases,

players acquire information at most once, in the former because information is fully re-

vealing and in the latter because the players are short-lived. Their focus is on strategic

effects, whereas we study single-agent problems with repeated information acquisition. In

a single-agent setting, Moscarini and Smith (2001) analyze a model of optimal experimen-

5Moscarini and Smith (2001) focus on information costs that are convex in the volume of information
and study delay in decision-making resulting from the incentive to smooth information acquisition over
time. Sundaresan and Turban (2014) study a different model with a similar incentive.
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tation with explicit information costs of learning about a fixed state of the world.

As described above, a key step in proving our results is to reformulate the problem

as a control problem. This reformulation connects logit behavior in RI to that found by

Mattsson and Weibull (2002), who solve a problem with observable states in which the

agent pays an entropy-based control cost for deviating from an exogenous default action

distribution. We show that the RI problem is equivalent to a two-stage optimization

problem that combines Mattsson and Weibull’s control problem with optimization of the

default distribution.6

2 Model

A single agent chooses an action at from a finite set A in each period t = 1, 2, . . . . For

any sequence (yt)t, let y
t = (y1, . . . , yt). We refer to the action history at−1 as the decision

node at t. A payoff-relevant state θt follows a stochastic process on a finite set Θ with

probability measure π ∈ ∆(ΘN). Before choosing an action in any period t, the agent can

acquire costly information about the history of states to date. There is a fixed signal space

X satisfying |A| ≤ |X| < ∞. At time t, the agent can choose any signal about the history

θt with realizations in X. Accordingly, a strategy s = (f, σ) is a pair of

1. an information strategy f consisting of a system of signal distributions ft(xt | θ
t, xt−1),

one for each θt and xt−1, with the signal xt conditionally independent of future states

θt′ for all t
′ > t, and

2. an action strategy σ consisting of a system of mappings σt : X
t −→ A, where σt(x

t)

indicates the choice of action at time t for each history xt of signals.

Given an action strategy σ, we denote by σt(xt) the history of actions up to time t given

the realized signals.

The agent receives flow utilities ut(a
t, θt) that are uniformly bounded across all t. We

refer to ut as gross utilities to indicate that they do not include information costs. The

agent discounts payoffs received at time t by a factor δ(t) :=
∏t

t′=1 δt′ , where δt′ ∈ [0, 1]

and lim supt δt < 1. This form of discounting accommodates both finite and infinite time

horizons.

6Like us, Fudenberg and Strzalecki (2014), derive dynamic logit choice as a solution to a control problem.
They focus on preferences over flexibility, while we focus on incomplete information and optimization of
the default choice rule.
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As is standard in the RI literature, we focus throughout this paper on entropy-based in-

formation costs. Consider a random variable Y with finite support S distributed according

to p ∈ ∆(S). Recall that the entropy

H(Y ) = −
∑

y∈S

p(y) log p(y)

of Y is a measure of uncertainty about Y (with the convention that 0 log 0 = 0). At any

signal history xt−1, we assume that the cost of signal xt is proportional to the conditional

mutual information

I
(

θt;xt | x
t−1
)

= H
(

θt | xt−1
)

− Ext

[

H
(

θt | xt
)]

(1)

between xt and the history of states θt.7 The conditional mutual information captures

the difference in the agent’s uncertainty about θt before and after she receives the signal

xt. Before, her uncertainty can be measured by H
(

θt | xt−1
)

. After, her uncertainty is

changed to H
(

θt | xt
)

. The mutual information is the expected reduction in uncertainty

averaged across all realizations of xt.

The agent solves the following problem.

Definition 1. The dynamic rational inattention problem (henceforth dynamic RI problem)

is

max
f,σ

E

[

∞
∑

t=1

δ(t)
(

ut
(

σt(xt), θt
)

− λI
(

θt;xt | x
t−1
)

)

]

, (2)

where λ > 0 is an information cost parameter, and the expectation is taken with respect to

the distribution over sequences (θt, xt)t induced by the prior π together with the information

strategy f .

To simplify notation, we normalize the information cost parameter λ to 1.8

The objective in (2) is well defined because the gross flow payoffs are bounded, and

the mutual information is bounded (since the signal space is finite). Therefore, the sum

converges.

7When xt is attained with 0 probability, the value of H
(

θt | xt
)

is defined arbitrarily and has no effect
on the mutual information.

8Although we assume the information cost parameter is fixed over time, one could allow for varying cost
by adjusting the discount factors and correspondingly rescaling the flow utilities (as long as doing so does
not violate the restrictions on δ(t) or the uniform boundedness of the utilities).
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Since the strategy depends only on the history of signals, we are implicitly assuming

that the agent does not observe the realized payoffs (from which she could infer information

about the states) during the decision process; the agent must pay a cost to process any

information, even information pertaining to her own experience. Since she can learn directly

about the history of states, it makes no difference whether she could also obtain costly

information about past payoffs. If the realized payoffs were freely or cheaply observable,

the agent’s actions would be driven in part by the information they reveal. The current

setting abstracts from such experimentation motives. However, we conjecture that the

characterization in Proposition 3 would extend to settings with free information about

payoffs provided that corresponding adjustments are made to posterior beliefs.

2.1 Applications

The following are examples that fit into the general framework. In each one, the agent can

acquire information in each period and incurs entropy-based information cost. We solve

the examples in Section 4.

Example 1 (Sunk cost fallacy). The agent chooses an action at ∈ {0, 1} in each period

t = 1, 2. In both periods, the gross flow payoff ut is 1 if the action at matches the current

state θt ∈ {0, 1}, and is 0 otherwise. The two states are correlated across periods. There

is no discounting.

In this setting, we analyze the correlation between choices in the two periods. In

particular, if the agent chooses not to acquire any information in the second period, then

her behavior exhibits an apparent sunk cost fallacy insofar as she never reverses her decision.

Example 2 (Inertia). The agent chooses an action at ∈ {0, 1} in each period t = 1, 2, . . .

with the goal of matching the current state. The state θt follows a time-homogeneous

Markov chain on the set {0, 1}. In each period t ∈ N, the gross flow payoff u(at, θt) is equal

to ua > 0 if at = θt = a, and is 0 if at 6= θt. Payoffs are discounted exponentially.

The solution of this problem illustrates how the speed of adjustment depends on incen-

tives and on the persistence of states.

Example 3 (Response times). The state θ ∈ {0, 1} is fixed over time. The agent has a

uniform prior belief. In each period t = 1, . . . , T , she chooses among taking a terminal

action 0 or 1, or waiting until the next period (denoted by w). She receives a benefit of

1 if her terminal action matches the state, and a benefit of 0 otherwise. In addition, she

pays a cost c ∈ (0, 1) for each period that she waits. Accordingly, total gross payoffs are
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given by the undiscounted sum of flow payoffs

ut(a
t, θ) =































1 if at = (w, . . . , w, θ),

0 if at = (w, . . . , w, 1 − θ),

−c if at = (w, . . . , w),

0 otherwise.

We use this example to study the tradeoff between speed and accuracy of decision making.

2.2 Preliminaries

Our main goal is to characterize the agent’s observable behavior, i.e. the distribution of

actions along each history of states. A (stochastic) choice rule p is a system of distributions

pt
(

at | θ
t, at−1

)

over A, one for each θt and at−1, interpreted as the probability of choosing

at conditional on histories θt and at−1. We say that a strategy s = (f, σ) generates the

choice rule p if

pt
(

at | θ
t, at−1

)

≡ Pr
(

σ
(

xt
)

= at | θ
t, σt−1

(

xt−1
)

= at−1
)

,

where the probability is evaluated with respect to the joint distribution of states and

sequences of signals generated according to f . To simplify notation, we drop the t subscript

on pt(at | θ
t, at−1) and write p(at | θ

t, at−1).

Conversely, a choice rule p can be associated (non-uniquely) with a strategy (f, σ).

Roughly speaking, one can choose a particular signal for each action, and then match

the probability of each of those signals with the probability the choice rule assigns to its

associated action. Formally, fix any injection φ : A −→ X and, by a slight abuse of

notation, for any t, let φ also denote the mapping from At to Xt obtained by applying φ

coordinate-by-coordinate. Given any choice rule p, let p = (f, σ) be such that ft(φ(at) |

θt, φ(at−1)) ≡ p(at | θt, at−1) and σ(φ(at)) ≡ at. Call p the strategy induced by p.

The following lemma simplifies the analysis considerably by allowing us to focus on a

special class of information strategies in which signals correspond directly to actions. See

also Ravid (2014), who has independently proved the corresponding result in a related

dynamic model.
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Lemma 1. Any strategy s solving the dynamic RI problem generates a choice rule p solving

max
p

E

[

∞
∑

t=1

δ(t)
(

ut
(

at, θt
)

− I
(

θt; at | a
t−1
)

)

]

, (3)

where the expectation is with respect to the distribution over sequences (θt, at)t induced by

p and the prior, π. Conversely, any choice rule p solving (3) induces a strategy solving the

dynamic RI problem.

Accordingly, we call any rule p solving (3) a solution to the dynamic RI problem. Proofs

are in the Appendix.

To understand why the lemma holds, consider for contradiction a strategy s such that,

at some decision node, two distinct signals (generating distinct posterior beliefs) map to

the same action. In that case, the strategy s acquires more information at that node than

is required for the current choice. One can then coarsen the signal to correspond directly

to the current action choice and recover all lost information by enriching the signal in

the following period. Doing so has no effect on behavior. Nor does it affect the mutual

information across those two periods, and since the agent discounts future costs, it therefore

cannot increase the total information cost. By recursively delaying all excess information

in this way, one is left with a strategy that associates to each action a unique signal.

In static models, the conclusion of Lemma 1 holds as long as the cost of signals is non-

decreasing in Blackwell informativeness. In dynamic problems, more structure is needed.

For example, if the cost was concave in the mutual information then the agent could have

an incentive to acquire more information than what is necessary for her choice in a given

period if she plans to use that information in a later period where the marginal cost of

acquiring it would be higher. If costs are proportional to reduction in entropy, there is no

incentive for the agent to acquire information any earlier than necessary.

Proposition 1. There exists a solution to (3).
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3 Solution

3.1 Dynamic logit

Our main result states that the solution of the dynamic RI problem is a dynamic logit rule

with a bias. We begin by recalling the definition of dynamic logit.9

Definition 2 (Rust (1987)). A choice rule r is a dynamic logit rule under payoff functions

(ut)t if

rt
(

at | θ
t, at−1

)

=
eũt(at,θt)

∑

a′t
eũt((at−1,a′t),θ

t)
,

where

ũt
(

at, θt
)

= ut
(

at, θt
)

+ δt+1Eθt+1

[

Vt+1

(

at, θt+1
)

| θt
]

,

and the continuation values Vt satisfy

Vt

(

at−1, θt
)

= log

(

∑

at

eũt((at−1,at),θt)

)

. (4)

The solution to the dynamic RI problem is a dynamic logit rule with an endogenous

state-independent utility term. A default rule q is a system of conditional action distribu-

tions qt(at | a
t−1), one for each decision node at−1. The difference between a default rule

and a choice rule is that the latter conditions on states while the former does not. From

this point on, we drop the subindex t from qt.

Let V(u) = Eθ1 [V1(θ1)] denote the first-period expected value from (4) under the system

of payoff functions u = (ut)t, and given any default rule q, write u+ log q to represent the

system of payoff functions

ut
(

at, θt
)

+ log q
(

at | a
t−1
)

for t ∈ N.

For any choice rule p, let p
(

at | a
t−1
)

denote the probability of choosing action at condi-

tional on reaching decision node at−1, that is,

p
(

at | a
t−1
)

= Eθt
[

p
(

at | θ
t, at−1

)

| at−1
]

.

9Our definition is more restrictive than that of Rust (1987) in that we do not allow the agent actions
to affect the realization of future states. Our model also differs in the form of discounting and in the state
spaces.
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We adopt the convention that log 0 = −∞ and e−∞ = 0.

Theorem 1. The dynamic RI problem with payoff functions u is solved by a dynamic logit

rule p under payoff functions u+ log q, where q is a default rule that solves

max
q̃

V(u+ log q̃).

Moreover,

q
(

at | a
t−1
)

= p
(

at | a
t−1
)

(5)

for every decision node at−1 that is reached with positive probability according to p.

Given an optimal default rule q, we refer to q(at | a
t−1) as the predisposition toward

action at at the decision node at−1. According to the theorem, the optimal default rule

corresponds to the average behavior at each decision node; note that this generally differs

from what the optimal strategy would be if the agent could not acquire any information.

The log q term in the payoffs has a natural interpretation: the agent behaves as if she

incurs a cost

ct
(

at−1, at
)

≡ − log q
(

at | a
t−1
)

(6)

whenever she chooses at after the action history at−1. This endogenous “switching cost” is

high when the action at is rarely chosen at at−1. The cost captures the cost of information

that leads to the choice of action at; actions that are unappealing ex ante can only become

appealing through costly updating of beliefs.

Theorem 1 may be relevant for identification of preferences in dynamic logit models.

Suppose that, as in Rust (1987), an econometrician observes the states θt together with the

choices at, and estimates the agent’s utilities using the dynamic logit rule from Definition 2.

If our model correctly describes the agent’s behavior, then instead of estimating the utility

ut, the econometrician will in fact be estimating ut
(

at, θt
)

− ct
(

at−1, at
)

—the utility less

the virtual switching cost.

For a fixed decision problem, separately identifying ut and ct is not necessary to describe

behavior; choice probabilities depend only on the difference ut−ct. However, the distinction

can be important when extrapolating to other decision problems. For example, Rust (1987)

considers a bus company’s demand for replacement engines. He estimates the replacement

cost by fitting a dynamic logit in which the agent trades that cost off against the expected

cost of engine failure. He then obtains the expected demand by extrapolating to different

12



engine prices, keeping other components of the replacement cost fixed.

Our model suggests that, if costly information acquisition plays an important role,

Rust’s approach could underestimate demand elasticity. Consider an increase in the engine

price. Ceteris paribus, replacement becomes less common, leading to a decrease in the

predisposition toward replacement (by (5)). This corresponds to an increase in the virtual

switching cost ct associated with replacement (by (6)), and hence to an additional decrease

in demand relative to the model in which ct is fixed. Intuitively, the price increase not

only discourages the purchase of a new engine, it also discourages the agent from checking

whether a new engine is needed.

Distinguishing the actual utility ut from the virtual switching cost ct is feasible using

data on choices and states. As described above, one can estimate ut − ct by fitting the

dynamic logit rule from Definition 2. The virtual switching cost ct(a
t−1, at) = − log p(at |

at−1) can be identified directly from the agent’s choice data.

3.2 Reduction to static problems

While Theorem 1 is useful for understanding behavior, it is less helpful when it comes to

computing the default rule q. In this section, we show that the dynamic RI problem can

be reduced to a collection of static RI problems, one for each decision node, that can be

used to solve for the predispositions q(at | a
t−1).

We begin with a brief description of existing results for the static version of our model.

Consider a fixed, finite action set A, a finite state space Θ, a prior π ∈ ∆(Θ), and a payoff

function u(a, θ). A static choice rule p is a collection of action distributions p(a | θ), one

for each θ ∈ Θ. We abuse notation by writing p(θ | a) for the posterior belief after choosing

action a given the choice rule p. Recall that I(θ; a) is the mutual information of θ and a.10

Definition 3. The static rational inattention problem for a triple (Θ, π, u) is

max
p

Ep [u(a, θ)− I(θ; a)] .

Proposition 2 (Matějka and McKay, 2015; Caplin and Dean, 2013). The static RI problem

10The literature on static rational inattention is richer than Definition 3 suggests. We restrict to the
definition provided here because it is sufficient for our characterization.
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with parameters (Θ, π, u) is solved by the choice rule

p(a | θ) =
q(a)eu(a,θ)

∑

a′ q(a
′)eu(a

′,θ)
, (7)

where the default rule q ∈ ∆(A) maximizes

Eπ

[

log

(

∑

a

q(a)eu(a,θ)

)]

. (8)

If action a is chosen with positive probability under the rule p, then the posterior belief

after choosing a is

p(θ | a) =
π(θ)eu(a,θ)

∑

a′ q(a
′)eu(a′,θ)

. (9)

We show that the dynamic RI problem can be reduced to a collection of static RI

problems, one for each decision node at−1. These static problems are interconnected in

that the payoffs and prior in one generally depend on the solutions to the others. At each

at−1, the gross payoff consists of the flow payoff plus a continuation value, and the prior

belief is obtained by Bayesian updating given at−1.

One complication that arises for this characterization is that, if the choice rule assigns

zero probability to some action at a decision node, then it is not immediately clear how

to define the posterior belief following that action (which is needed to determine whether

choosing that action with zero probability is optimal). Formula (20) in Appendix B extends

the posteriors defined by (9) to histories reached with zero probability. We show in the

proof of Proposition 3 how the extended definition can be obtained by solving the problem

in which the probability of each action is constrained to be at least some ε > 0, then taking

the limit as ε → 0.

As in the static case, we abuse notation by writing p to denote the joint distribution of

θt and at, which depends on both the stochastic process π governing θt and the choice rule

p(at | θ
t, at−1). We interpret p

(

θt | at−1
)

as the agent’s prior over θt held at the beginning

of period t at the decision node at−1, and p
(

θt | at
)

as the posterior over θt held at the end

of period t after action history at.

Proposition 3. There exists a dynamic choice rule p solving the dynamic RI problem and

a default rule q such that, at each decision node at−1, p(at | θ
t, at−1) and q(at | a

t−1) solve
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the static RI problem with state space Θt, prior belief

p
(

θt | at−1
)

=
∑

θt

p
(

θt−1 | at−1
)

π
(

θt | θ
t−1
)

,

and payoff function

ût
(

at, θt
)

= ut
(

at, θt
)

+ δt+1Eθt+1

[

Vt+1

(

at, θt+1
)

| θt
]

,

where the posterior belief p(θt | at) formed after taking action at at the decision node

at−1 complies with (9) (or with (20) when at−1 is reached with zero probability), and the

continuation values satisfy

Vt

(

at−1, θt
)

= log

(

∑

at

q
(

at | a
t−1
)

eût(at,θt)

)

. (10)

At any given decision node, the static problem in Proposition 3 depends on past be-

havior through the prior belief and on future behavior through the continuation values.

Perhaps surprisingly, the result indicates that when optimizing behavior at a particular

node, we can treat the continuation values as fixed. In finite horizon and stationary prob-

lems, the proposition leads to a finite system of equations characterizing the solution to

the dynamic RI problem. Section 4 illustrates this approach in several applications. The

solution of the sunk cost fallacy example in Section 4.1 is a particularly simple application

of Proposition 3.

3.3 The control problem

In this section, we describe the key step of the proof that allows us to reduce the dynamic

problem to a collection of static ones. The main idea is to establish an equivalence between

the dynamic RI problem and a control problem with observable states in which the agent

must pay a cost for deviating from a default choice rule.11

Reformulating the dynamic RI problem as a control problem addresses a crucial diffi-

culty in the analysis. According to Proposition 3, the solution at node at−1 also solves a

11Control problems of this kind have been studied in game theory building on the trembling-hand perfec-
tion of Selten (1975). Van Damme (1983) offers an early version in which agents optimize the distributions
of trembles. Stahl (1990) introduces entropy-based control costs.
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static RI problem with payoff function

ut
(

at, θt
)

+ δt+1Eθt+1

[

Vt+1

(

at, θt+1
)

| θt
]

.

The difficulty is that the choice of action distribution p(at | θ
t, at−1) affects the posterior

beliefs in subsequent periods, which in turn may affect the continuation value function.

The control problem clarifies why the continuation values can be treated as fixed when

optimizing the distribution of at.

Definition 4. Given any default rule q, the control problem for q is

max
p

Ep

[

∞
∑

t=1

δ(t)
(

ut
(

at, θt
)

+ log q
(

at | a
t−1
)

− log p
(

at | θ
t, at−1

)

)

]

, (11)

where p is a stochastic choice rule.

This definition is a dynamic extension of a static control problem studied by Mattsson

and Weibull (2002). In the control problem, the agent has complete information about the

history θt, but must trade off optimizing her flow utility ut against a control cost: for each

(θt, at−1), she pays a cost

log p
(

at | θ
t, at−1

)

− log q
(

at | a
t−1
)

for deviating from the default action distribution q
(

at | a
t−1
)

to the action distribution

p
(

at | θ
t, at−1

)

. Mattsson and Weibull show that, in the static problem, the optimal action

distribution is a logit rule with a bias toward actions that are relatively likely under the

exogenous default rule.

The next result shows that the dynamic RI problem is equivalent to the control problem

with the optimal default rule. In other words, the dynamic RI problem can be solved by

first solving the control problem to find the optimal choice rule p for each default rule q,

and then optimizing q.

Lemma 2. A stochastic choice rule solves the dynamic RI problem if and only if it (together

with some default rule) solves

max
q,p

Ep

[

∞
∑

t=1

δ(t)
(

ut
(

at, θt
)

+ log q
(

at | a
t−1
)

− log p
(

at | θ
t, at−1

)

)

]

. (12)
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Prob. of retaining decision Prob. of correct choice Prob. of correct choice
across periods in period 1 in period 2
Pr(a1 = a2) Pr(a1 = θ1) Pr(a2 = θ2)

Correlated states: 1 0.86 0.79
Pr(θ1 = θ2) = 0.9

Uncorrelated states: 1/2 0.73 0.73
Pr(θ1 = θ2) = 0.5

Table 1: Inertia and accuracy of choice in Example 1.

To see how Lemma 2 addresses the difficulty described at the beginning of this section,

note that for any fixed default rule q, optimizing the choice rule p in the control problem

does not involve updating of beliefs since the agent observes θt in period t. Similarly, for

any fixed p, optimizing the default rule q does not require varying posterior beliefs because

those are determined by p, not by q.

4 Applications

In this section, we use Proposition 3 to analyze the examples described in Section 2.1.

4.1 Sunk cost fallacy

We now revisit Example 1. Recall that the agent chooses an action at ∈ {0, 1} at t = 1, 2.

In both periods, the gross flow payoff ut is 1 if at = θt, and is 0 otherwise. There is no

discounting.

Suppose the states are symmetrically distributed and positively correlated across time

in the following way: θ1 is equally likely to be 0 or 1, and, whatever the realized value of

θ1, the probability that θ2 = θ1 is 0.9.

We show in Appendix C.1 that the optimal choice rule exhibits an apparent sunk cost

fallacy: the agent never reverses her decision from one period to the next. The optimal

strategy in this case acquires information only in the first period and then relies on that

information for the action choices in both periods. Consequently, the agent performs better

in the first period than in the second; see the first row of Table 1.

Which features of the model drive the sunk-cost-fallacy behavior? The superior perfor-

mance in the first period arises because of the endogenous timing of information acquisition.

In a variant of the model with exogenous conditionally i.i.d. signals, the agent would per-
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form better in the second period than in the first since she obtains more precise information

about θ2 than about θ1. When information is endogenous, the correlation between the two

periods creates an incentive to acquire more information in the first period because that

information can be used twice.

However, correlation does not generate the sunk-cost effect on its own; the temporal

structure also plays an important role in the sense that the effect would not arise if the

agent could acquire information about both states in the first period. To see this, consider

a static variant in which the agent simultaneously chooses a pair of actions (a1, a2) to

maximize

E
[

u1(a1, θ1) + u2(a2, θ2)− I
(

(θ1, θ2); (a1, a2)
)]

.

In this case, as in the original example, the optimal strategy involves a single binary signal

and identical actions in the two periods. In the static variant, however, the expected per-

formance is constant across the two periods. The asymmetric performance in the original

example arises because it is impossible for the agent to learn directly about the second

period in the first, when information is most valuable.

Finally, to illustrate the role of correlation across periods, consider a benchmark in

which θ1 and θ2 are independent and uniform on {0, 1}. In that case, any information

obtained in the first period is useless in the second. The problem therefore reduces to a pair

of unconnected static RI problems (one for each period). The solution involves switching

actions with probability 1/2 and constant expected payoffs across the two periods; see the

second row of Table 1. In general, the predisposition towards switching the action in the

second period decreases with the probability that the state remains the same, up to a

critical level of correlation beyond which the agent never switches.12

4.2 Inertia

Recall that, in Example 2, the agent chooses an action at ∈ {0, 1} in each period t = 1, 2, . . .

with the goal of matching the current state. The state θt follows a Markov chain on the

set {0, 1} with time-homogeneous transition probabilities γ(θ, θ′) from state θ to state θ′.

In each period t ∈ N, the gross flow payoff u(at, θt) is equal to ua > 0 if at = θt = a, and

is 0 if at 6= θt. Payoffs are discounted exponentially with discount factor δ ∈ (0, 1).

This example can be viewed as a stylized model of a wide range of economic phenomena.

For example, the action could represent the consumption level of an agent who responds

12Details behind this computation are available upon request.
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to macroeconomic variables (captured by θt) that affect her permanent income. Similarly,

the action could be thought of as a pricing decision by a firm facing varying demand, or

an investor’s choice of whether to hold a particular asset. An important question in each

of these settings is how the timing of adjustment to shocks is shaped by the environment.

Do the length of adjustment lags differ between booms and busts? How does volatility

influence behavioral inertia?13

We start by pointing out that the long-run behavior is Markovian. After a finite number

of periods, the choice rule, continuation values, and predispositions in any period t depend

on the last action at−1, but not on any earlier actions. This implies that the long-run

behavior is characterized by a finite set of equations; see Lemma 3 in Appendix C.2 for

details. This Markovian property of the solution holds for arbitrary finite sets of actions

and states, general time-homogeneous Markov processes, and general utilities as long as

all actions are chosen with positive probability at all decision nodes.

We focus here on the limit in which states become increasingly persistent, which allows

for a simple analytical solution. Intuitively, if the state θt rarely changes, then the ex

ante probability of an action switch between two consecutive periods is low, and hence the

agent’s predisposition goes against switching. By Theorem 1, she follows the dynamic logit

choice rule under her true payoff function plus virtual switching costs, and these lead to

delayed reactions to payoff shocks.

The agent’s attention strategy is dynamically sophisticated. For moderate information

costs, she largely relies in each period on her information from the previous period since

it is likely that the state has not changed. However, she also acquires a small amount

of information in each period to avoid prolonged stretches of suboptimal behavior. When

deciding how much information to acquire, she takes into account her immediate incentives

and the future value of any information she acquires.

To study the persistent-state case, let γ(θ, θ′) = γ(θ, θ′)ε for θ 6= θ′, and consider the

limit as ε vanishes. For a′ 6= a, define the limit predispositions

q∗(a, a′) := lim
ε→0

q(at = a′ | at−1 = a)

ε
,

13Comparative statics of the adjustment patterns with respect to the stochastic properties of the agent’s
environment is a central question of the RI literature. Existing studies, such as Moscarini (2004), provide
results for quadratic payoffs and normally distributed shocks. Our framework provides an alternative
approach suitable for discrete environments and general payoffs and distributions.
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and the limit adjustment rates

α(a, a′) := lim
ε→0

p(at = a′ | at−1 = a, θt = a′)

ε
.

In words, q∗(a, a′) is the probability, scaled by ε, that the agent switches to action a′ after

she has chosen a 6= a′ in the previous period, and α(a, a′) is the rescaled probability that

the agent switches from a to a′ if this switch adjusts the action to the current state.

Let Ua = exp ua
1−δ , and assume that

γ(a, a′)
Ua

Ua − 1
−

1

Ua′ − 1
γ(a′, a) (13)

is positive whenever a 6= a′.14

Proposition 4. Let a′ 6= a. The adjustment rate α(a, a′) increases in ua′ and γ(a, a′), and

decreases in ua and γ(a′, a). The limit predispositions q∗(a, a′) are given by (13), and the

limit adjustment rates are

α(a, a′) = q∗(a, a′)Ua′ . (14)

Adjustment to shocks involves significant delays in a persistent environment. For ex-

ample, consider a symmetric setting with γ(0, 1) = γ(1, 0) = ε, and u0 = u1 = u. The

expected time between adjacent switches of the state is 1/ε. According to the proposition,

if the agent’s action is not aligned with the state, she switches her action with probability

eu/(1−δ)ε per period. This probability corresponds to an expected lag time of e−u/(1−δ)/ε,

which is of the same order as the time between switches of the state. In particular, greater

persistence corresponds to longer adjustment lags. In the symmetric case, this monotonic-

ity result also holds outside of the limit: increasing volatility reduces adjustment lags.15

Intuitively, past actions are not reliable predictors of the current optimal action in volatile

environments, which reduces the optimal predisposition towards repeating the last action.

Asymmetries in incentives have an intuitive impact on adjustment rates. Consider again

a Markov chain with γ(0, 1) = γ(1, 0) = ε, and suppose now that u0 > u1. Interpreting

state 1 as the good state in an investment problem, this corresponds to the loss from

investing during a crisis exceeding the profit from investing during a boom. Proposition

14If this is not the case, then one of the actions is absorbing: there exists a finite period after which the
agent almost surely chooses the same action in all subsequent periods.

15Numerical results suggest that the same result holds in asymmetric settings.
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4 implies that α(0, 1) < α(1, 0), meaning that the agent reacts more quickly to negative

shocks than to positive ones.

4.3 Response times

In this section, we study a simple model of response times in decision-making. The study

of response times has a long tradition in psychology, and has more recently become the

subject of a growing literature in economics based on the idea that the timing of choice may

reveal useful information beyond what is revealed by the choice itself (e.g., see Rubinstein,

2007). We discuss below how an outside observer may exploit decision times to better

understand the decision maker’s choices.

An important methodological question in this area is whether choice procedures should

be modeled explicitly or in reduced form. Sims (2003) argues that the RI framework is a

promising tool for incorporating response times into traditional economic models that treat

decision-making as a black box. Our model, with its focus on sequential choice, is a step

in this direction. Woodford (2014) studies delayed decisions in a RI model that focuses on

neurological decision procedures.16

Recall that in Example 3, the state θ ∈ {0, 1} is uniformly distributed and fixed over

time. In each period t = 1, . . . , T , the agent chooses among taking a terminal action 0 or

1, or waiting until the next period (denoted by w). The agent’s total gross payoff is the

undiscounted sum of the flow payoffs

ut(a
t, θ) =































1 if at = (w, . . . , w, θ),

0 if at = (w, . . . , w, 1 − θ),

−c if at = (w, . . . , w),

0 otherwise.

This formulation is similar to the model of Arrow, Blackwell, and Girshick (1949) except

that information is endogenous.

With the information cost function in our general model, the solution to this problem is

trivial: since delay is costly, any strategy that involves delayed decisions is dominated by a

strategy that generates the same distribution of terminal actions in the first period. Hence

16See Spiliopoulos and Ortmann (2014) for a review of psychological and economic research on decision
times, and of the methodological differences across the two fields.
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there is no delay if the marginal cost of information is constant across time. However,

delay can be optimal in a closely related variation of the model in which—as in much of

the RI literature—there is an upper bound on how much information the agent can process

in each period. Accordingly, the agent solves

max
p

E

[

T
∑

t=1

ut
(

at, θ
)

]

(15)

s.t. E
[

I
(

θ; at | at−1
)]

≤ κ for all t = 1, . . . , T,

where κ > 0 is the capacity constraint on the information acquired per period, and p(at |

θ, at−1) is the choice rule.17 Note that the expectation in the constraint is taken ex ante,

capturing the idea that taking earlier decisions in some problems can free up capacity to

be used in other problems.

Delay costs introduce a trade-off between the speed and accuracy of decision-making:

increasing the likelihood of a terminal decision early on decreases delay costs but also uses

up the information capacity in early periods, thereby decreasing the accuracy of the early

decisions.

The first-order conditions for this problem are closely related to those of the general

model with information costs. The solution of (15) also solves a problem in which the

capacity constraint is replaced by time-varying marginal costs of information λt, where λt

is the shadow price of the capacity constraint for period t.

An outside observer interested in whether the decision maker made the correct choice

may exploit the correlation between the timing and the accuracy of the decision. Accord-

ingly, let gt be the probability that the correct decision at = θ is made conditional on

terminating at t. How is the timing related to accuracy? For a fixed capacity κ, the accu-

racy of decisions increases with time. Because the capacity is uniform over time, the delay

cost makes it relatively more valuable early on. The shadow price of capacity is therefore

decreasing over time, which in turn leads to increasing accuracy of decisions over time.

Suppose now that the outside observer is interested in learning about the agent’s ca-

pacity κ (for example because she wants to make predictions about the agent’s behavior

in other problems). In this case, the observer needs to understand how the timing and

17This formulation abstracts from explicit signal acquisition by imposing the constraint directly on the
joint distribution of actions and states. As in the general model, we could allow the agent to choose signal
distributions together with mappings from signals to actions. One can show that the result of Lemma 1
applies in this context, and therefore the present formulation is without loss of generality.
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Figure 1: (A) accuracy gt as a function of time, and (B) the probability mass rt of the
decision time for κ ∈ {10−4, 10−3, 10−2} when T = 1000 and the delay cost c is 10−3.

accuracy of choice relates to κ. Let rt denote the probability that the agent makes the ter-

minal decision at round t. The speed of decision-making is not monotone in the capacity:

Figure 1 shows that decisions are fastest when the capacity is high or low, and slowest for

intermediate capacities.18 If the capacity is low, there is little incentive to delay the deci-

sion since the cost of delay is large relative to value of the additional information that can

be acquired. If the capacity is high, the agent can acquire precise information quickly and

then has little incentive to delay in order to acquire additional information. If individual

subjects can be treated as having a fixed capacity across problems in an experiment, this

suggests that we should expect significant differences in the correlation between accuracy

and decision times depending on whether the data is within or across subjects.

5 Summary

We solve a general dynamic decision problem in which an agent repeatedly acquires infor-

mation, facing entropy-based information costs. The optimal behavior is stochastic—the

action distribution at each decision node complies with a logit choice rule—and biased—

compared to the standard dynamic logit model applied to each state separately, the agent

behaves as if she faces a virtual “switching” cost. This virtual cost is high whenever the

agent makes an unlikely choice, reflecting the cost of a large shift in her beliefs that ra-

tionalizes such a choice. When incentives are serially correlated, the agent exhibits an

18The computations for Figure 1 in Appendix C.3 are analytical except for numerical solution of one
unknown.
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endogenous conservative bias that results in stickiness in her actions. The behavioral dis-

tinction between real and informational frictions is a central topic of the RI literature that

has been studied in particular settings. This paper formalizes, in a general setting, an

equivalence between the two frictions within any given decision problem, while showing

that they lead to distinct predictions across different problems.

As a tool for solving the problem, we show that the RI model with incomplete infor-

mation and learning is behaviorally equivalent to a complete information control problem.

The agent behaves as if she faces a cost of deviating from a default choice rule, but also

engages in a second layer of optimization: at the ex ante stage, she optimizes the default

rule, which is independent of the state of the world, and ex post, the agent chooses an

optimal deviation from the default rule given the incentives in the realized state and the

control cost.

Appendix

A Proofs for Section 2.2

Proof of Proposition 1. Consider the space of strategies Π =
∏

t

∏

at−1 P (at, θt; a
t−1), where

P (at, θt; a
t−1) denotes the set of feasible joint distributions of at and θt given at−1. By

Tychonoff’s Theorem, the space Π is compact in the product topology, and because ut is

uniformly bounded, the objective function is continuous. Therefore, an optimum exists.

Proof of Lemma 1. Let Ψ denote the set of all strategies, and for s ∈ Ψ, let U(s) denote

the ex ante expected payoff from strategy s, that is, for s = (f, σ), U(s) is the objective

function in (2).

Given any strategy s = (f, σ) and any xt−1, let X(s, xt−1) = {x ∈ X : ft(x | θt, xt−1) >

0 for some θt}. Let σ̃t(·;x
t−1, s) : X(s, xt−1) −→ A be such that σ̃t(xt;x

t−1, s) ≡ σt((x
t−1, xt)).

The main idea of the proof is to take any information that is acquired but not used at

time t and postpone its acquisition to time t + 1. However, doing so may not be possible

if all available signals are already being used at time t + 1. Accordingly, for the purpose

of the construction, we expand the signal spaces, and then note that, following an infinite

recursion, the strategy we construct is feasible with the original signal spaces.

Let Xt = Xt and X
t
=
∏

t′≤tXt′ , and let Ψ denote the set of all strategies when the
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space of available signals in period t is X t. Given any strategy s = (f, σ) ∈ Ψ, we will

construct a sequence (sτ )∞τ=0 = (f τ , στ )∞τ=0 with sτ ∈ Ψ such that U(s0) = U(s) and, for

every τ ,

1. σ̃τ
t (·;x

t−1, sτ ) is one-to-one for every t ≤ τ and every xt−1,

2. (f τ
t (·|x

t−1, θt), στ
t ) = (f τ−1

t (·|xt−1, θt), στ−1
t ) whenever t ≤ τ − 1, and

3. U(sτ ) ≥ U(sτ−1).

Endowing Ψ with the product topology, the sequence sτ converges to a strategy s∗ that is

identical up to relabeling of signals to the strategy induced by the choice rule generated by

s. Moreover, since s∗ and sτ are identical in periods 1 through τ , flow payoffs are uniformly

bounded, and
∑

t δ
(t) < ∞, we have U(s∗) = limτ U(sτ ). In particular, if s is optimal then

so is s∗, proving the lemma.

The sequence (sτ )∞τ=0 is constructed recursively as follows. First we define s0 by

“embedding” s into the expanded signal space Xt. Formally, for xt ∈ X and xt−1 =

(x1, . . . , xt−1) ∈ X
t−1

, let

f0
t ((x1, . . . , xt)|x

t−1, θt) =







ft(xt|xt−1, θt) if xt−1 = (x1, . . . , xt−1),

0 otherwise,

and σ0
t (x

t) ≡ σt(xt). By construction, s and s0 generate the same joint distribution of

actions and states and the same information costs in each period; hence we have U(s0) =

U(s).

For τ > 0, the idea is to construct sτ by coarsening sτ−1 in period τ so that signals

that occur with positive probability map one-to-one to actions and then restore the lost

information in period τ +1. Accordingly, if σ̃τ−1
τ (·;xτ−1) is one-to-one for every xτ−1 then

let sτ = sτ−1. Otherwise, for each t, associate to each action a ∈ A a signal xat ∈ Xt

(chosen arbitrarily) such that xat 6= xa
′

t whenever a 6= a′. Let

f τ
t (xt|x

t−1, θt) =































f τ−1
t (xt|x

t−1, θt) if t ≤ τ − 1,
∑

x∈Xt:σ̃
τ−1
t (x;xt−1)=a f

τ−1
t (x|xt−1, θt) if t = τ and xt = xat ,

0 if t = τ and xt 6= xat for any a ∈ A,

Prfτ−1
t

(xt | µ
τ−1
t−1 (x

t−1), θt) otherwise,
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where µτ
t (x

t) := (σ̃τ
1 (x1), . . . , σ̃

τ
t (xt;xt−1)), and

στ
t (x

t) =







a if t = τ and xt = xat ,

στ−1
t (xt) otherwise.

It is clear by construction that the sequence (sτ )τ satisfies properties 1 and 2 above. All

that remains is to show that it satisfies property 3.

First note that for every τ ≥ 1, sτ induces the same distribution over sequences of

action-state pairs as sτ−1. Hence U(sτ ) ≥ U(sτ−1) if and only if the total discounted

expected information cost from sτ is no more than that from sτ−1. Letting x0 = ∅, for any

t 6= τ , the mutual information I
(

θt;xt | x0
)

is identical under sτ−1 and sτ , and for t = τ

it is (weakly) lower under sτ . Since δ(τ) ≥ δ(τ+1) and, from the definition of the mutual

information in (1),

I
(

θt;xt | x0
)

=

t
∑

t′=1

I
(

θt;xt
′

| xt
′−1
)

,

it follows that the information cost is at least as high under sτ−1 as under sτ .

B Proofs for Section 3

Proof of Lemma 2. First we show that the optimization problem (3) from Lemma 1 is

equivalent to

max
p

E

[

∞
∑

t=1

δ(t)
(

ut(a
t, θt) + log p

(

at | a
t−1
)

− log p
(

at | a
t−1, θt

))

]

. (16)

Using the definition of mutual information, we can rewrite the objective in (3) as

E

[

∞
∑

t=1

δ(t)
(

ut(a
t, θt)− log p(θt | at) + log p(θt | at−1)

)

]

.

When at is attained with 0 probability, define log p(θt | at) as an arbitrary constant, and

note that the choice of the constant does not affect the expectation.

Using the identities p(θt | as) = p(as | θt)p(θt)/p(as) and p(θt | at−1) = p(θt |

θt−1)p(θt−1 | at−1), and dropping terms such as − log p(θt) that do not depend on actions
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gives the equivalent objective function

E

[

∞
∑

t=1

δ(t)
(

ut(a
t, θt)− log p(at | θt) + log p(at) + log p(at−1 | θt−1)− log p(at−1)

)

]

,

which can be rearranged to give

E

[

∞
∑

t=1

(

δ(t)ut(a
t, θt) + (δ(t+1) − δ(t))

(

log p(at | θt)− log p(at)
)

)

]

.

Using log p
(

at
)

=
∑t

t′=1 log p
(

at′ | a
t′−1
)

and

log p
(

at | θt
)

=

t
∑

t′=1

log p
(

at′ | a
t′−1, θt

)

=

t
∑

t′=1

log p
(

at′ | a
t′−1, θt

′
)

and rearranging shows that problem (3) is equivalent to (16).

We complete the proof by showing that, when solving (21), we get the same solution if

we optimize jointly over all p(at | a
t−1, θt) and p(at | a

t−1) without requiring that

p(at | at−1) = Eθt [p(at | a
t−1, θt) | at−1].

Consider problem (12). For any given p, the optimal q solves

max
q

E

[

∞
∑

t=1

δ(t) log q
(

at | a
t−1
)

]

,

where the distribution of action paths is governed by p. This problem can be solved

separately for each t and at−1, and it is straightforward to show that the solution is

q
(

at | a
t−1
)

= p
(

at | a
t−1
)

.

In particular, a choice rule p together with the default rule p(at | a
t−1) solve (12) if and

only if p solves (16).

Proof of Theorem 1. Consider the control problem given some q (i.e. the problem where we

choose p to maximize the objective of (12) for fixed q). Let ut(a
t, θt) = ut(a

t, θt)+log q(at |
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at−1). For each at−1 and θt such that π(θt) > 0, let

Vt(a
t−1, θt) =

1

δ(t)
max

{pτ (·|aτ−1,θτ )}∞τ=t

E

[

∞
∑

τ=t

δ(τ)
(

uτ (a
τ , θτ )− log pτ (aτ | aτ−1, θτ )

)

| θt, at−1

]

.

Note that Vt does not depend on the agent’s strategy in earlier periods.

The value Vt satisfies the recursion

Vt(a
t−1, θt) = max

{p(·|at−1,θt)}
E
[

ut(a
t, θt)− log p(at | a

t−1, θt) + δt+1Vt+1(a
t, θt+1) | θt

]

, (17)

where at = (at−1, at) (recall that δt+1 = δ(t+1)/δ(t)).

To solve the maximization problem on the right-hand side of (17), note first that, since

ut(a
t, θt) = ut(a

t, θt) + log q(at | at−1), if q(at | at−1) = 0 (and hence log(q(at | at−1) =

−∞) for some at, then we must have p
(

at | a
t−1, (θt−1, θt)

)

= 0 for every θt satisfying

π(θt−1, θt) > 0.19 Accordingly let A(at−1) = {ãt ∈ At : q(ãt | at−1) > 0}, and suppose

at ∈ A(at−1) and π(θt−1, θt) > 0. If A(at−1) is a singleton, then p
(

at | a
t−1, (θt−1, θt)

)

= 1.

Otherwise, the first-order condition for (17) with respect to p(at | a
t−1, θt) is

ut(a
t, θt)−

(

log p(at | a
t−1, θt) + 1

)

+ δt+1Eθt+1

[

Vt+1

(

at, θt+1
)

| θt
]

≤ µt(a
t−1, θt), (18)

where µt(a
t−1, θt) is the Lagrange multiplier associated with the constraint

∑

a′t
p(a′t |

at−1, θt) = 1. Moreover, (18) holds with equality if p(at | a
t−1, θt) ∈ (0, 1), which must be

the case to ensure that the left-hand side of (18) is finite for all at ∈ A(at−1).

For at ∈ A(at−1), rearranging the first-order condition gives

p(at | a
t−1, θt) = exp

(

ut(a
t, θt)− 1 + δt+1V t+1

(

at, θt
)

− µt(a
t−1, θt)

)

,

where V t+1

(

at, θt
)

:= Eθt+1

[

Vt+1

(

at, θt+1
)

| θt
]

. Since
∑

a′t∈A(at−1) p(a
′
t | a

t−1, θt) = 1, it

follows that

p(at | a
t−1, θt) =

exp
(

ut(a
t, θt)− 1 + δt+1V t+1

(

at, θt
)

− µt(a
t−1, θt)

)

∑

a′t∈A(at−1) exp
(

ut((at−1, a′t), θ
t)− 1 + δt+1V t+1 ((at−1, a′t), θ

t)− µt(at−1, θt)
)

=
exp

(

ut(a
t, θt) + δt+1V t+1

(

at, θt
))

∑

a′t∈A(at−1) exp
(

ut((at−1, a′t), θ
t) + δt+1V t+1 ((at−1, a′t), θ

t)
) .

19If π(θt−1, θt) = 0 then p
(

at | a
t−1, (θt−1, θt)

)

has no effect on the value and can be chosen arbitrarily.
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Substituting into (17) gives the recursion

V t(a
t−1, θt−1)

= E

[

− δt+1V t+1(a
t, θt)+ log





∑

at∈A(at−1)

exp
(

u((at−1, at), θ
t) + δt+1V t+1((a

t−1, at), θ
t)
)





+ δt+1V t+1(a
t, θt)

∣

∣

∣

∣

θt−1

]

,

and therefore,

V t(a
t−1, θt−1) = E



log





∑

a′t∈A(at−1)

exp
(

u((at−1, a′t), θ
t) + δt+1V t+1((a

t−1, a′t), θ
t)
)





∣

∣

∣

∣

θt−1





= E



log





∑

a′t∈At

q(a′t|a
t−1) exp

(

u((at−1, a′t), θ
t) + δt+1V t+1((a

t−1, a′t), θ
t)
)





∣

∣

∣

∣

θt−1



 .

(19)

The result now follows from Lemma 2.

We define the posterior belief in a static RI problem after an action a is taken with

zero probability to be

p(θ | a) =
1

∑

θ′ π(θ
′) eu(a,θ′)∑

a′ q(a
′)eu(a′,θ′)

π(θ)eu(a,θ)
∑

a′ q(a
′)eu(a′,θ)

. (20)

Note that this expression coincides with (9) when a is chosen with positive probability.

Otherwise, it differs from (9) only by a renormalization. In the proof of Proposition 3 we

show that posteriors in (20) arise in a modified RI problem in which the probability of

each action is constrained to be at least some ε > 0. We then prove that solutions of the

constrained problems converge to a solution of the unconstrained problem, as ε → 0.

Proof of Proposition 3. Note first that in both the control problem (12) and the recursive

problem in Proposition 3, for any given q, there exists an optimal p satisfying

p(at | a
t−1, θt) =

q(at | a
t−1) exp

(

û(at, θt)
)

∑

a′t
q(a′t | a

t−1) exp (û((at−1, a′t), θ
t))

. (21)
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Thus it suffices to consider, in each case, the problem of optimizing with respect to q under

the assumption that p is given by (21).

If the optimal q in problem (12) is fully interior (i.e. q(at | a
t−1) > 0 for every at and

at−1), then the result is straightforward to verify. In particular, the solutions coincide if

we add to each problem additional constraints that q(at | a
t−1) ≥ ε for every at−1 and at,

where ε ∈ (0, 1/|At|) (and take the posterior beliefs in the recursive problem based on (21)).

Note that for every at−1 and θt, the difference between the continuation value V ε
t (a

t−1, θt)

in this problem and the continuation value Vt(a
t−1, θt) in the original problem is bounded

by a quantity proportional to ε. Moreover, the values vary continuously in q (with the

product topology). Hence, as ε vanishes, any convergent subsequence of solutions to the

problems bounded by ε converges to a solution of the original problem. All that remains

is to show that the same is true of the recursive problem, that is, that, as ε vanishes, some

sequence of solutions to the recursive problems with bounds ε converges to a solution of

the recursive problem with no such bounds.

Consider the static control problem in any period of the recursion, and write π for the

prior in that period and ûε for the analogue of û with continuation values Vε. The optimal

default rule q for the problem with bounds ε solves

max
q

Eθ

[

ln

(

∑

a

q(a)eû(θ,a)

)]

(22)

s.t. ε ≤ q(a) ≤ 1,
∑

a q(a) = 1.

By the Maximum Theorem, the set of solutions to this problem is upper hemicontinuous

in û and π. Since the continuation values approach the true values as ε vanishes, all

that remains is to show that, at each history, the prior π approaches that of the recursive

problem.

The first-order condition for a solution of (22) with q(a) ∈ (ε, 1) is

∑

θ

π(θ)eûε(θ,a)

∑

a′ q(a
′)eûε(θ,a′)

= µ, (23)

where µ is the Lagrange multiplier associated with the constraint
∑

a′ q(a
′) = 1. Note that

there must exist some a for which q(a) ∈ (ε, 1). For that action a, we have p(a) = q(a),

and hence the left-hand side of (23) is the sum of posterior beliefs, which must be equal to
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1.

Now consider a for which the solution is q(a) = ε. Then we must have

∑

θ

π(θ)eûε(θ,a)

∑

a′ q(a
′)eûε(θ,a′)

≤ µ = 1.

In this case, the posterior beliefs satisfy

p(θ | a) =
π(θ)

p(a)
p(a | θ) =

q(a)

p(a)

π(θ)eûε(θ,a)

∑

a′ q(a
′)eûε(θ,a′)

=
1

∑

θ′ π(θ
′) eûε(a,θ′)∑

a′ q(a
′)eûε(a′,θ′)

π(θ)eûε(θ,a)

∑

a′ q(a
′)eûε(θ,a′)

.

Therefore, as ε vanishes, the posteriors indeed approach those given by (20).20

C Proofs and computations for Section 4

C.1 Sunk cost fallacy

The symmetry of the model in this case implies that there is a symmetric solution. The

predisposition q1(a1) toward action a1 ∈ {0, 1} in the first period is 1/2, the predisposition

s := q2(a2 = a | a1 = a) toward maintaining the same action in the second period is

independent of a, and the continuation value function attains only two values,

V2

(

a1, θ
2
)

=







Vc if a1 = θ2,

Vw if a1 6= θ2.

One may interpret Vc as the expected payoff in period 2, including the information cost,

when the action a1 suggests the correct choice of a2, and Vw as the corresponding payoff

when a1 suggests the wrong choice. By (10), the continuation payoffs satisfy Vc = log(se+

(1− s)) and Vw = log(s+ (1− s)e).

Proposition 3 states that the choice rule in each period is a solution to a static RI

20Although we have only shown this within a single period of the recursion, simple induction implies that
it holds across all histories, giving convergence of the solutions in the product topology.

31



problem. The first-stage static RI problem involves gross payoffs

û1(a1, θ1) =







1 + 0.9Vc + 0.1Vw if a1 = θ1,

0.9Vw + 0.1Vc if a1 6= θ1,

and a uniform prior on θ1. The agent assigns posterior probability p1 to her choice being

correct, where, according to (9),

p1 = p(θ1 = a1 | a1) =
1
2e

û1(a1,a1)

1
2e

û1(a1,a1) + 1
2e

û1(1−a1,a1)
. (24)

Note that p1 is independent of a1 ∈ {0, 1}, and that it is equal to the probability that the

first-period decision is correct.

The second-stage static RI problem involves gross payoffs

û2(a2, θ2) =







1 if a2 = θ2,

0 if a2 6= θ2,

and a prior on θ2 that depends on the choice of action in period 1. Specifically, at the

beginning of period 2, the prior belief that θ2 = a1 is p2 = p(θ2 = a1 | a1) = 0.9p1+0.1(1−

p1).

We want to show that under the optimal choice rule, a1 = a2 almost surely. Suppose

the predisposition s is equal to 1. Then Vc = 1 and Vw = 0. It follows from (24) that

p1 ≈ 0.86. Then p2 ≈ 0.79, and since s = 1, this is also the probability that the second

decision is correct. To verify that s = 1, we need to check that the predisposition s = 1

maximizes

p2 log (se+ (1− s)) + (1− p2) log (s+ (1− s)e) ,

which is indeed the case.

C.2 Inertia

We say that a solution to the Example 2 is interior if there exists t′ such that each action

is chosen with positive probability in every period t > t′.

Lemma 3. Suppose there is an interior solution to the Markovian model. Then there

exists t′ such that for t > t′, conditional on at−1 and θt, at is independent of θ
t−1 and at−2.
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Moreover, there is an optimal choice rule for which, in each period t > t′,

p(at | θt, at−1) =
q(at | at−1) exp (u(at, θt) + δE [V (at, θt+1) | θt])

∑

a′ q(a
′ | at−1) exp (u(a′, θt) + δE [V (a′, θt+1) | θt])

, (25)

where the continuation payoffs solve

V (at−1, θt) = log

(

∑

a

q(a | at−1) exp (u(a, θt) + δE [V (a, θt+1) | θt])

)

, (26)

the predispositions q(at | at−1) solve

∑

θt−1

p(θt−1 | at−1)γ(θt−1, θt) =
∑

at

q(at | at−1)p(θt | at) (27)

for all θt and at−1, and the posteriors p(θt | at) satisfy

p(θt | at)

p(θt | a′t)
=

exp (u(at, θt) + δE[V (at, θt+1) | θt])

exp (u(a′t, θt) + δE[V (a′t, θt+1) | θt])
. (28)

One can check whether there is an interior solution by solving the system of equations

in Lemma 3. If the resulting predispositions are positive then there is an interior solution

and the result applies.21

Equation (27) is a condition on the posterior beliefs. The left-hand side is the prior

belief about θt at the beginning of period t obtained by applying the transition probabilities

of the Markov chain to the posterior about θt−1 at the end of period t− 1. The right-hand

side is the same prior written as the expectation of the posterior at the end of period t.

Lemma 3 follows from the recursive characterization in Proposition 3 together with a

result from Caplin and Dean (2013). They show that in static RI problems, the optimal

posteriors p(θ | a) are constant across priors lying within their convex hull. In the present

setting, this implies that the agent’s posterior after choosing at is independent of her prior

at the beginning of period t, and hence constant across all at−1. This property gives rise

to the Markovian structure of the optimal actions and beliefs. The same argument applies

for a general version of Example 2 with arbitrary finite state and action spaces and general

21Lemma 3 describes long-run behavior. Actions in early periods depend on the prior. If the distribution
of θ1 lies in the convex hull of the long-run stationary posteriors p(θt | at) for the two actions, then the
choice rule (25) is optimal beginning in period 2. If not, the agent acquires no information until her belief
enters the convex hull of the stationary posteriors, after which (25) applies.
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payoffs.

Proof of Proposition 4. First, note that the rescaled predispositions q∗(a, a′) are bounded

above by some K. Condition (27) implies that, for a 6= a′,

q(a′ | a) =
Pr(θt = a | at = a)γ(a, a′)− Pr(θt = a′ | at = a)γ(a′, a)

Pr(θt = a′ | at = a′)− Pr(θt = a′ | at = a)
. (29)

The numerator of this expression is of order ε. The denominator is bounded away from

zero because the difference p(θt = a′ | at = a′) − p(θt = a′ | at = a) in posteriors is larger

than in the static RI problem in which the continuation values are zero.

Using the bound on q∗(a, a′) and the fact that the continuation values are bounded,

(26) implies that there exists some K ′ such that for sufficiently small ε,

u(a, θ) + δV (a, θ)−K ′ε ≤ V (a, θ) ≤ u(a, θ) + δV (a, θ) +K ′ε.

Thus limε→0 V (a, θ) = u(a,θ)
1−δ . Condition (28) therefore implies that

lim
ε→0

p(θt = a | at = a) =
UaUa′ − Ua

UaUa′ − 1
,

where a′ 6= a. Substituting this last expression into (29) gives (13). Finally, (14) follows

from (25). The comparative statics can be checked by taking derivatives of the expressions

for α.

C.3 Response times

Consider the problem

max
p

E

[

T
∑

t′=1

ut′
(

at
′

, θ
)

]

(30)

s.t. E

[

t
∑

t′=1

I
(

θ; at
′

| at
′−1
)

]

≤ κt for all t = 1, . . . , T

in which the constraint is relaxed relative to the original problem (15). We will show that

solution of (30) also solves (15).

For each t = 1, . . . , T , the capacity constraint in (30) is equivalent to I(θ; at) ≤ κt.
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Hence, the set of the feasible joint distributions p(θ, aT ) satisfying the constraints of (30)

is convex. Since the objective of (30) is linear in p(θ, aT ), the first-order conditions are

sufficient for a global optimum.

The solution of (30) also solves

max
p

E

[

T
∑

t′=1

(

ut′
(

at
′

, θ
)

− λt′I
(

θ; at
′

| at
′−1
))

]

, (31)

where λt′ are the shadow prices of the information capacity for t′ = 1, . . . , T . If λt is

decreasing then Problem (31) is a particular case of the dynamic RI problem from Definition

1 (after rescaling discount factors and payoffs as described in footnote 8).

Assume that λt is indeed decreasing (we verify this below). Then we may solve (31)

using Proposition 3. The only non-trivial decision node at period t is the one with at−1 =

wt−1. By symmetry, the prior belief about θ at the decision node wt−1 is uniform on {0, 1}.

Symmetry also implies that the continuation value Vt(w
t−1, θ) is independent of θ ∈ {0, 1};

accordingly, we omit the arguments of Vt. Hence at the node w
t−1, the agent solves a static

RI problem with a uniform prior over θ and payoffs

ût (at, θ) =



















1 if at = θ,

0 if at = 1− θ,

Vt+1 − c if at = w.

This static RI problem can be solved using Proposition 2. Symmetry implies that the

predisposition q(at | w
t−1) is the same for the two terminal actions at ∈ {0, 1}; we denote

it by st/2, which makes st the probability that the agent takes a terminal action at t

conditional on waiting in the previous periods. In this case, Proposition 2 implies that st

solves

max
st∈[0,1]

log
(st
2

(

e1/λt + 1
)

+ (1− st)e
(Vt+1−c)/λt

)

. (32)

By (10), the value associated with the static RI problem at time t is

Vt = λt log
(st
2

(

e1/λt + 1
)

+ (1− st)e
(Vt+1−c)/λt

)

. (33)

Using the first-order condition together with (33), it is easy to check that if the solution
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to (32) satisfies st ∈ (0, 1) then Vt+1 = Vt + c, and that

Vt = λt log

(

1

2

(

e1/λt + 1
)

)

(34)

whenever st ∈ (0, 1].

Since it can never be optimal to delay with probability one, there exists some t∗ ∈

{1, . . . , T} such that st ∈ (0, 1) for all t < t∗, and st∗ = 1, meaning that the agent

always makes a terminal decision by time t∗. In addition, there exists some V1 such that

Vt = V1+ c(t−1) for each t = 1, . . . , t∗. Substituting into (34), we see that λt is decreasing

in time, as claimed.

Recall that gt = Pr (at = θ | at ∈ {0, 1}) denotes the accuracy of the terminal decision

when it is made at time t. From (7), we obtain gt =
e1/λt

1+e1/λt
. Solving for λt and substituting

into (34) gives
log (2(1− gt))

log
(

1−gt
gt

) = V1 + c(t− 1). (35)

Next, recall that rt = Pr
(

at−1 = wt−1 and at ∈ {0, 1}
)

is the probability that a terminal

decision is made in period t. For t ≤ t∗, the capacity constraint binds, and hence rt satisfies

rt (log 2 + gt log gt + (1− gt) log(1− gt)) = κ. (36)

The expression in the parentheses on the left-hand side is the difference between the entropy

of the prior belief at t and that of the posterior belief after taking a terminal action at t.

We determine the value V1 ∈ (0, 1) numerically. It is the maximal value for which there

exists a natural number t∗ ≤ T such that
∑t∗

t=1 rt = 1.

Notice that the solution of the relaxed problem (30) also solves the original problem

(15) because the constraints of (30) are binding for t = {1, . . . , t∗}, and hence the solution

of the relaxed problem satisfies the constraints of the original problem.
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