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Choice under Uncertainty: Risk and Ambiguity

(1) Risk, Uncertainty and Pro�t (1921) by Knight � see his chapter on
�The meaning of risk and uncertainty.�

(2) The General Theory of Unemployment, Interest and Money (1936) by
Keynes � see his chapter on �The state of long-run expectation.�

(3) A central contribution of Knight and Keynes is the distinction between
risk and ambiguity.
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A Quotation from Keynes (1937)

�By uncertain knowledge, let me explain, I do not mean merely to
distinguish what is known for certain from what is only probable. The
game of roulette is not subject, in this sense, to uncertainty; nor is the
prospect of a Victory bond being drawn. Or, again, the expectation of life
is only slightly uncertain. Even the weather is only moderately uncertain.
The sense in which I am using the term is that in which the prospect of a
European war is uncertain, or the price of copper and the rate of interest
twenty years hence, or the obsolescence of a new invention, or the position
of private wealth owners in the social system in 1970. About these matters
there is no scienti�c basis on which to form any calculable probability
whatever. We simply do not know.�
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Expected Utility and Subjective Expected Utility

This distinction between risk and ambiguity is absent in the expected
utility (EU) model of decision-making under risk, due to Von Neumann
and Morgenstern (1944), and Savage�s (1954) model of decision-making
under uncertainty, but it is the genesis of Ellsberg�s (1961) seminal critique
of Savage�s theory of subjective expected utility (SEU).
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The Ellsberg Paradox

(1) In Ellsberg�s two-color thought experiment, subjects make pairwise
choices between a risky urn, where the relative frequencies of the two
outcomes are 1/2, and an ambiguous urn, where the relative frequencies
are unknown.

(2) In the �rst trial, if the subject chooses an urn and draws a black ball
then she receives $100, the �good�outcome, but if she draws a white ball
then she receives $0.00 dollars, the �bad outcome.�

(3) In the second trial the payo¤s are reversed.
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Preferences for Ambiguity

(1) Subjects that choose the ambiguous urn on both trials are said to be
ambiguity-seeking and subjects that choose the risky urn on both trials are
said to be ambiguity-averse.

(2) Ambiguity-seeking subjects in the Ellsberg experiment �act as if,� the
perceived probability of the �good�outcome is greater than the relative
frequency of the �good�outcome.

Brown, Erdman, Ling and Santos (Paris - Dauphine)Revealed Preferences for Risk and Ambiguity November 2010 6 / 33



Preferences for Ambiguity (Continued)

(3) Ambiguity-averse subjects in the Ellsberg experiment �act as if� the
perceived probability of the �bad�outcome is greater than the relative
frequency of the �bad�outcome.

(4) Ellsberg�s (1961) explanation of the two color Ellsberg paradox: �... we
would have to regard the subject�s subjective probabilities as being
dependent upon his payo¤s, his evaluation of the outcomes ... it is
impossible to infer from the resulting behavior a set of probabilities for
events independent of his payo¤s.�

(5) That is, agents choose actions and beliefs.
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The Duke Model

(1) Huettel et al. (2006) in The Center for Cognitive Neuroscience at
Duke, proposed a new model of decision-making under uncertainty with
proxies for risk-aversion and ambiguity-aversion, consistent with Ellsberg�s
explanation of the two color Ellsberg paradox.

(2) The proxies are β for risk-aversion, where β is the coe¢ cient of relative
risk-aversion for the utility function u(w) = w β, and α for
ambiguity-aversion in the α-maxmin expected utility model.

(3) If β = 1 then u is linear and the subject is risk-neutral. If β > 1 then u
is convex and the subject is risk-seeking. If β < 1 then u is concave and
the subject is risk-averse.
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The Duke Model (Continued)

(4) The α-maxmin expected utility of an ambiguous lottery, x = (x1, x2) is
(1� α)u(x1 _ x2) + αu(x1 ^ x2).

(5) Huettel et al. interpret α as a measure of ambiguity-aversion, where
α 2 [0, 0.5) denotes ambiguity-seeking, α = 0.5 is ambiguity-neutral, and
α 2 (0.5, 1] denotes ambiguity-averse.
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Resolving the Ellsberg Paradox with the Duke Model

(1) The utility of an ambiguous lottery in the Duke model is the
α-maxmin expected utility and the utility of a risky lottery is the expected
utility. The Duke model assumes that subjects maximize utility in choosing
between a pair of lotteries.

(2) The Huettel et al. model is consistent with Ellsberg�s explanation of
the two-color paradox. The utility of the risky urn is [u(0) + u (100)]/2
and the utility of the ambiguous urn is (1� α)u(100) + αu(0), where
u(0) = 0. If the agent is ambiguity-averse then (1� α) 2 [0, 0.5). Hence
u (100) /2 > (1� α)u(100) and the agent chooses the risky urn on both
trials. If the agent is ambiguity-seeking then (1� α) 2 (0.5, 1]. Hence
u (100) /2 < (1� α)u(100) and the agent chooses the ambiguous urn on
both trials.
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The Duke Experiment

(1) Huettel et al. asked 13 subjects to make pairwise choices between
lotteries with di¤erent degrees of uncertainty, i.e., certain, risky and
ambiguous, and used fMRI data to identify regions in the brain that are
activated during the choice process.

(2) For each subject, β is chosen to maximize the number of correct
predictions in the risky-risky and risky-certain trials, using the expected
utility model. The fMRI data identi�ed a region of the brain that is
activated during the choice process, call it region R.
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The Duke Experiment (Continued)

(3) Given the estimated β, α for each subject is chosen to maximize the
number of correct predictions in the ambiguous-risky and
ambiguous-certain trials, using the α-maxmin expected utility model. The
fMRI data identi�ed a di¤erent region of the brain that is activated during
this choice process, call it region A.

(4) A is inactive when R is active and R is inactive when A is inactive. As
is common in the neural science literature, this double dissociation fMRI
study is interpreted as independence of the two choice behaviors.
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Limitations of the Duke Experiment

(1) Unfortunately, the estimation procedure in the Duke study is not
identi�ed, i.e., there are several values of α and β that maximize the
number of correct predictions.

(2) Recently, Levy et al. (2010) o¤ered an alternative explanation of the
hypothesized �nding of di¤erential activation in parts of the brain as a
consequence of choice under risk and ambiguity.
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Limitations of the Duke Experiment (Continued)

(3) In the Duke study subjects were told, ex post, the probabilities used to
resolve ambiguous lotteries, possibly allowing subjects to learn the
ambiguous probabilities.

(4) In the Levy et al. study, where the ambiguous probabilities were not
resolved, the levels of neural activation in regions R and A resulting from
choice under risk and ambiguity were comparable.
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The Mixed Logit Model

(1) Given these limitations of the Duke experiment, we recast the Duke
model as a random utility model, more speci�cally a parametric, mixed
logit model. The mixed logit model allows us to estimate a parametric,
bivariate distribution over α and β from pairwise choices between risky and
ambiguous lotteries made by subjects randomly selected from the
population.

(2) The random utility model was �rst proposed in psychology by
Thurstone (1927) in a form now called the binomial probit model, and
subsequently introduced in economics by Marschak (1960) who
investigated the properties of choice probabilities for utility functions
subject to random perturbations.

(3) McFadden (1974) introduced the conditional logit model. In the
binomial case, this is the well-studied logistic model in biostatistics. See
McFadden�s Nobel Lecture for a brief history of the origins of the random
utility model.
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Random E¤ects

(1) In the mixed logit model presented in this paper,the proxies for
ambiguity-aversion and risk-aversion, α and β, are treated as random
e¤ects, i.e., random variables uncorrelated with the explanatory variables.

(2) There are two criteria for using a random e¤ects model in lieu of a
�xed e¤ects model. First, the data is generated by taking a random
sample of subjects from some �xed population.

(3) Our sample is randomly selected from the population of Yale students,
matriculating in the summer session and fall term of 2009. Second, the
explanatory variables � the payo¤s and probabilities de�ning the lotteries
� must be uncorrelated with the random e¤ects, α and β.

(4) This is certainly true in our experiment in which the payo¤s and
probabilities de�ning the lotteries in the pairwise comparisons are
generated randomly and independently for each subject.
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The Bernstein�von Mises Theorem

(1) We interpret α and β as random e¤ects with a bivariate log-normal
distribution, parameterized by unknown hyper-parameters Ψ, using the
Bayesian perspective we can estimate the posterior means.

(2) The posterior means are consistent estimates of the individual-level
random e¤ects, αj and βj .

(3) The Bernstein�von Mises theorem provides an alternative classical
method of estimating the individual-level random e¤ects. That is,
maximum likelihood estimation of αj and βj .

(4) The Bernstein�von Mises theorem shows that the Bayesian and
classical estimates of the individual-level random e¤ects αj and βj are
asymptotically equivalent.
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The Yale Experiment

(1) To replicate the essentials of the Duke. experiment, we consider
pairwise choices in 200 monetary lotteries made by 30 randomly chosen
Yale undergraduates in 2009.

(2) As in the Duke experiment, each lottery involves choices between a
known payo¤, payo¤s with known probabilities, and payo¤s with unknown
probabilities.

(3) We refer to these lotteries as certain, risky and ambiguous lotteries,
respectively. In our experiment, each subject chooses between 40
risky-certain pairs, 40 risky-risky pairs, 40 ambiguous-certain pairs, 40
ambiguous-ambiguous pairs and 40 risky-ambiguous pairs.
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The Yale Experiment (Continued)

(1) All ambiguous lotteries have two positive outcomes and all certain
lotteries have one positive outcome.

(2) In the risky-certain pairs and the risky-risky pairs, all risky lotteries
have one zero outcome and one positive outcome, but in the
risky-ambiguous pairs both ambiguous and risky lotteries have two positive
outcomes.

(3) At the start of each trial, subjects are given a pairwise choice between
lotteries, represented by two pie charts. Subjects are instructed to choose
the lottery on the left or right by typing �L�or �R.�Once a choice is
made, a box appears around the chosen lottery and the other lottery
disappears.
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The Yale Experiment (Continued)

(4) Expected values of lotteries are chosen at random, whole-dollar
amounts between $5 and $25, and expected values of pairs of lotteries are
matched within 20 percent. The probability of winning the amount
presented in a certain lottery is always 1, and the probabilities of winning
amounts presented in risky and ambiguous lotteries are chosen randomly
between 0.25 and 0.75, and varied across gambles.

(5) Finally, the payo¤ of the lottery is displayed at the bottom of the
screen. The �gure on the next slide displays pairs of risky, certain and
ambiguous lotteries. After completion of 200 trials, subjects are paid
winnings from 4 randomly selected trials. Winnings ranged from $0 to $93
in a single trial, and $35 to $99 overall. Ex post, subjects are not told the
probability of payo¤s in an ambiguous lottery.

Brown, Erdman, Ling and Santos (Paris - Dauphine)Revealed Preferences for Risk and Ambiguity November 2010 20 / 33



Brown, Erdman, Ling and Santos (Paris - Dauphine)Revealed Preferences for Risk and Ambiguity November 2010 21 / 33



The Yale Model

(1) In the Duke model, α and β are interpreted as parameters and the
choice probability, pA, for xA in the pairwise comparison between lotteries
xA and xB is de�ned as the percent correctly predicted. This is not the
case for the mixed logit model that we present.

(2) In our model, the choice probability, pA, for xA in the pairwise
comparison between lotteries xA and xB is interpreted as the proportion of
individuals in the population, with the same preferences for risk and
ambiguity, that choose xA or is interpreted as the proportion of times that
a single individual chooses xA in repeated pairwise comparisons between
options xA and xB .
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Choice Probability

(1) To derive estimates of risk-aversity, β, and ambiguity aversity, α, we
follow the Huettel et al. protocol and �rst estimate β̂, using pairwise
comparisons between risky lotteries. That is, we maximize the
log-likelihood de�ned by the logistic cdf

Λ[η] � exp η

1+ exp η
.

(2) If
X � (x1, x2;π1,π2) and Y � (y1, y2; η1, η2),

is a pair of risky lotteries, where pX is the probability of choosing X over
Y and the expected utility of the chosen risky option X is

E (U(X )) � π1u(x1) + π2u(x2)

then, the choice probability pX (U(X )) is

pX (U(X )) � Λ[lnE (U(X ))� lnE (U(Y ))].
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MLE of the Yale Model

(1) We estimate αj and βj by maximizing the log-likelihood of each
subject�s pairwise choices in risky and ambiguous lotteries. Following
Huettel et al., we use a two-step procedure to estimate αj and βj for each
subject j = 1, 2, ..., 30.

(2) That is, our estimator is two-step maximum likelihood estimator. To
estimate βj , we ask each subject to choose between 40 risky-certain pairs
and 40 risky-risky pairs of lotteries. Here we assume that each subject is
maximizing expected utility, which only depends on βj .

(3) To estimate αj , we ask each subject to choose between 40
ambiguous-certain pairs and 40 pairs of ambiguous-ambiguous lotteries.
Here we assume that each subject is maximizing α-maxmin expected
utility, which depends on both αj and βj , where we use the previously

estimated value β̂j and need only estimate αj .
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Estimates of Risk- Aversion

(1) To estimate β̂, we use the multiplicative random utility model, where
the expected utility of the risky option X is given
by

EU(X ) = π1(x1)β + π2(x2)β

and the choice probability for X is

pX (β) � Prob[lnEU(X ) + εX > lnEU(Y ) + εY ]

where εX and εY are i.i.d. extreme value random variables.
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Estimates of Risk-Aversion (Continued)

(2) The choice probability for choosing X is

pX (β) �
exp[lnEU(X )� lnEU(Y )]

(1+ exp [ lnEU(X )� lnEU(Y )]) .

(3) For pairs of risky-certain and risky-risky lotteries, x2 = y2 = 0. Hence
the choice probability for choosing X as a function of β is

pX (β) =
exp[β ln (x1)+ lnπ1�β ln (y1)� ln η1]

(1+ exp[β ln (x1) + lnπ1 � β ln (y1)� ln η1])
.
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The MLE for Each Subject�s Risk-Aversion

(1) We denote the chosen lotteries as X j in each pair of 40 risky-certain
and 40 risky-risky lotteries. The likelihood of the observed risky choices in
the 80 pairwise comparisonsf(X j ,Y j )gj=80j=1 as a function of β, is

j=80

∏
j=1

pX j (β).

(2) The log-likelihood

1
80

j=80

∑
j=1

ln pX j (β) =
1
80

∑j=80
j=1 ln(exp[β ln (x

j
1)+ lnπj1�β ln (y j1)� ln ηj1]

(1+ exp[β ln (x j1) + lnπj1 � β ln (y j1)� ln ηj1]))

is strictly concave in β, hence the MLE of β̂ is identi�ed and consistent.
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The Null Hypothesis

(1) Our null hypothesis is that economic preferences for risk and ambiguity
are independent, where β is a measure of the subject�s tolerance for risk
and α is a measure of the subject�s attitude towards ambiguity.

(2) The alternative hypothesis is that economic preferences for risk and
ambiguity are correlated.

(3) Under the null hypothesis, every function of α and every function of β
are independent.

(4) In particular, the LL for β and risky-certain or risky-risky data is
independent of the LL for α and ambiguous-certain or
ambiguous-ambiguous data, for every �xed value of β, e.g., β̂, the
estimate of β.
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Estimates of Ambiguity-Aversion

(1) To estimate α, we use the additive random utility model, where
subjects evaluate ambiguous lotteries, using α-maxmin expected utility.

(2) Given the pair of ambiguous lotteries W � (w1,w2) and Z � (z1, z2),
the logit choice probability for choosing W as a function of α, for �xed β̂,
is

pW (α, β̂) =
expf[α(w1^w2)β̂+(1�α)(w1_w2)β̂]�[α(z1^z2)β̂+(1�α)(z1_z2)β̂]g

[1+expf[α(w1^w2)β̂+(1�α)(w1_w2)β̂]�[α(z1^z2)β̂+(1�α)(z1_z2)β̂]g
.
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The MLE for Each Subject�s Ambiguity-Aversion

(1) We denote the chosen lotteries as W j in each pair of 40
ambiguous-certain and 40 ambiguous-ambiguous lotteries.

The likelihood of the observed ambiguous choices in the 80 pairwise
comparisonsf(W j ,Z j )gj=80j=1 as a function of α, for �xed β̂, is

j=80

∏
j=1

pW j (α, β̂).

(2) The log-likelihood

1
80

j=80

∑
j=1

ln pW j (α, β̂)

=
1
80

j=80

∑
j=1

ln expf[α(w1^w2)β̂+(1�α)(w1_w2)β̂]�[α(z1^z2)β̂+(1�α)(z1_z2)β̂]g
[1+expf[α(w1^w2)β̂+(1�α)(w1_w2)β̂]�[α(z1^z2)β̂+(1�α)(z1_z2)β̂]g

.
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The MLE for Ambiguity-Aversion(Continued)

(3) If β̂ 6= 0, then the log-likelihood function is globally concave in α.

(4) If β̂ = 0, then α̂ is not identi�ed. That is, if β̂ = 0, then for all
α̂ 2 [0, 1] : pW J (α̂, β̂) = 1/2.

(5) Hence α̂ is indeterminate and the six subjects with indeterminate α̂
�act as if� they �ip a fair coin to choose between any pair of ambiguous
lotteries. These 6 subjects were excluded from our statistical analysis.
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Hypothesis Test for Correlation

To estimate the correlation between risk and ambiguity, we estimate α̂ and
β̂ for each subject and regress α̂ against β̂, where we exclude the six
subjects with unidenti�ed α̂. The slope coe¢ cient of the regression is not
signi�cantly di¤erent from 0 at the 0.05 level, indicating linear
independence between risk-aversion and ambiguity-aversion. Hence we
cannot reject the null hypothesis of independence of revealed preferences
for risk and ambiguity.
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Hypothesis Test for Independence

We construct a 2� 2 contingency table, where the columns are labeled
AA, for ambiguity aversion and AS , for ambiguity seeking,and the rows are
labeled RA, for risk averse, and RS , for risk seeking, where we have
omitted the six subjects with unidenti�ed α:

5 0
19 0
Figure 2

We see that the cells in the second column are both zero. Consequently,
Prob(AAjRA) = Prob(AAjRS) = 1. Hence in our choice experiment it
follows from Fisher�s exact test that the revealed preferences for risk and
ambiguity are independent.
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