A Three-Stage Experimental Test of Revealed Preference

Peter J. Hammond, with Stefan Traub (Bremen)

26th November 2010

Outline

- Introduction
 - Parametric Approach
 - Non-Parametric Approach
- 2 GARP
 - Definition
 - Two-Stage Test
 - 3 Stage Test
- 3 Experiment
 - Choice Problems
 - Three Stages
- 4 Statistical Results
 - Choice "Consistency"
 - Statistical Results

Parametric Estimates with Aggregate Data

"Klein/Rubin" utility function; actually invented by Gorman (unpublished work as an undergraduate in Dublin) and then Samuelson.

Undergraduate exercise: derive the implied demand functions and show they satisfy the linear expenditure system (LES).

Stone/Geary provided econometric estimates of the LES, based on UK aggregate data.

Parametric Estimates with Aggregate Data

"Klein/Rubin" utility function; actually invented by Gorman (unpublished work as an undergraduate in Dublin) and then Samuelson.

Undergraduate exercise: derive the implied demand functions and show they satisfy the linear expenditure system (LES).

Stone/Geary provided econometric estimates of the LES, based on UK aggregate data.

Introduction O O O O O O O O O O O O O O O O O O O	GARP 0000000	Experiment	Statistical Results
Parametric Approach			

Tests of Revealed Preference

Problem: these estimates built in restrictions implied by theory. But if one tested whether these restrictions should be imposed a slightly more general form — e.g., not necessarily assuming homogeneity, let alone Slutsky symmetry or negative definiteness, they were usually massively rejected.

Also for more general functional forms such as CES, or transcendental logarithmic. Encouraging Diewert to propose locally flexible functional forms.

Introduction 0000000	GARP 0000000	Experiment	Statistical Results
Parametric Approach			

Tests of Revealed Preference

Problem: these estimates built in restrictions implied by theory. But if one tested whether these restrictions should be imposed a slightly more general form — e.g., not necessarily assuming homogeneity, let alone Slutsky symmetry or negative definiteness, they were usually massively rejected.

Also for more general functional forms such as CES, or transcendental logarithmic. Encouraging Diewert to propose locally flexible functional forms.

Introduction 0000000	GARP 0000000	Experiment	Statistical Results
New Demonstrie Assessed			
Non-Parametric Approach			

Afriat's introduced an applicable theory of revealed preference, along with an efficiency test for discrete data.

Varian (1982) explained how,

despite what parametric methods had shown,

there was a postwar US representative utility-maximizing consumer who had spent some 30 years walking up an income expansion path in an appropriate multi-dimensional commodity space!

So axioms of revealed preference obviously satisfied.

Bronars (1987) asked whether Afriat's approach to testing GARP, when applied to aggregate data like Varian's, was statistically powerful against the alternative (suggested by Becker, 1962) of a uniform distribution over the budget simplex.

Introduction 0000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Non-Parametric Approach			

Afriat's introduced an applicable theory of revealed preference, along with an efficiency test for discrete data.

Varian (1982) explained how,

despite what parametric methods had shown,

there was a postwar US representative utility-maximizing consumer who had spent some 30 years walking up an income expansion path in an appropriate multi-dimensional commodity space!

So axioms of revealed preference obviously satisfied.

Bronars (1987) asked whether Afriat's approach to testing GARP, when applied to aggregate data like Varian's, was statistically powerful against the alternative (suggested by Becker, 1962) of a uniform distribution over the budget simplex.

Introduction 0000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Non-Parametric Approach			

Afriat's introduced an applicable theory of revealed preference, along with an efficiency test for discrete data.

Varian (1982) explained how,

despite what parametric methods had shown,

there was a postwar US representative utility-maximizing consumer who had spent some 30 years walking up an income expansion path in an appropriate multi-dimensional commodity space!

So axioms of revealed preference obviously satisfied.

Bronars (1987) asked whether Afriat's approach to testing GARP, when applied to aggregate data like Varian's, was statistically powerful against the alternative (suggested by Becker, 1962) of a uniform distribution over the budget simplex.

Introduction 0000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Non-Parametric Approach			

Afriat's introduced an applicable theory of revealed preference, along with an efficiency test for discrete data.

Varian (1982) explained how,

despite what parametric methods had shown,

there was a postwar US representative utility-maximizing consumer who had spent some 30 years walking up an income expansion path in an appropriate multi-dimensional commodity space!

So axioms of revealed preference obviously satisfied.

Bronars (1987) asked whether Afriat's approach to testing GARP, when applied to aggregate data like Varian's, was statistically powerful against the alternative (suggested by Becker, 1962) of a uniform distribution over the budget simplex.

Introduction	GARP	Experiment	Statistical Results
0000000	0000000	000000000000	
Non-Parametric Approach			

Experimental Tests

Sippel (EJ, 1997) pioneered testing GARP with controlled laboratory experiments. Advantages include:

- price and income changes needed to test the axioms are easy to implement;
- changes of taste can largely be ruled out;
- errors in observation largely avoided.

Depending on the experimental design, including the subject population and the statistical test, past experiments lead to estimates of the proportion of subjects whose demands satisfy GARP which range widely from below 10% to almost 100%.

Introduction	GARP	Experiment	Statistical Results
0000000	0000000	000000000000	
Non-Parametric Approach			

Experimental Tests

Sippel (EJ, 1997) pioneered testing GARP with controlled laboratory experiments. Advantages include:

- price and income changes needed to test the axioms are easy to implement;
- changes of taste can largely be ruled out;
- errors in observation largely avoided.

Depending on the experimental design, including the subject population and the statistical test, past experiments lead to estimates of the proportion of subjects whose demands satisfy GARP which range widely from below 10% to almost 100%.

Introduction	GARP	Experiment	Statistical Results
0000000	0000000	000000000000	
Non-Parametric Approach			

Experimental Tests

Sippel (EJ, 1997) pioneered testing GARP with controlled laboratory experiments. Advantages include:

- price and income changes needed to test the axioms are easy to implement;
- changes of taste can largely be ruled out;
- errors in observation largely avoided.

Depending on the experimental design, including the subject population and the statistical test, past experiments lead to estimates of the proportion of subjects whose demands satisfy GARP which range widely from below 10% to almost 100%.

What is the simplest case?

How about two goods and two observations?

Suppose a consumer chooses bundle $\mathbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\mathbf{p}^1 \in \mathbb{R}^2$.

By definition x^1 is revealed preferred to any x^2 satisfying $p^1x^2 < p^1x^1$.

But suppose nevertheless that the same consumer, when the price vector is \mathbf{p}^2 , chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1$.

This would violate GARP, and the Afriat efficiency index is the ratio ${f p^1 x^2}/{f p^1 x^1} < 1$

What is the simplest case? How about two goods and two observations?

Suppose a consumer chooses bundle $\mathbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\mathbf{p}^1 \in \mathbb{R}^2$.

By definition **x**¹ is revealed preferred to any **x**² satisfying **p**¹**x**² < **p**¹**x**¹.

But suppose nevertheless that the same consumer, when the price vector is \mathbf{p}^2 , chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1$.

This would violate GARP, and the ${\sf Afriat}$ efficiency index is the ratio ${\sf p}^1{\sf x}^2/{\sf p}^1{\sf x}^1<1$

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Non-Parametric Approach			

What is the simplest case? How about two goods and two observations?

Suppose a consumer chooses bundle $\textbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\textbf{p}^1 \in \mathbb{R}^2.$

By definition x^1 is revealed preferred to any x^2 satisfying $p^1x^2 < p^1x^1$.

But suppose nevertheless that the same consumer, when the price vector is \mathbf{p}^2 , chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1$.

This would violate GARP, and the ${\sf Afriat}$ efficiency index is the ratio ${\sf p}^1{\sf x}^2/{\sf p}^1{\sf x}^1<1$

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Non-Parametric Approach			

What is the simplest case? How about two goods and two observations?

Suppose a consumer chooses bundle $\mathbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\mathbf{p}^1 \in \mathbb{R}^2$.

By definition \mathbf{x}^1 is revealed preferred to any \mathbf{x}^2 satisfying $\mathbf{p}^1 \mathbf{x}^2 < \mathbf{p}^1 \mathbf{x}^1$.

But suppose nevertheless that the same consumer, when the price vector is \mathbf{p}^2 , chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1$.

This would violate GARP, and the *Afriat efficiency inde*x is the ratio **p¹x²/p¹x¹ < 1**.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Non-Parametric Approach			

What is the simplest case? How about two goods and two observations?

Suppose a consumer chooses bundle $\mathbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\mathbf{p}^1 \in \mathbb{R}^2$.

By definition \mathbf{x}^1 is revealed preferred to any \mathbf{x}^2 satisfying $\mathbf{p}^1 \mathbf{x}^2 < \mathbf{p}^1 \mathbf{x}^1$.

But suppose nevertheless that the same consumer, when the price vector is $\mathbf{p}^2,$ chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1.$

This would violate GARP, and the Afriat efficiency index is the ratio ${f p}^1{f x}^2/{f p}^1{f x}^1<1$

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Non-Parametric Approach			

What is the simplest case? How about two goods and two observations?

Suppose a consumer chooses bundle $\textbf{x}^1 \in \mathbb{R}^2$ when the price vector is $\textbf{p}^1 \in \mathbb{R}^2.$

By definition \mathbf{x}^1 is revealed preferred to any \mathbf{x}^2 satisfying $\mathbf{p}^1 \mathbf{x}^2 < \mathbf{p}^1 \mathbf{x}^1$.

But suppose nevertheless that the same consumer, when the price vector is $\mathbf{p}^2,$ chooses the bundle \mathbf{x}^2 where $\mathbf{p}^2\mathbf{x}^2 > \mathbf{p}^2\mathbf{x}^1.$

This would violate GARP, and the Afriat efficiency index is the ratio $\mathbf{p}^1 \mathbf{x}^2 / \mathbf{p}^1 \mathbf{x}^1 < 1$.

Introduction	GARP	Experiment	Statistical Results
0000000	0000000	0000000000000	
Non-Parametric Approach			

Specific Example

Consider a budget of \$100, along with two price vectors $\mathbf{p}^1 = (1.25, 1)$ and $\mathbf{p}^2 = (1, 1.25)$.

Suppose the bundle $\mathbf{x}^1 = (x_A^1, x_B^1) = (64, 20)$ is chosen at prices \mathbf{p}^1 — or indeed any other bundle

on the line segment joining the end point Q to the intersection point $P = (44\frac{4}{9}, 44\frac{4}{9}) \approx (44.4, 44.4)$.

At prices \mathbf{p}^2 the supporting set of bundles satisfying GARP consists of the line segment joining *P* to the end point Q' = (100, 0).

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Non-Parametric Approach			

Specific Example

Workshop on Revealed Preference, Paris Dauphine, 26 November 2010

Limited Power of Afriat's Approach

Assuming a uniform distribution along this second budget line, the probability is $\frac{5}{9}\approx 55.6\%$ of satisfying GARP.

Allowing an Afriat efficiency index of 0.9, however, which is equivalent to throwing away \$10 at prices \mathbf{p}^2 , moves the intersection down to $P' = (22\frac{2}{9}, 62\frac{2}{9}) \approx (22.2, 62.2)$.

The chance that random choice will be classified as rational rises to $\frac{56}{81}\approx 69.1\%.$

Introduction	GARP	Experiment	Statistical Results
00000000	●000000	0000000000000	
Definition			

Revealed Preference

Revealed Preference, review by Hal R. Varian (2005) prepared for *Samuelsonian Economics and the 21st Century*.

Given some vectors of prices and chosen bundles (p^t, x^t) for t = 1, ..., T, we say x^t is directly revealed preferred to a bundle x (written $x^t R_D x$) if $p^t x^t \ge p^t x$.

We say x^t is revealed preferred to x (written $x^t R x$) if there is some sequence r, s, t, \ldots, u, v such that

 $p^r x^r \ge p^r x^s, \ p^s x^s \ge p^s x^t, \dots, p^u x^u \ge p^u x^v.$

In this case, we say the relation R is the transitive closure of the relation R_D .

Introduction 00000000	GARP • 000000	Experiment 0000000000000	Statistical Results
Definition			

Revealed Preference

Revealed Preference, review by Hal R. Varian (2005) prepared for *Samuelsonian Economics and the 21st Century*.

Given some vectors of prices and chosen bundles (p^t, x^t) for t = 1, ..., T, we say x^t is directly revealed preferred to a bundle x (written $x^t R_D x$) if $p^t x^t \ge p^t x$.

We say x^t is revealed preferred to x (written $x^t R x$) if there is some sequence r, s, t, ..., u, v such that

$$p^r x^r \ge p^r x^s, \ p^s x^s \ge p^s x^t, \ldots, p^u x^u \ge p^u x^v.$$

In this case, we say the relation R is the transitive closure of the relation R_D .

Introduction	GARP	Experiment	Statistical Results
00000000	000000	0000000000000	
Definition			

Generalized Axiom of Revealed Preference

The data (p^t, x^t) satisfy the Generalized Axiom of Revealed Preference (GARP) if $x^t R x^s$ implies $p^s x^s \le p^s x^t$.

GARP ... is equivalent to what Afriat called "cyclical consistency."

The only difference between GARP and SARP is that the strong inequality in SARP becomes a weak inequality in GARP.

This allows for multivalued demand functions and "flat" indifference curves, which turns out to be important in empirical work.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Definition			

Supporting Set

Consider any list $s^n = (\mathbf{p}^i, \mathbf{x}^i)_{i=1}^n$ of *n* pairs of price and quantity vectors that satisfy both GARP and the normalization $\mathbf{p}^i \mathbf{x}^i = 1$ (i = 1, ..., n).

Let \mathbf{p}^{n+1} be any previously unobserved price vector.

Then Varian (1982, 2006) defines the supporting set $S(\mathbf{p}^{n+1}; s^n)$ of consumption bundles \mathbf{x}^{n+1} as those for which the extended sequence $(\mathbf{p}^i, \mathbf{x}^i)_{i=1}^{n+1}$ also satisfies both GARP and the normalization $\mathbf{p}^i \mathbf{x}^i = 1$ (i = 1, ..., n+1).

As Varian (1982) notes, the supporting set describes "what choice a consumer will make if his choice is to be consistent with the preferences revealed by his previous behavior" (p. 957). Workshop on Revealed Preference, Paris Dauphine, 26 November 2010

13/41

Introduction	GARP	Experiment	Statistical Results
0000000	000000	0000000000000	
Two-Stage Test			

When teaching intermediate microeconomics, we usually explain the revealed preference axiom in a two-stage process.

First suppose a consumer chooses a (two-dimensional) commodity bundle **x**¹ at the price vector **p**¹.

Second, consider the consumer's demands when faced with a new price vector \mathbf{p}^2 and a new budget line $\mathbf{p}^2 \mathbf{x} = \mathbf{p}^2 \mathbf{x}^1$ that passes through the originally chosen bundle \mathbf{x}^1 .

The usual revealed preference axiom implies that the consumer's new demand x^2 should satisfy $p^1x^2 > p^1x^1$.

But GARP allows $\mathbf{p}^1 \mathbf{x}^2 = \mathbf{p}^1 \mathbf{x}^1$.

Introduction	GARP	Experiment	Statistical Results
00000000	000000	0000000000000	
Two-Stage Test			

When teaching intermediate microeconomics, we usually explain the revealed preference axiom in a two-stage process.

First suppose a consumer chooses a (two-dimensional) commodity bundle \boldsymbol{x}^1 at the price vector $\boldsymbol{p}^1.$

Second, consider the consumer's demands when faced with a new price vector \mathbf{p}^2 and a new budget line $\mathbf{p}^2 \mathbf{x} = \mathbf{p}^2 \mathbf{x}^1$ that passes through the originally chosen bundle \mathbf{x}^1 .

The usual revealed preference axiom implies that the consumer's new demand \mathbf{x}^2 should satisfy $\mathbf{p}^1 \mathbf{x}^2 > \mathbf{p}^1 \mathbf{x}^1$.

But GARP allows $\mathbf{p}^1 \mathbf{x}^2 = \mathbf{p}^1 \mathbf{x}^1$.

Introduction	GARP	Experiment	Statistical Results
00000000	000000	0000000000000	
Two-Stage Test			

When teaching intermediate microeconomics, we usually explain the revealed preference axiom in a two-stage process.

First suppose a consumer chooses a (two-dimensional) commodity bundle \boldsymbol{x}^1 at the price vector $\boldsymbol{p}^1.$

Second, consider the consumer's demands when faced with a new price vector ${\bf p}^2$ and a new budget line ${\bf p}^2{\bf x}={\bf p}^2{\bf x}^1$ that passes through the originally chosen bundle ${\bf x}^1.$

The usual revealed preference axiom implies that the consumer's new demand x^2 should satisfy $p^1x^2 > p^1x^1$.

But GARP allows $\mathbf{p}^1 \mathbf{x}^2 = \mathbf{p}^1 \mathbf{x}^1$.

Introduction	GARP	Experiment	Statistical Results
0000000	000000	000000000000	
Two-Stage Test			

When teaching intermediate microeconomics, we usually explain the revealed preference axiom in a two-stage process.

First suppose a consumer chooses a (two-dimensional) commodity bundle \boldsymbol{x}^1 at the price vector $\boldsymbol{p}^1.$

Second, consider the consumer's demands when faced with a new price vector \mathbf{p}^2 and a new budget line $\mathbf{p}^2 \mathbf{x} = \mathbf{p}^2 \mathbf{x}^1$ that passes through the originally chosen bundle \mathbf{x}^1 .

The usual revealed preference axiom implies that the consumer's new demand x^2 should satisfy $p^1x^2>p^1x^1.$

But GARP allows $\mathbf{p}^1 \mathbf{x}^2 = \mathbf{p}^1 \mathbf{x}^1$.

Introduction	GARP	Experiment	Statistical Results
00000000	000000	0000000000000	
Two-Stage Test			

When teaching intermediate microeconomics, we usually explain the revealed preference axiom in a two-stage process.

First suppose a consumer chooses a (two-dimensional) commodity bundle x^1 at the price vector p^1 .

Second, consider the consumer's demands when faced with a new price vector \mathbf{p}^2 and a new budget line $\mathbf{p}^2 \mathbf{x} = \mathbf{p}^2 \mathbf{x}^1$ that passes through the originally chosen bundle \mathbf{x}^1 .

The usual revealed preference axiom implies that the consumer's new demand \textbf{x}^2 should satisfy $\textbf{p}^1\textbf{x}^2 > \textbf{p}^1\textbf{x}^1.$

But GARP allows $\mathbf{p}^1 \mathbf{x}^2 = \mathbf{p}^1 \mathbf{x}^1$.

Introduction	GARP	Experiment	Statistical Results
0000000	○○○ ○●○ ○	000000000000	
Two-Stage Test			

Illustration

Workshop on Revealed Preference, Paris Dauphine, 26 November 2010

15/41

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Two-Stage Test			

Illustration

Thus GARP implies that x^2 should lie in the line segment *PX*.

Under the null hypothesis of uniformly random choice over the budget line segment PQ, the probability of satisfying GARP is PX/PQ.

This is somewhat over 0.5 in the diagram.

Introduction 00000000	GARP ○○○○○○●	Experiment 0000000000000	Statistical Results
3 Stage Test			

17/41

Introduction 00000000	GARP 0000000	Experiment •0000000000000	Statistical Results
Choice Problems			

Typical Decision Problem

Choi, S., Fisman, R., Gale, D., and Kariv, S. (2007a, b)

- "Revealing Preferences Graphically: An Old Method Gets a New Tool Kit" American Economic Review 97, 153–158.
- "Consistency and Heterogeneity of Individual Behavior under Uncertainty", *American Economic Review* 97, 1858–1876.

As in their work, in each of our decision problems there were two states of the nature $s = \{A, B\}$ and two associated Arrow securities.

Each yielded a payoff of one "token" of experimental currency in one state and nothing in the other.

Introduction 00000000	GARP 0000000	Experiment •0000000000000	Statistical Results
Choice Problems			

Typical Decision Problem

Choi, S., Fisman, R., Gale, D., and Kariv, S. (2007a, b)

- "Revealing Preferences Graphically: An Old Method Gets a New Tool Kit" American Economic Review 97, 153–158.
- "Consistency and Heterogeneity of Individual Behavior under Uncertainty", American Economic Review 97, 1858–1876.

As in their work, in each of our decision problems there were two states of the nature $s = \{A, B\}$ and two associated Arrow securities.

Each yielded a payoff of one "token" of experimental currency in one state and nothing in the other.
Introduction 00000000	GARP 0000000	Experiment •0000000000000	Statistical Results
Choice Problems			

Typical Decision Problem

Choi, S., Fisman, R., Gale, D., and Kariv, S. (2007a, b)

- "Revealing Preferences Graphically: An Old Method Gets a New Tool Kit" American Economic Review 97, 153–158.
- "Consistency and Heterogeneity of Individual Behavior under Uncertainty", American Economic Review 97, 1858–1876.

As in their work, in each of our decision problems there were two states of the nature $s = \{A, B\}$ and two associated Arrow securities.

Each yielded a payoff of one "token" of experimental currency in one state and nothing in the other.

Random Lottery Incentive System

Following the usual random lottery incentive system, at the end of the experiment one decision problem was selected at random.

Each token won in that decision problem was converted into \$0.20 of UK currency.

In each decision problem, subjects had to split an initial endowment of 100 tokens between the two Arrow securities.

Random Lottery Incentive System

Following the usual random lottery incentive system, at the end of the experiment one decision problem was selected at random.

Each token won in that decision problem was converted into \$0.20 of UK currency.

In each decision problem, subjects had to split an initial endowment of 100 tokens between the two Arrow securities.

Random Lottery Incentive System

Following the usual random lottery incentive system, at the end of the experiment one decision problem was selected at random.

Each token won in that decision problem was converted into \$0.20 of UK currency.

In each decision problem, subjects had to split an initial endowment of 100 tokens between the two Arrow securities.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	00000000000000	
Choice Problems			

Theoretical budget constraint $p_A x_A + p_B x_B = 100$, where p_s denotes the price and x_s the demand for Arrow security *s*.

In practice, prices were rounded off to one decimal place, and subjects could only choose nonnegative integer amounts of each security.

In addition to the budget constraint $p_A x_A + p_B x_B \le 100$, subjects were restricted to pairs (x_A, x_B) of nonnegative integers immediately below the budget line

Specifically, we allowed any nonnegative integer allocation satisfying

$100 - \max\{p_A, p_B\} < p_A x_A + p_B x_B \le 100.$

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Choice Problems			

Theoretical budget constraint $p_A x_A + p_B x_B = 100$, where p_s denotes the price and x_s the demand for Arrow security *s*.

In practice, prices were rounded off to one decimal place, and subjects could only choose nonnegative integer amounts of each security.

In addition to the budget constraint $p_A x_A + p_B x_B \le 100$, subjects were restricted to pairs (x_A, x_B) of nonnegative integers immediately below the budget line.

Specifically, we allowed any nonnegative integer allocation satisfying

 $100 - \max\{p_A, p_B\} < p_A x_A + p_B x_B \le 100.$

Introduction 00000000	GARP 0000000	Experiment 00000000000000	Statistical Results
Choice Problems			

Theoretical budget constraint $p_A x_A + p_B x_B = 100$, where p_s denotes the price and x_s the demand for Arrow security *s*.

In practice, prices were rounded off to one decimal place, and subjects could only choose nonnegative integer amounts of each security.

In addition to the budget constraint $p_A x_A + p_B x_B \le 100$, subjects were restricted to pairs (x_A, x_B) of nonnegative integers immediately below the budget line.

Specifically, we allowed any nonnegative integer allocation satisfying

 $100 - \max\{p_A, p_B\} < p_A x_A + p_B x_B \le 100.$

Introduction 00000000	GARP 0000000	Experiment 00000000000000	Statistical Results
Choice Problems			
Choice Froblems			

Theoretical budget constraint $p_A x_A + p_B x_B = 100$, where p_s denotes the price and x_s the demand for Arrow security *s*.

In practice, prices were rounded off to one decimal place, and subjects could only choose nonnegative integer amounts of each security.

In addition to the budget constraint $p_A x_A + p_B x_B \le 100$, subjects were restricted to pairs (x_A, x_B) of nonnegative integers immediately below the budget line.

Specifically, we allowed any nonnegative integer allocation satisfying

$$100 - \max\{p_A, p_B\} < p_A x_A + p_B x_B \le 100.$$

GARP 0000000 Experiment

Statistical Results

Choice Problems

Example Screen

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Choice Problems			

Decision Process

As each new decision problem appeared, the mouse pointer became visible at its default position in the upper right-hand corner of the screen.

While the mouse pointer was close to a feasible allocation, that allocation was indicated by two numbers and by associated reference lines marked in red.

Subjects could also "fix" and later "release" an allocation by clicking the left mouse button.

Once a portfolio was fixed, even if the mouse pointer was moved, the numbers and reference lines turned green and stayed visible on the screen until released.

To choose this portfolio and proceed to the next decision problem, a subject could simply click the OK button.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	00000€00000000	
Choice Problems			

Safe Portfolio

Introduction 00000000	GARP 0000000	Experiment 000000●0000000	Statistical Results
Choice Problems			

Safe Portfolio

The figure illustrates a scenario where $p_A = 1.5$, $p_B = 1$, and both states are equally likely.

The solid line represents the budget constraint with slope $-p_B/p_A = -1.5$.

The dashed 45°-line marks all portfolios for which $x_A = x_B$.

It intersects the budget line at the indicated safe portfolio, where $x_A = x_B = 40$.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000€000000	
Choice Problems			

Stochastically Dominated Choices

The second dashed line is the graph of the expected value

$$\mathbb{E}V(x_B) = \pi x_A + (1-\pi)x_B = \frac{\pi}{p_A}(100 - p_B x_B) + (1-\pi)x_B$$

of each portfolio as a function of x_B , as one moves along the budget line.

Its slope in the figure is 1/6.

Hence, portfolios to the left of the safe portfolio are stochastically dominated.

Each subject faced 16 rounds of successive grouped choice problems in up to three stages.

At each first stage, the budget constraint was $\mathbf{p}^1 \mathbf{x} = 100$, where $\mathbf{p}^1 = (p_A^1, p_B^1)$ and $\mathbf{x} = (x_A, x_B)$.

The price vector \mathbf{p}^1 was taken from the eight-point set

$\{(1, 1.5), (2, 1), (1, 2.5), (3, 1), (1.5, 2), (2.5, 1.5), (3, 1.5), (2, 3)\}$

of price vectors in \mathbb{R}^2 .

Furthermore, a pseudo-random number generator would select state A with probability π either 0.5 or 0.67.

These 16 first-stage problems occurred in random order.

Each subject faced 16 rounds of successive grouped choice problems in up to three stages.

At each first stage, the budget constraint was $\mathbf{p}^1 \mathbf{x} = 100$, where $\mathbf{p}^1 = (p_A^1, p_B^1)$ and $\mathbf{x} = (x_A, x_B)$.

The price vector ${f p}^1$ was taken from the eight-point set

 $\{(1, 1.5), (2, 1), (1, 2.5), (3, 1), (1.5, 2), (2.5, 1.5), (3, 1.5), (2, 3)\}$

of price vectors in \mathbb{R}^2 .

Furthermore, a pseudo-random number generator would select state A with probability π either 0.5 or 0.67.

These 16 first-stage problems occurred in random order.

Each subject faced 16 rounds of successive grouped choice problems in up to three stages.

At each first stage, the budget constraint was $\mathbf{p}^1 \mathbf{x} = 100$, where $\mathbf{p}^1 = (p_A^1, p_B^1)$ and $\mathbf{x} = (x_A, x_B)$.

The price vector \boldsymbol{p}^1 was taken from the eight-point set

 $\{(1,1.5),(2,1),(1,2.5),(3,1),(1.5,2),(2.5,1.5),(3,1.5),(2,3)\}$

of price vectors in $\mathbb{R}^2.$

Furthermore, a pseudo-random number generator would select state A with probability π either 0.5 or 0.67.

These 16 first-stage problems occurred in random order.

Each subject faced 16 rounds of successive grouped choice problems in up to three stages.

At each first stage, the budget constraint was $\mathbf{p}^1 \mathbf{x} = 100$, where $\mathbf{p}^1 = (p_A^1, p_B^1)$ and $\mathbf{x} = (x_A, x_B)$.

The price vector \boldsymbol{p}^1 was taken from the eight-point set

 $\{(1, 1.5), (2, 1), (1, 2.5), (3, 1), (1.5, 2), (2.5, 1.5), (3, 1.5), (2, 3)\}$

of price vectors in \mathbb{R}^2 .

Furthermore, a pseudo-random number generator would select state A with probability π either 0.5 or 0.67.

These 16 first-stage problems occurred in random order.

Second Stage

Each subject's first-stage choice was used to construct the second-stage budget line $\mathbf{p}^2 \mathbf{x} = 100$.

This was determined in principle by:

- interchanging the two components of the first-stage price vector p¹;
- e replacing the new higher component with one chosen at random.

Specifically, in case $p_B^1 < p_A^1$, then p_B^2 was chosen at random from a uniform distribution on the closed interval $[100/x_B^1, 200/x_B^1]$, then rounding the result to the first decimal place.

Second Stage

Each subject's first-stage choice was used to construct the second-stage budget line ${\bf p}^2{\bf x}=100.$

This was determined in principle by:

- interchanging the two components of the first-stage price vector p¹;
- e replacing the new higher component with one chosen at random.

Specifically, in case $p_B^1 < p_A^1$, then p_B^2 was chosen at random from a uniform distribution on the closed interval $[100/x_B^1, 200/x_B^1]$, then rounding the result to the first decimal place.

In several cases, however, subjects chose dominated portfolios close to the extreme where the whole budget is allocated to the more costly security!

In these cases the budget line would be very steep (or flat).

Our software did not allow the subject beyond the first stage in case the second-stage choice problem would have involved a price ratio greater than 10 (or smaller than 0.1).

In several cases, however, subjects chose dominated portfolios close to the extreme where the whole budget is allocated to the more costly security!

In these cases the budget line would be very steep (or flat).

Our software did not allow the subject beyond the first stage in case the second-stage choice problem would have involved a price ratio greater than 10 (or smaller than 0.1).

In several cases, however, subjects chose dominated portfolios close to the extreme where the whole budget is allocated to the more costly security!

In these cases the budget line would be very steep (or flat).

Our software did not allow the subject beyond the first stage in case the second-stage choice problem would have involved a price ratio greater than 10 (or smaller than 0.1).

In several cases, however, subjects chose dominated portfolios close to the extreme where the whole budget is allocated to the more costly security!

In these cases the budget line would be very steep (or flat).

Our software did not allow the subject beyond the first stage in case the second-stage choice problem would have involved a price ratio greater than 10 (or smaller than 0.1).

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

Third Stage

If a subject's second-stage choice violated the first-stage budget constraint, the third-stage budget constraint was constructed by first taking the unique line passing through the first and second-stage choices, then rounding both prices to one decimal place.

Otherwise, the third stage was omitted and, unless all 16 rounds had already been completed, proceeded directly to the next round.

Obviously the supporting set consists of the line segment joining the first and second-stage portfolios.

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

Third Stage

If a subject's second-stage choice violated the first-stage budget constraint, the third-stage budget constraint was constructed by first taking the unique line passing through the first and second-stage choices, then rounding both prices to one decimal place.

Otherwise, the third stage was omitted and, unless all 16 rounds had already been completed, proceeded directly to the next round.

Obviously the supporting set consists of the line segment joining the first and second-stage portfolios.

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

Third Stage

If a subject's second-stage choice violated the first-stage budget constraint, the third-stage budget constraint was constructed by first taking the unique line passing through the first and second-stage choices, then rounding both prices to one decimal place.

Otherwise, the third stage was omitted and, unless all 16 rounds had already been completed, proceeded directly to the next round.

Obviously the supporting set consists of the line segment joining the first and second-stage portfolios.

The experiment was conducted at the University of Warwick on 20th May, 2008.

To avoid "expert" bias, the subjects were 41 non-economics undergraduate — 26 male and 15 female students who had responded to our invitation in time.

Everyone attending and completing the experiment was given \$5 of UK currency.

The experiment was conducted at the University of Warwick on 20th May, 2008.

To avoid "expert" bias, the subjects were 41 non-economics undergraduates — 26 male and 15 female students who had responded to our invitation in time.

Everyone attending and completing the experiment was given *\$*5 of UK currency.

Introduction 0000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

The experiment was conducted at the University of Warwick on 20th May, 2008.

To avoid "expert" bias, the subjects were 41 non-economics undergraduates — 26 male and 15 female students who had responded to our invitation in time.

Everyone attending and completing the experiment was given *\$*5 of UK currency.

Introduction 0000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

The experiment was conducted at the University of Warwick on 20th May, 2008.

To avoid "expert" bias, the subjects were 41 non-economics undergraduates — 26 male and 15 female students who had responded to our invitation in time.

Everyone attending and completing the experiment was given \$5 of UK currency.

After each subject's last choice of the 16th round, the computer determined the amount they were owed, which was paid in cash.

The sum of all the payments was \$461.20, which works out on average to \$11.25 per participant, including the \$5 participation fee.

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Three Stages			

After each subject's last choice of the 16th round, the computer determined the amount they were owed, which was paid in cash.

The sum of all the payments was \$461.20, which works out on average to \$11.25 per participant, including the \$5 participation fee.

Introduction 00000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Choice "Consistency"			

Choice "Consistency"

Three notions of choice consistency, different for each round:

- on round 1, choice far enough away from the stochastically dominated extreme so that we could progress to round 2;
- on round 2, choice away from the dominated "half" of the budget line segment, so that we could progress to round 3;
- on round 3, GARP consistent choices.

Introduction 00000000	GARP 0000000	Experiment	Statistical Results
Choice "Consistency"			

Choice "Consistency": Aggregate Data

	Outset	Stage		
		1st	2nd	3rd
maximum number of choices	16	16	16	16
number of consistent choices	16	14.6	8.1	6.3
consistent choices (%)	100	91	51	39
% of previous column	—	91	55	78

Introduction 00000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Choice "Consistency"			

Consistency: Gender Differences

Gender				Significance	
	female		male		level
	mean	s.e.	mean	s.e.	
	share of dominated portfolios				
1st stage	0.324	(0.049)	0.153	(0.032)	0.004*
2nd stage	0.354	(0.056)	0.138	(0.039)	0.002*
3rd stage	0.267	(0.087)	0.078	(0.029)	0.056*
share of GARP consistent choices					
3rd stage	0.474	(0.078)	0.764	(0.046)	0.001*

p-values based on a two-tailed independent-sample t test (checked for equality of variances).

Introduction 00000000			
Choice	"Consistency"		

GARP

Experiment

Statistical Results

Logit Regressions

Variable	All Choices	1st Stage	2nd Stage	3rd Stage
Intercept	-2.089***	-1.805***	-2.102***	-2.693***
	0.203	0.296	0.331	0.542
Gender	1.585***	1.251***	1.914***	1.027
(Female = 1)	0.276	0.405	0.434	0.849
Round	0.017	0.010	0.030	0.000
	0.021	0.030	0.033	0.056
Gender	-0.051*	-0.032	-0.085*	0.017
imes Round	0.029	0.042	0.045	0.085
n	1589	656	598	335
LL	-734.206	-331.757	-291.980	-98.771
Pseudo- R^2	0.053	0.039	0.064	0.044
Introduction	GARP	Experiment	Statistical Results	
----------------------	---------	---------------	---------------------	
00000000	0000000	0000000000000		
Choice "Consistency"				

Notes

Independent variable: Dominated portfolio chosen. Binary logit with robust covariance matrix estimation. First line: coefficients: second line: standard errors.

*p < 0.10, **p < 0.05, ***p < 0.01.

Introduction	GARP	Experiment	Statistical Results
0000000	0000000	000000000000	
Choice "Consistency"			

Summary of Aggregate Data

- on round 1, 91% of choices (16 per participant) were far enough away from the stochastically dominated extreme to allow progress to round 2;
- on round 2, only 55% of survivors chose away from the dominated "half" of the budget line segment; to allow progress to round 3;
- on round 3, 78% of survivors made GARP consistent choices.
- females more likely to make dominated choices than males, but effect declines in later rounds of the 16.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Statistical Results			

Our null hypothesis is that each choice is made at random from a uniform distribution over the budget line interval — or more precisely, over our discrete approximation to this interval.

Given survival to the third-stage, let F(z) denote the conditional probability that a random subject makes fewer than ℓ GARP consistent choices.

Let z_s denote the smallest possible integer satisfying $1 - F(z_s) \le s$.

Then we reject the null hypothesis of uniform randomness at the significance level s provided that the subject's choice pattern satisfies GARP on at least z_s occasions.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Statistical Results			

Our null hypothesis is that each choice is made at random from a uniform distribution over the budget line interval — or more precisely,

over our discrete approximation to this interval.

Given survival to the third-stage, let F(z) denote the conditional probability that a random subject makes fewer than ℓ GARP consistent choices.

Let z_s denote the smallest possible integer satisfying $1 - F(z_s) \le s$.

Then we reject the null hypothesis of uniform randomness at the significance level s provided that the subject's choice pattern satisfies GARP on at least z_s occasions.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Statistical Results			

Our null hypothesis is that each choice is made at random from a uniform distribution over the budget line interval — or more precisely,

over our discrete approximation to this interval.

Given survival to the third-stage, let F(z) denote the conditional probability that a random subject makes fewer than ℓ GARP consistent choices.

Let z_s denote the smallest possible integer satisfying $1 - F(z_s) \leq s$.

Then we reject the null hypothesis of uniform randomness at the significance level s provided that the subject's choice pattern satisfies GARP on at least z_s occasions.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	
Statistical Results			

Our null hypothesis is that each choice is made at random from a uniform distribution over the budget line interval — or more precisely,

over our discrete approximation to this interval.

Given survival to the third-stage, let F(z) denote the conditional probability that a random subject makes fewer than ℓ GARP consistent choices.

Let z_s denote the smallest possible integer satisfying $1 - F(z_s) \leq s$.

Then we reject the null hypothesis of uniform randomness at the significance level s provided that the subject's choice pattern satisfies GARP on at least z_s occasions.

Introduction 00000000	GARP 0000000	Experiment 0000000000000	Statistical Results
Statistical Results			

We used an obvious Monte Carlo simulation procedure, with 1000 rounds, to estimate $F(z_s)$ for each of the 11 particular values

$s \in \{0.01, 0.05, 0.1, 0.2, 0.3, \dots, 0.8, 0.9\}.$

Rounding implies that the exact probability P_s of $F(\ell) \ge s$ satisifies $P_s = s$ only when s = F(z) for some $z \in \{0, 1, ..., l\}$.

Hence, the curve lies below the 45° line except at the end points s = 0 and s = 1.

For this reason, our test slightly favours the null hypothesis of random choice.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	○○○○○○●○○
Statistical Results			

We used an obvious Monte Carlo simulation procedure, with 1000 rounds, to estimate $F(z_s)$ for each of the 11 particular values

 $s \in \{0.01, 0.05, 0.1, 0.2, 0.3, \dots, 0.8, 0.9\}.$

Rounding implies that the exact probability P_s of $F(\ell) \ge s$ satisifies $P_s = s$ only when s = F(z) for some $z \in \{0, 1, ..., I\}$.

Hence, the curve lies below the 45° line except at the end points s = 0 and s = 1.

For this reason, our test slightly favours the null hypothesis of random choice.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	○○○○○○●○○
Statistical Results			

We used an obvious Monte Carlo simulation procedure, with 1000 rounds, to estimate $F(z_s)$ for each of the 11 particular values

$$s \in \{0.01, 0.05, 0.1, 0.2, 0.3, \dots, 0.8, 0.9\}.$$

Rounding implies that the exact probability P_s of $F(\ell) \ge s$ satisifies $P_s = s$ only when s = F(z) for some $z \in \{0, 1, ..., I\}$.

Hence, the curve lies below the 45° line except at the end points s = 0 and s = 1.

For this reason, our test slightly favours the null hypothesis of random choice.

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	○○○○○○●○○
Statistical Results			

We used an obvious Monte Carlo simulation procedure, with 1000 rounds, to estimate $F(z_s)$ for each of the 11 particular values

$$s \in \{0.01, 0.05, 0.1, 0.2, 0.3, \dots, 0.8, 0.9\}.$$

Rounding implies that the exact probability P_s of $F(\ell) \ge s$ satisifies $P_s = s$ only when s = F(z) for some $z \in \{0, 1, ..., I\}$.

Hence, the curve lies below the 45° line except at the end points s = 0 and s = 1.

For this reason, our test slightly favours the null hypothesis of random choice.

GARP

Experiment

Statistical Results

Test Statistics

Workshop on Revealed Preference, Paris Dauphine, 26 November 2010

40/41

Introduction	GARP	Experiment	Statistical Resu
00000000	0000000	0000000000000	
Statistical Results			

Workshop on Revealed Preference, Paris Dauphine, 26 November 2010

Results

Statistical Results		
00000000	0000000	000000
Introduction	GARP	Experime

Statistical Results

More Conclusions

Thanks for coming!

Thanks to the local organizers Françoise, Arnold, Vincent and to the other members of the scientific committee, Andrés, Enrico, Yannick for enabling us to reveal our preferences by coming!

Introduction	GARP	Experiment	Statistical Resu
00000000	0000000	0000000000000	
Statistical Results			

Thanks for coming!

Thanks to the local organizers Françoise, Arnold, Vincent

Results

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	○○○○○○○○●
Conditional Results			

Thanks for coming!

Thanks to the local organizers

Françoise, Arnold, Vincent and to the other members of the scientific committee, Andrés, Enrico, Yannick

for enabling us to reveal our preferences by coming!

Introduction	GARP	Experiment	Statistical Results
00000000	0000000	0000000000000	○○○○○○○○●
Statistical Pacults			

Thanks for coming!

Thanks to the local organizers

Françoise, Arnold, Vincent and to the other members of the scientific committee, Andrés, Enrico, Yannick for enabling us to reveal our preferences by coming!