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Abstract

We replicate the essentials of the Huettel et al. (2006) experiment on choice

under uncertainty with 30 Yale undergraduates, where subjects make 200 pair-

wise choices between risky and ambiguous lotteries. Inferences about the in-

dependence of economic preferences for risk and ambiguity are derived from

estimation of a mixed logit model, where the choice probabilities are functions

of two random effects: the proxies for risk-aversion and ambiguity-aversion.

Our principal empirical finding is that we cannot reject the null hypothesis

that risk and ambiguity are independent in economic choice under uncertainty.

This finding is consistent with the hypothesized independence of the neural mech-

anisms governing economic choices under risk and ambiguity, suggested by the

double dissociation-fMRI study reported in Huettel et al.
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1 Introduction

Knight and Keynes in their classic monographs offer two independent but overlapping

discussions of estimating probabilities for decision-making under risk and uncertainty.

In this regard Keynes is probably best known for his chapter on “The state of long-run

expectation” in The General Theory of Employment, Interest and Money (1936) and

Knight for his chapter on “The meaning of risk and uncertainty” in Risk, Uncertainty

and Profit (1921). A central contribution in the cited works of Knight and Keynes is

the distinction between risk and uncertainty. Here is a quotation from Keynes (1937):

By uncertain knowledge, let me explain, I do not mean merely to distin-

guish what is known for certain from what is only probable. The game of

roulette is not subject, in this sense, to uncertainty; nor is the prospect

of a Victory bond being drawn. Or, again, the expectation of life is only

slightly uncertain. Even the weather is only moderately uncertain. The

sense in which I am using the term is that in which the prospect of a

European war is uncertain, or the price of copper and the rate of interest

twenty years hence, or the obsolescence of a new invention, or the position

of private wealth owners in the social system in 1970. About these mat-

ters there is no scientific basis on which to form any calculable probability

whatever. We simply do not know.

This distinction is absent in the expected utility () model of decision-making

under risk, due to von Neumann and Morgenstern (1944), and Savage’s (1954) model

of decision-making under uncertainty, but it is the genesis of Ellsberg’s (1961) seminal

critique of Savage’s theory of subjective expected utility (). In his analysis,

Ellsberg proposes ambiguity or “irreducible uncertainty” as it is called by Keynes, as

another aspect of decision-making under uncertainty. In Ellsberg’s two-color thought

experiment, subjects make pair-wise choices between a risky urn, where the relative

frequencies of the two outcomes are 1/2, and an ambiguous urn, where the relative

frequencies are unknown. In the first trial, if the subject chooses an urn and draws

a black ball then she receives $100, the “good” outcome, but if she draws a white

ball then she receives zero dollars, the “bad outcome.” In the second trial the payoffs

are reversed. Subjects that choose the ambiguous urn on both trials are said to be

ambiguity-seeking and subjects that choose the risky urn on both trials are said to be

ambiguity-averse. Ambiguity-seeking subjects in the Ellsberg experiment “act as if,”

the perceived probability of the “good” outcome is greater than the relative frequency

of the “good” outcome. Ambiguity-averse subjects in the Ellsberg experiment “act

as if” the perceived probability of the “bad” outcome is greater than the relative

frequency of the “bad” outcome.

The dependence of perceived probabilities on payoffs is inconsistent with Savage’s

axiomatic model of decision-making under uncertainty, i.e., subjective expected utility

() theory. See Savage, page 68: “... the view sponsored here does not leave

room for optimism or pessimism to play any role in the person’s judgement,” or

Ellsberg’s (1961) explanation of the two color Ellsberg paradox: “... we would have
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to regard the subject’s subjective probabilities as being dependent upon his payoffs,

his evaluation of the outcomes ... it is impossible to infer from the resulting behavior

a set of probabilities for events independent of his payoffs.”

In an interesting and provocative experiment, Huettel et al. (2006) test a new

model of decision-making under uncertainty with proxies for risk-aversion and ambiguity-

aversion, consistent with Ellsberg’s explanation of the two color Ellsberg paradox,

where agents choose actions and beliefs. The proxies are  for risk-aversion, where

 is the coefficient of relative risk-aversion for the utility function () = , and 

for ambiguity-aversion in the -maxmin expected utility model. The -maxmin ex-

pected utility of an ambiguous lottery,  = (1 2) is (1−)(1∨2)+(1∧2).
If  ∈ (0 1) then  is concave and the subject is risk-averse. If  = 1 then  is linear
and the subject is risk-neutral. Finally, if   1 then  is convex and the subject

is risk-loving. Huettel et al. interpret  as a measure of ambiguity-aversion, where

 ∈ [0 05) denotes ambiguity-seeking,  = 05 is ambiguity-neutral, and  ∈ (05 1]
denotes ambiguity-averse. The utility of an ambiguous lottery in the Huettel et

al. model is the -maxmin expected utility and the utility of a risky lottery is the

expected utility. Huettel et al. assume that subjects maximize utility in choosing be-

tween a pair of lotteries. Before reviewing their experiment, we show that the Huettel

et al. model is consistent with Ellsberg’s explanation of the two-color paradox. The

utility of the risky urn is [(0) +  (100)]2 and the utility of the ambiguous urn

is (1 − )(100) + (0), where (0) = 0. If the agent is ambiguity-averse then

(1− ) ∈ [0 05). Hence  (100) 2  (1− )(100) and the agent chooses the risky

urn on both trials. If the agent is ambiguity-seeking then (1 − ) ∈ (05 1]. Hence
 (100) 2  (1− )(100) and the agent chooses the ambiguous urn on both trials.

Returning to the experiment of Huettel et al. Using  data from pairwise

choices between risky lotteries, where the probabilities of the payoffs are known to the

subjects, and ambiguous lotteries, where the probabilities of the payoffs are unknown

to the subjects, Huettel et al. conclude that the neural mechanisms governing choice

under risk and choice under ambiguity are independent. Briefly, they asked 13 sub-

jects to make pair-wise choices between lotteries with different degrees of uncertainty,

i.e., certain, risky and ambiguous, and used the  data to identify regions in the

brain that are activated during the choice process. For each subject,  is estimated to

maximize the number of correct predictions in the risky-risky and risky-certain trials,

using the expected utility model. The  data identified a region of the brain

that is activated during the choice process, call it region  Given the estimated b,
 for each subject is estimated to maximize the number of correct predictions in the

ambiguous-risky and ambiguous-certain trials , using the -maxmin expected utility

model. The  data identified a different region of the brain that is activated

during this choice process, call it region . Moreover,  is inactive when  is active

and  is inactive when  is inactive. As is common in the neural science literature,

this double dissociation study is interpreted as independence of the two choice

behaviors.

Unfortunately, the estimation procedure in the Huettel et al. study is not iden-

tified, i.e., there are several values of  and  that maximize the number of correct

3



predictions – see the sub-section on Behavioral Data Acquisition and Analysis in

the section on Procedures in Huettel et al. Recently, Levy et al. (2010) offered an

alternative explanation of the hypothesized finding of differential activation in parts

of the brain as a consequence of choice under risk and ambiguity. In the Huettel et

al. study subjects were told, ex post, the probabilities defining ambiguous lotteries,

possibly allowing learning of the ambiguous probabilities. In the Levy et al. study,

where subjects were not told the ambiguous probabilities, the levels of neural acti-

vation resulting from choice under risk and ambiguity were comparable. Given the

limitations of the Huettel et al. study, in determining the independence of economic

preferences for risk and ambiguity, it is important to replicate their experiment and

estimate  and  with an econometric model that is identified, using an experimental

design, as in Levy et al., where subjects are not told the ambiguous probabilities.

To that end, we recast the Huettel et al. model as a random utility model, more

specifically a mixed logit model. The mixed logit model allows us to estimate a

bivariate distribution over  and  from pair-wise choices between risky and ambigu-

ous lotteries of subjects randomly selected from the population. The random utility

model was first proposed in psychology by Thurstone (1927) in a form now called

the binomial probit model, and subsequently introduced in economics by Marschak

(1960) who investigated the properties of choice probabilities for utility functions

subject to random perturbations. McFadden (1974) introduced the conditional logit

model. In the binomial case, this is the well-studied logistic model in biostatistics.

See McFadden’s Nobel Lecture for a brief history of the origins of the random utility

model.

The proxies for ambiguity-aversion and risk-aversion,  and , are treated as

random effects, i.e., random variables uncorrelated with the explanatory variables, in

the mixed logit model presented in this paper. For a detailed discussion of the mixed

logit model see chapter 6 of Train (2009). The following example from McCulloch et

al. (2008) illustrates the differences between fixed and random effects:

Consider a clinical trial to treat epileptics, in which a drug is administered

at four different dose levels.  is the number of seizures experienced by

patient  receiving dose , where [ ] =  + ,  is a general mean

and  is the effect on the number of seizures due to treatment . In this

model of the expected value of  ,  and each  are considered fixed

and unknown constants, that we wish to estimate. These are the only

treatments being used and we are considering no others, thus the  are

fixed effects.

Suppose now the clinical trials were conducted at 20 different clinics in

New York City, where  is the number of seizures experienced by patient

 receiving treatment at the  the clinic. Now [ ] = +. The clinics

have been chosen randomly with the object of treating them as a repre-

sentation of the population of all clinics in New York City and inferences

can and will be made about that population. This is characteristic of

random effects, thus the  are random effects.
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There are two criteria for using a random effects model in lieu of a fixed effects

model. First, the data is generated by taking a random sample from some fixed

population. Our sample is randomly selected from the population of Yale students,

matriculating in the summer session and fall term of 2009. Second, the explanatory

variables – the payoffs and probabilities defining the lotteries — must be uncorrelated

with the random effects,  and  This is certainly true in our experiment in which

the payoffs and probabilities defining the lotteries in the pair-wise comparisons are

generated randomly and independently for each subject.

We replicate the essentials of the Huettel et al. experiment with 30 randomly

chosen Yale undergraduates. One modification is that we asked the subjects to make

some pairwise comparisons between ambiguous lotteries – this was not the case

in the Huettel et al. experiment. In our experiment, each subject makes 200 pair-

wise choices between risky and ambiguous lotteries. In the Huettel et al. analysis,

 and  are interpreted as parameters and the choice probability, , for  in the

pair-wise comparison between lotteries  and  is defined as the percent correctly

predicted. This is not the case for the mixed logit model that we present. In our

model, the choice probability, , for  in the pairwise choices between lotteries

 and  is interpreted as the proportion of individuals in the population, with

the same preferences for risk and ambiguity, that choose  or is interpreted as the

proportion of times that a single individual chooses  in repeated pairwise choices

between options  and . This is our other modification of the Huettel et al.

experiment.

We interpret  and  as random effects with a bivariate log-normal distribution,

parameterized by unknown hyper-parameters Ψ. Using the Bayesian perspective,

we can first estimate Ψ by simulated maximum likelihood and then estimate the

individual random effects  and  for each subject  = 1 2  30, by simulating the

posterior distribution of  and  conditional on the subject’s pair-wise comparisons

of risky and ambiguous lotteries, using Bayes theorem. The posterior means are

consistent estimates of the individual-level random effects,  and  – see chapter

11 of Train (2009) for the details. The Bernstein—von Mises theorem in chapter

12 of Train provides an alternative classical method of estimating the individual-

level random effects. That is, maximum likelihood estimation of  and  . The

Bernstein—von Mises theorem shows that the Bayesian and classical estimates of the

individual-level random effects  and  are asymptotically equivalent.

We estimate  and  by maximizing the log-likelihood of each subject’s pair-

wise choices in risky and ambiguous lotteries. Following Huettel et al., we use a

two-step procedure to estimate  and  for each subject  = 1 2  30 That is,

our estimator is two-step maximum likelihood estimation. To estimate  , we ask

each subject to choose between 40 risky-certain pairs and 40 risky-risky pairs of

lotteries. Here we assume that each subject is maximizing expected utility, which

only depends on  . To estimate  , we ask each subject to choose between 40

ambiguous-certain pairs and 40 pairs of ambiguous-ambiguous lotteries. Here we

assume that each subject is maximizing -maxmin expected utility, which depends

on both  and  , where we use the previously estimated value of  and need only
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estimate  . It is well known that these estimates are consistent under the standard

conditions for maximum likelihood estimation, but any standard estimator of the

asymptotic covariance matrix for asymptotic normality of the maximum likelihood

estimate of  requires a correction. For specifics, see Theorem 17.8 in Greene (2003)

due to Murphy and Topel (1985). This correction is not necessary under the null

hypothesis that ambiguity and risk are statistically independent.

Treating these estimates as realizations of the random variables  and , we exam-

ine the correlation, , between  and  by regressing  on . Despite the limitations

of the study reported in Huettel et al. cited above, our results are consistent with their

hypothesized finding on economic preferences for risk and ambiguity, that the neural

processes governing choice under risk are independent of the neural processes govern-

ing choice under ambiguity. That is, we cannot reject the reject the null hypothesis

that  = 0 at the 5% significance level.

2 The Mixed Logit Model

To replicate the essentials of the Huettel et al. experiment, we consider pair-wise

choices in 200 monetary gambles made by 30 randomly chosen Yale undergraduates

in 2009. As in the Huettel et al. experiment, each lottery involves choices between

a known payoff, payoffs with known probabilities, and payoffs with unknown prob-

abilities. We refer to these lotteries as certain, risky and ambiguous lotteries, re-

spectively. In our experiment, each subject chooses between 40 risky-certain pairs,

40 risky-risky pairs, 40 ambiguous-certain pairs, 40 ambiguous-ambiguous pairs and

40 risky-ambiguous pairs. All ambiguous lotteries have two positive payoffs and all

certain lotteries have one positive payoff. In the risky-certain pairs and the risky-

risky pairs, all risky lotteries have one zero payoff and one positive payoff, but in the

risky-ambiguous pairs both ambiguous and risky lotteries have two positive payoffs.

Expected values of lotteries are chosen as random, whole-dollar amounts between

$5 and $25, and expected values of pairs of lotteries are matched within 20%. The

probability of winning the amount presented in a certain lottery is always 1, and

the probabilities of winning amounts presented in risky and ambiguous lotteries are

chosen randomly between 0.25 and 0.75, and varied across gambles.

At the start of each trial, subjects are given a pair-wise choice between lotteries,

represented by two pie charts. Subjects are instructed to choose the lottery on the

left or right by typing “” or “.” Once a choice is made, a box appears around the

chosen lottery and the other lottery disappears. Finally, the payoff of the lottery is

displayed at the bottom of the screen. Figure 1 displays pairs of risky, certain and

ambiguous lotteries. After completion of 200 trials, subjects are paid winnings from

4 randomly selected trials. Winnings ranged from $0 to $93 in a single trial, and $35

to $99 overall. The results of the experiment are summarized in the appendix. Ex

post, subjects are not told the probability of outcomes in an ambiguous lottery.

Here is a brief description of the parametric mixed logit models we use to analyze

our data. For each pair of risky lotteries:  ≡ (1 2;1 2) and  ≡ (1 2; 1 2),
 is the probability of choosing , and  is the probability of choosing  in a pair-
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Trial Types
Risky – Certain Ambiguous – Certain

$8

$0

$20

$
$12 $12

$35

$0

Risky – Risky Ambiguous – Risky

?

$12$4

$20

$10

$50 $20

$35

$0 $15

Ambiguous – Ambiguous

?

$0

$35

$15

$20

??

Figure 1. Experimental Design
(A) Subjects made decisions between pairs of gambles, drawn from

the following types: certain, with a known outcome; risky, with two
outcomes with known probabilities; and ambiguous, with two
outcomes with unknown probabilities. Probabilities and reward
values varied across trials, and expected value was roughly
matched between the gambles.

(B) At the beginning of each trial, two gambles were presented and
the subjects indicated their preference by pressing a joystickthe subjects indicated their preference by pressing a joystick
button. A square then appeared around the selected gamble.





wise comparison between  and  , where  +  = 1.

To estimate , we use the multiplicative random utility model, where the expected

utility of the risky option  is given by

() = 1(1)
 + 2(2)



The logit choice probability for choosing , (), is defined by the logistic cdf

Λ[] ≡ exp 

1 + exp 

That is,

() ≡ exp[ln()− ln( )]
(1 + exp [ ln()− ln( )]) 

– see Fosgerau and Bielaire (2009) for a discussion of the multiplicative random

utility model. In our data set, the pairs of risky-certain and risky-risky lotteries,

2 = 2 = 0. Hence the logit choice probability for choosing  as a function of  is

() =
exp[ ln (1)+ ln1− ln (1)− ln 1]

(1 + exp[ ln (1)+ ln1 −  ln (1)− ln 1])


We denote the chosen lotteries as  in each pair of 40 risky-certain and 40 risky-

risky lotteries. The likelihood of the observed risky choices in the 80 pair-wise

comparisons{(   )}=80=1 as a function of  is

−80Y
=1

 ()

The log-likelihood

1

80

=80X
=1

ln  ()

=
1

80

=80X
=1

ln(exp[ ln (

1)+ ln


1− ln (1)− ln 1]

(1 + exp[ ln (

1)+ ln


1 −  ln (


1)− ln 1]))



McFadden has shown that the log-likelihood function with these choice probabil-

ities is globally concave in . Hence the  for ̂ is identified. We estimate ̂ by

numerically maximizing the log-likelihood of the logit choice probabilities.

Our null hypothesis is that economic preferences for risk and ambiguity are inde-

pendent, where  is a measure of the subject’s tolerance for risk and  is a measure of

the subject’s attitude towards ambiguity. The alternative hypothesis is that economic

preferences for risk and ambiguity are correlated. Under the null hypothesis, every

function of  and every function of  are independent. In particular, the  for 

and risky-certain or risky-risky data is independent of the  for  and ambiguous-

certain or ambiguous-ambiguous data, for every fixed value of , e.g., ̂, the estimate

of .
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To estimate , we use the additive random utility model, where subjects evaluate

ambiguous lotteries, using -maxmin expected utility. Given the pair of ambiguous

lotteries  ≡ (1 2) and  ≡ (1 2), the logit choice probability for choosing 
as a function of , for fixed ̂, is

 ( ̂) =
exp{[(1∧2)̂+(1−)(1∨2)̂ ]−[(1∧2)̂+(1−)(1∨2)̂ ]}

[1+exp{[(1∧2)̂+(1−)(1∨2)̂ ]−[(1∧2)̂+(1−)(1∨2)̂ ]}

– see Train (2009) for a discussion of the additive random utility model. We denote

the chosen lotteries as   in each pair of 40 ambiguous-certain and 40 ambiguous-

ambiguous lotteries. The likelihood of the observed ambiguous choices in the 80

pair-wise comparisons {(   )}=80=1 as a function of , for fixed ̂, is

=80Y
=1

  ( ̂)

The log-likelihood

1

80

=80X
=1

ln   ( ̂)

=
1

80

=80X
=1

ln exp{[(1∧2)̂+(1−)(1∨2)̂ ]−[(1∧2)̂+(1−)(1∨2)̂ ]}
[1+exp{[(1∧2)̂+(1−)(1∨2)̂ ]−[(1∧2)̂+(1−)(1∨2)̂ ]}



If ̂ 6= 0, then the log-likelihood function is globally concave in , ̂ is not

identified for subjects where ̂ = 0. That is, if ̂ = 0, then for all ̂ ∈ [0 1] :
 (̂ ̂) = 12. Hence ̂ is indeterminate and the six subjects with indeterminate

̂ “act as if” they flip a fair coin to choose between any pair of ambiguous lotteries.

These 6 subjects were excluded from our analysis. The  for  is identified

for the remaining 24 subjects. We estimate ̂ for each of these 24 subjects with

the 40 ambiguous-certain and the 40 ambiguous-ambiguous lotteries, by numerically

maximizing the log-likelihood of the logit choice probabilities, for fixed ̂.

To estimate the correlation between risk and ambiguity, we consider several speci-

fications. In the five specifications, where we exclude the six subjects with unidentified

̂, the slope coefficient of the regression is not significantly different from 0 at the 0.05

level, indicating linear independence between risk and ambiguity. Hence we cannot

reject the null hypothesis of independence of economic preferences for risk and ambi-

guity. The regression coefficients, regression statistics and confidence intervals are in

the appendix on parametric data analysis. All the statistical and numerical analysis

was done with Matlab. This empirical finding only shows that risk aversion and am-

biguity aversion are not linearly dependent. Hence we test directly for independence

by constructing a 2 × 2 contingency table, where the columns are labeled , for

ambiguity aversion and , for ambiguity seeking,and the rows are labeled , for

risk averse, and  , for risk seeking. Here is the table, where we have omitted the

6 subjects with unidentified ̂:
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 

 5 0

 19 0

We see that the cells in the second column are both zero. Consequently, Prob(|) =
Prob(|) = 1. Hence in our choice experiment it follows from Fisher’s exact test
that risk and ambiguity are independent – see section 4.6 in Lehmann and Romano

(2005).
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Estimation Results 
 

• Beta measures risk-attitude. 
 

o Beta < 1: risk-averse. 
 

o Beta > 1: risk-seeking. 
 

• Alpha measures ambiguity-attitude. 
 

o Alpha < 0.5: ambiguity-seeking. 
 

o Alpha > 0.5: ambiguity-averse.  
 
 

 Subject No.  Beta     Alpha 
 

1       0.8846 risk-averse     0.8031 ambiguity-averse 
 

     2           0  risk-averse          0  ambiguity-seeking 
         indeterminate 
      

3       1.0600     risk-seeking  0.6750 ambiguity-averse 
 

     4       1.6342     risk-seeking  0.8210 ambiguity-averse 
     

5           0  risk-averse          0  ambiguity-seeking 
        indeterminate 
 

     6       1.1975     risk-seeking  0.8007 ambiguity-averse 
 
     7   1.8955     risk-seeking  0.8504 ambiguity-averse 
 
     8       0.4385     risk-averse  1.0000 ambiguity-averse 
 
     9       2.6677     risk-seeking  0.7104 ambiguity-averse 
 
    10       1.2111     risk-seeking  0.7788 ambiguity-averse 
 
    11       2.7591     risk-seeking  0.8493 ambiguity-averse 
 
    12           0  risk-averse          0  ambiguity-seeking 
         indeterminate 
 
    13       2.8378     risk-seeking  0.7460 ambiguity-averse 
 



 Subject No.  Beta     Alpha 
 
    14       1.9467     risk-seeking  0.8322 ambiguity-averse 
  
    15       2.0150     risk-seeking  0.8966 ambiguity-averse 
 
    16       1.5265     risk-seeking  0.7113 ambiguity-averse 
 
    17       2.8376     risk-seeking  0.8056 ambiguity-averse 
 
    18       0.7023     risk-averse  0.8883 ambiguity-averse 
 
    19       2.9604     risk-seeking  0.8521 ambiguity-averse 
 
    20       1.3524     risk-seeking  0.8067 ambiguity-averse 
 
    21       0.4946 risk-averse     1.0000 ambiguity-averse 
    

22           0  risk-averse          0  ambiguity-seeking 
        indeterminate 
 

    23       0.7039     risk-averse  0.9863 ambiguity-averse 
 
    24       1.8134 risk-seeking     0.8421 ambiguity-averse 
 
    25       2.0643 risk-seeking     0.9536 ambiguity-averse 
 
    26       2.3418 risk-seeking     0.8417 ambiguity-averse 
 
    27      1.6675     risk-seeking  0.8341 ambiguity-averse 
 
    28       1.5246     risk-seeking  0.8102 ambiguity-averse 
 
    29           0  risk-averse          0  ambiguity-seeking 
         indeterminate 
 
    30           0  risk-averse          0  ambiguity-seeking 
         indeterminate 
 
 
 
 
 
 
 
 



 
Summary Excluding Subjects with Zero Beta 

 
• 6 subjects excluded because their beta is zero. 

 
• 24 out of remaining 24 individuals are ambiguity-averse. 

 
• Out of 24 ambiguity-averse individuals: 

 
o 5 individuals are risk-averse and ambiguity-averse 

 
o 19 individuals are risk-seeking and ambiguity-averse 



Regression Analysis 
 

 
Scenario I a: Regression Analysis Including Subjects with Zero Beta 

 
LHS: alpha, RHS: constant, beta 

 
Regression Coefficients (constant, beta) 
     

0.3629 
     0.2272 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    0.1849    0.5409 
    0.1196    0.3347 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.4008   18.7285    0.0002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Scenario I b: Regression Analysis Including Subjects with Zero Beta 
 

LHS: beta, RHS: constant, alpha 
 
Regression Coefficients (constant, alpha) 
 
     0.1693 
     1.7644 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
   -0.4593    0.7980 
    0.9293    2.5996 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.4008   18.7285    0.0002 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Scenario II a: Regression Analysis Excluding Subjects with Zero Beta 
 

LHS: alpha, RHS: constant, beta 
 

Regression Coefficients (constant, beta) 
 
     0.9047 
    -0.0399 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    0.8195    0.9898 
   -0.0859    0.0061 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.1281    3.2320    0.0860 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Scenario II b: Regression Analysis Excluding Subjects with Zero Beta 

 
LHS: beta, RHS: constant, alpha 

 
Regression Coefficients (constant, alpha) 
 
     4.3791 
    -3.2127 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    1.2602    7.4980 
   -6.9188    0.4934 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.1281    3.2320    0.0860 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Scenario III a: Regression Analysis of Log-Representation Excluding 
Subjects with Beta = 0 and Alpha = 1 

 
LHS: log(alpha/(1-alpha)), RHS: constant, log(beta) 

 
Regression Coefficients (constant, log(beta)) 
     

1.9250 
    -0.5002 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    1.4139    2.4360 
   -1.2746    0.2743 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.0832    1.8149    0.1930 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Scenario III b: Regression Analysis of Log-Representation Excluding 
Subjects with Beta = 0 and Alpha = 1 

 
LHS: log(beta), RHS: constant, log(alpha/(1-alpha)) 

 
Regression Coefficients (constant, log(alpha/(1-alpha)) 
 
     0.7826 
    -0.1663 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    0.3118    1.2535 
   -0.4239    0.0912 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.0832    1.8149    0.1930 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Scenario IV: Regression Analysis of scenario III without Outliers 
 

• Only regression of log(beta) on constant and log(alpha/(1-alpha)) in 
scenario III a contains outliers. 

• Outliers are determined according to criterion in MATLAB: 
o If zero is outside of residual-specific confidence-interval (95%), 

residual is considered an outlier. 
 

LHS: log(alpha/(1-alpha)), RHS: constant, log(beta) 
 

Regression Coefficients(constant, log(beta)) 
     

1.4643 
     0.0199 
 
95 % Confidence Intervals 
 

• Each row contains the left and right endpoint of the 95% confidence 
interval for the corresponding coefficient. 

• If zero is inside the confidence interval, the coefficient is not significantly 
different from zero. 

 
    1.1658    1.7629 
   -0.4268    0.4667 
 
Regression Statistics (R-squared, F-test, p-value for F-test) 
 

• F-test: Null hypothesis states that both regression coefficients equal zero. 
• Null hypothesis rejected at 95% level if p less than 0.05. 

 
    0.0005    0.0088    0.9263 


