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1. Introduction



Economic applications of the Nash solution:

The bargaining game between the management and the workers, possibly rep-
resented by a union (de Menil, 1971; Hamermesh, 1973);

The employment contracts in search models (Moscarini, 2005; Postel-Vinay
and Robin 2006);

The international cooperation for �scal and trade policies (Chari and Kehoe,
1990);

The negotiations in joint venture operations (Svejnar and Smith, 1984);

The sharing of pro�t in cartels (Harrington, 1991) and oligopoly (Fershtman
and Muller, 1986);

The household behavior (Manser and Brown, 1980; McElroy and Horney, 1981;
Lundberg and Pollak, 1993; Kotliko¤, Shoven and Spivak, 1986).



Is Nash Bargaining empirically relevant?

Consider a game in which two players, 1 and 2, bargain about a pie of size y.

If the players agree on some sharing (�1; �2) with �1 + �2 = y, it is imple-
mented.

The bargaining environment is described by a vector x of n variables.

An agreement is reached if and only if there exists a sharing (�1; �2), with
�1 + �2 = y, such that

U1 (�1; x) � T 1 (y; x) and U2 (�2; x) � T 2 (y; x) :

In that case, the sharing � (�1 = �; �2 = y � �) solves:

max
�

�
U1 (�; x)� T 1 (y; x)

�
�
�
U2 (y � �; x)� T 2 (y; x)

�
:



The Objectives

This raises two questions.

1. Is it possible derive testable restrictions on the bargaining outcomes without
previous knowledge of individual utilities? In other words, what does this
structure imply (if anything) on the function �? On the domain of �?

2. Can the utility players derive from the consumption of either their share of
the pie or their reservation payment be recovered from the sole observation
of the bargaining outcomes?

The econometrician�s prior information will be described by some classes to
which the utility or threat functions are known to belong.

The identi�cation of a cardinal representation of preferences can be renvisaged.



Deterministic versus stochastic models

In deterministic models, the econometrician has access to ideal data: individual
shares are observed as deterministic functions of the variables of the game.

The problem is the counterpart, in a bargaining context, of well known results
in consumer theory.

Economic models are, in general, stochastic because of unobserved heterogene-
ity and measurement errors.

In stochastic models, the econometrician observes a joint distribution of in-
comes and outcomes.



The Main �ndings

We �rst consider the deterministic version of the model and show that:

1. In its most general version, Nash bargaining is not testable: any Pareto
e¢ cient rule can be rationalized as the outcome of a Nash bargaining
process.

2. If some exclusion restrictions on Us and T s are supposed, the Nash model
generates strong, testable restrictions, that take the form of a PDE on the
function �.

3. If further exclusion restrictions on Us and T s are supposed, generically,
both individual utility and threat functions can be cardinally identi�ed.



The Main �ndings (continued)

We then consider a stochastic version of the model:

max
�

�
U1(�; x)� T 1(x) + �1

�
�
�
U2(y � �; x)� T 2(x) + �2

�
an show that:

4. Under the same exclusion restrictions as in (2) and (3), testable restrictions
are generated, and individual utility and threat functions are cardinally
identi�ed.

Note: The approach is di¤erentiable.



2. The Deterministic Model



The framework

Consider a game in which two players, 1 and 2, bargain about a pie of size y.

An agreement is reached if and only if there exists a sharing (�1; �2), with
�1 + �2 = y, such that

Us (�s; x) � T s (y; x) ; s = 1; 2: (1)

In that case, the observed sharing (�1 = �; �2 = y � �) solves:

max
0� �� y

�
U1 (�; x)� T 1 (y; x)

�
�
�
U2 (y � �; x)� T 2 (y; x)

�
: (2)

The set of all functions Us (�s; x) (resp. T
s (y; x)) that are compatible with

the a priori restrictions is denoted by Us (resp. T s).

Let N denote the subset of S on which no agreement is reached, andM the
subset on which an agreement is reached, with S =M[N .



Remarks

1. What we can recover is (at best) a cardinal representation of the functions
under consideration: if we replace (Us; T s) in the program:

max
0� �� y

�
U1 (�; x)� T 1 (y; x)

�
�
�
U2 (y � �; x)� T 2 (y; x)

�
;

with the a¢ ne transforms (�sUs + �s; �sT
s + �s), the solution � is not

modi�ed.

2. The present framework cannot be used to test Pareto optimality. Indeed,
e¢ ciency is automatically imposed.



Proposition 1.

Let � (y; x) be some function de�ned over M.

Then, for any pair of utility functions U1; U2, there exist two threat functions
T 1; T 2 such that the agents�behavior is compatible with Nash bargaining.

Proof.

Given any pair of functions U1; U2, it is possible to de�ne T 1; T 2 as:

T s (y; x) = Us (�s (y; x) ; x) if (y; x) 2M,

T s (y; x) > Us (y; x) if (y; x) 2 N .



Remarks

1. When threat points are unknown, Nash bargaining has no empirical content
(beyond Pareto e¢ ciency at least).

2. The observation of the outcome brings no information on preferences (and
in particular the concavity of the utility functions).

3. These negative results are by no means speci�c to Nash bargaining.



The bargaining structure

We �rst restrict the sets Us of the players�utility functions and the sets T s of
the players�threat functions.

Assumption U.1. For s = 1; 2,

(a) the functions Us (�s; x) are su¢ ciently smooth, strictly increasing and
concave in �s;

(b) there exists a partition x = (x1; x2) such that Us (�s; x) = Us (�s; xs).

Assumption T.1. For s = 1; 2,

(a) the function T s (y; x) is su¢ ciently smooth;

(b) T s (y; x) = T s (xs).

Assumption S.1. For any (y; x) 2 M, the sharing (�1; �2) is interior; i.e.,
�s > 0, with s = 1; 2.



3. Testability: The Deterministic Case



The general agreement case

Assumption S.2. For any (y; x) 2 S, there exists a sharing (�1; �2), with
�s � 0, and �1 + �2 = y, such that Us(�s; x)� T s(y; x) > 0 for s = 1; 2.

The Nash bargaining solution solves:

max
0� �� y

�
U1 (�; x1)� T 1 (x1)

�
�
�
U2 (y � �; x2)� T 2 (x2)

�
:

The �rst order condition is:

R1 (�; x1) = R2 (y � �; x2)

where

Rs(�s; xs) �
@Us(�s; xs)=@�s

Us(�s; xs)� T s(xs)
.



Proposition 2.

Suppose that U.1, T.1, S.1 and S.2 hold.

Then:

0 <
@�

@y
(y; x) < 1:

Moreover, there exist functions (�1; : : : ; �n1) of (�1; x1) and ( 1; : : : ;  n1)
of (�2; x2) such that, for any (y; x) 2M,

 
1� @�

@y
(y; x)

!�1 
@�

@x1i
(y; x)

!
= �i(�; x1);

 
@�

@y
(y; x)

!�1 
@�

@x2j
(y; x)

!
=  j (y � �; x2) :



Proposition 2 (continued).

The functions �i(�; x1) and  j (y � �; x2) satis�es

@�i
@x1i0

+ �i0
@�i
@�1

=
@�i0

@x1i
+ �i

@�i0

@�1
;

@ j

@x2j0
+  j0

@ j

@�2
=

@ j0

@x2j
+  j

@ j0

@�2
;

Conversely, any sharing rule satisfying these conditions can be rationalized as
the Nash bargaining solution of a model satisfying U.1, T.1, S.1 and S.2; that
is, conditions listed above are su¢ cient as well.



Intuition.

1) The threat-point is independent of y.

2) Di¤erentiating the �rst order condition

R1 (�; x1) = R2 (y � �; x2)

gives:

 
@R1

@�1
+
@R2

@�2

! 
1� @�

@y
(y; x)

!
=

@R1

@�1
;

 
@R1

@�1
+
@R2

@�2

!
@�

@x1i
(y; x) = �@R

1

@x1i
:



Intuition (continued).

3) The system of PDE

@R1=@x1i
@R1=@�1

= ��i (�; x1) ;

can be solved with respect to R1 up to a transform. That is: R1 = G( �R1):

4) The cross derivative restrictions that garantee integration.

5) Integration of

@ log(Us (�s; xs)� T s (xs))

@�s
= Rs (�s; xs)

gives:

Us (�s; xs) = Ks(xs) exp
�Z �s
0

Rs(us; xs)dus

�
+ T s (xs) :



Remarks

1. When the information about the game is described by U.1 and T.1, the
Nash bargaining solution can be falsi�ed (in Popper�s terms).

2. Conversely, these conditions are su¢ cient. If they are satis�ed, one can
construct a bargaining model for which the solution coincides with the
sharing rule.

3. Some conditions implies:

@�

@x1i

 
@2�

@x2j@y

@�

@y
� @2�

@y2
@�

@x2j

!

+

 
1� @�

@y

! 
@2�

@x1i@x2j

@�

@y
� @2�

@x1i@y

@�

@x2j

!
= 0.



4. Any sharing function which can be rationalized by the maximization of an
additively separable index such as f1 (�1; x1)+f

2 (�2; x2) will satisfy the
conditions.

5. If a solution satis�es IIA (+PO and CO) then it can be described by the
maximization of F (�1; �2; x1; x2).

6. The set of solutions described by a maximization such as f1 (�1; x1) +
f2 (�2; x2) includes the Egalitarian solution and the Utilitarian solution.
Technically:

fs =

8><>:
�s ((Us � Ts)


 =
) if 
 6= 0

�s log (Us � Ts) if 
 = 0
:



Parametric example 1.

Consider the following speci�cation for the sharing function:

� = y � L
�
a00 + a01x1 + a02x2 + a11x

2
1 + a22x

2
2 + a12x1x2

�
where L(x) = 1=(1 + exp(x)) is the logistic distribution function.

Conditions in Proposition 2 require that a12 = 0:

If this restriction is satis�ed, the �rst order condition is:

G(�1g1(x1)) = G(�2g2(x2));

where

g1 (x1) = exp
�
a00 + a01x1 + a11x

2
1

�
;

g2(x2) = exp
�
�
�
a2x02 + a22x

2
2

��
:



Outside and along the agreement frontier

When (y; x) 2 N , the econometrician can learn next to nothing about the
underlying structure.

The agreement frontierF is de�ned by the points that belong to the intersection
of the closure of the agreement setM and the closure of the non-agreement
set N , that is,

F = cl(M) \ cl (N ) :

If (y; x) 2 F , then each agent is indi¤erent between her share of the pie and
her reservation payment, i.e.,

(y; x) 2 F ) U1 (�; x) = T 1 (x) , U2 (y � �; x) = T 2 (x) :



Proposition 3.

Suppose that U.1 and T.1 hold.

If the agents�behavior (fM;Ng; �) is compatible with Nash bargaining, then
there exists a function �(x), such that y = �(x) i¤ (y; x) 2 F , and
(i) if (y; x) 2M, then y � �(x);

(ii) if (y; x) 2 N , then y � �(x):

Moreover, the function �(x) is additive in the sense that �(x) = �1(x1) +

�2(x2) for some functions �1(x1) and �2(x2).



Proof.

De�nition of the frontier:

U1 (�; x1) = T 1 (x1)) � = �1 (x1)

and

U2 (y � �; x2) = T 2 (x2)) y � � = �2 (x2)

so that

y = �1(x1) + �2(x2) = �(x):



Proposition 4.

Suppose U.1, T.1 and S.1 hold.

If the agents�behavior (fM;Ng; �) is compatible with Nash bargaining, then
for any (y; x) in F ,

@�

@x1i
=

@�=@x1i
1� @�=@y

,
@�

@x2j
= �

@�=@x2j

@�=@y
;

for every i = 1; : : : ; n1 and j = 1; : : : ; n2:

Proof.

�1(x1) = �(y; x1; x2) = �(�1(x1) + �2(x2); x1; x2)

) @�1
@x1i

=
@�

@y

@�1
@x1i

+
@�

@x1i
:



4. Identi�ability: the deterministic case



Proposition 5.

Let �(y; x) be some function that satis�es conditions in Proposition 2.

Then there exists a continuum of di¤erent utility functions U1; U2 and threat
functions T 1; T 2, such that U.1 and T.1 are satis�ed and the agents�behavior
is compatible with Nash bargaining.

Intuition.

The function G is not identi�ed.

In this proposition, utility functions Us and �Us are di¤erent if and only if there
does not exist functions � (xs) > 0 and � (xs) such that

Us = � (xs) �U
s + � (xs) :



Parametric example 2.

Coming back to our numerical example:

� = y � L
�
a00 + a01x1 + a02x2 + a11x

2
1 + a22x

2
2

�
:

Then, the functions Rs are identi�ed up to a transform. For example,

@U1 (�; x1) =@�

U1 (�; x1)� T 1 (x1)
= G (�g1(x1))

where g1 (x1) = exp
�
a00 + a01x1 + a11x

2
1

�
:

If G (x) = x;

U1 (�; x1) = K (x1) exp
�
1
2g1(x1)�

2
�
+ T 1(x1):

If G (x) = x�1;

U1 (�; x1) = K (x1) �
exp�g1(x1) + T 1(x1):



Identifying assumptions: xs�independent utility functions

Assumption U.2. For s = 1; 2, Us(�s; xs) = Us(�s).

Under U.1, U.2 and T.1, the sharing function � (y; x1; x2) solves the problem:

max
0� �� y

�
U1 (�)� T 1 (x1)

�
�
�
U2 (y � �)� T 2 (x2)

�
:

The �rst order condition is

R1 (�1; x1) = R2 (�2; x2) ;

where

Rs (�s; xs) =
@Us (�s) =@�s

Us (�s)� T s (xs)
:



Proposition 6.

Assume Us is not exponential (i.e., Us (�s) is not of the form �e��s + � for
some �; �; �). Then, under U.1, U.2, T.1, S.1 and S.2,

(a) the functions Us and T s are identi�ed up to an a¢ ne, increasing transform;

(b) the sharing function must satisfy additional testable restrictions.



Intuition.

The functions Rs are known to be identi�ed up to a unique transform G, that
is, Rs = G( �Rs), where �Rs is a known function.

From the additional assumption U.2, the functions Rs must be of the form:

G( �Rs (�s; xs)) =
@Us (�s) =@�s

Us (�s)� T s (xs)
;

which determines the function G.

The utility functions can be identi�ed up to an a¢ ne transform: any particular
solution for the utility function �Us must be independent of xs for � �xed.



Parametric example 3.

The logistic-quadratic form is not compatible with U.2.

Indeed,

G(yg1 (x1)) =
@U1 (�1) =@�1

U1 (�1)� T 1 (x1)

where

g1 (x1) = exp
�
a00 + a01x1 + a11x

2
1

�
:

Conclusion: An empirical model of bargaining that is using either the logistic-
quadratic speci�cation must assume (at least implicitly) that individual utilities
in case of an agreement depend on the threat point payments.



Remark

The restrictions here are generally not satis�ed by the family of bargaining so-
lutions that can be described by the maximization of f1 (�1; x1)+f

2 (�2; x2).

One exception: these restrictions hold when fs is given by

fs =

8><>:
�s ((Us � Ts)


 =
) if 
 6= 0

�s log (Us � Ts) if 
 = 0
:

with �1 = �2.



5. Identi�ability: the stochastic case



The bargaining model with unobserved heterogeneity

The model depends on variables �, unobservable to the econometrician.

The unobservables induce a nondegenerate distribution of (m; �) given (y; x).

Suppose that the players always reach an agreement.

Then the agreed sharing function solves:

max
06�6y

�
U1(�)� T 1(x1) + �1

�
�
�
U2(y � �)� T 2(x2) + �2

�
:



More assumptions

Assumption D.1: (�1; �2) ? (x1; x2) j (y).

Assumption D.2: The conditional distribution F�1;�2j y of (�1; �2) given (y)
is continuous and has full support on R2+.



Normalization conditions.

(i) for known �0s and k
s; Us(�0s) = ks;

(ii) for known x0s and c
s; T s(x0s) = cs;

(iii) for known ��s and K
s > 0; @Us(��s)=@�s = Ks:

where the values �0s; x
0
s and the functions k

s; cs and Ks can be arbitrarily
chosen.

(iv) E[�sj y] = 0:



Proposition 7.

Suppose U.1, U.2, T.1, D.1, and D.2 hold. Suppose that the normalization
conditions (i)-(iv) hold.

Then, (U1; U2; T 1; T 2) are identi�ed from F�j y;x.



Intuition.

Start from:

@U1 (�) =@�

U1 (�)� T 1 (x1) + "1
=

@U2 (y � �) =@�2
U2 (y � �)� T 2 (x2) + "2

where ("1; "2) is independent of (x1; x2; y).

This gives:

"1
@U2 (y � �)

@�
� "2

@U1 (�)

@�
=

@U1 (�)

@�

h
U2 (y � �)� T 2 (x2)

i
�@U

2 (y � �)

@�

h
U1 (�)� T 1 (x1)

i



Intuition (continued).

Therefore if � (�; y; x1; x2) is the conditional cdf:

� (r; y; x1; x2) = Pr (� � r j y; x1; x2)

= Pr (E(y; �) � S(x1; x2))

where

E(y; �) = "1
@U2 (y � �)

@�
� "2

@U1 (�)

@�
;

S(x1; x2) =
@U1 (r)

@r

h
U2 (y � r)� T 2 (x2)

i

�@U
2 (y � r)

@r

h
U1 (r)� T 1 (x1)

i



Intuition (continued).

It follows that:

@�(r; y; x1; x2) =@x
k
1

@� (r; y; x1; x2) =@x
s
2

=
U 02 (y � r)

U 01 (r)
@T 1 (x1) =@x

k
1

@T 2 (x2) =@x
s
2

therefore

log

 
@�(r; y; x1; x2) =@x

k
1

@�(r; y; x1; x2) =@x
s
2

!
= logU 02 (y � r)� logU 01 (r)

+ log
@T 1 (x1)

@xk1
� log @T

2 (x2)

@xs2



6. Conclusion



The methodology developed in this paper can be used in family economics.

It opens new and interesting directions for future research in experimental eco-
nomics.

A cardinal representation of each agent�s utility function can be identi�ed from

max
�

�
U1 (�)� T 1 (x1)

�
�
�
U2 (y � �)� T 2 (x2)

�
:

Identi�cation does not require any form of uncertainty.

Suggestion: One could �rst face individuals of a given sample with menus of
lotteries, in order to assess their level of risk aversion from their choices; then
match the agents by pairs and let them play a two-sided bargaining problem
to recover their bargaining-relevant utility functions. A comparison is then
possible.


