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Abstract

The purpose of this paper is to study the relationship between the axiomatic
foundations of revealed preference theory and the continuity properties of choice.
The main result of this paper shows that the continuity of a set-to-point choice
function is equivalent to the weak axiom of revealed preference and openness
of the strict revealed relation, provided that the collection of budget sets is
endowed with a topology used widely by economists.

Keywords: Revealed Preference Axioms, Rational behaviour,
Hypertopologies, Continuity of demand
JEL classi�cation: D.11

1. Introduction

The purpose of this paper is to study the relationship between axiomatic
foundations of revealed preference theory and the continuity properties of choice.
Several papers have studied the replacement of some preference assumptions
with topological conditions. We only mention the important and elegant papers
by Sonnenschein (1965) and Schmeidler (1971). The alternative approach to the
theory of consumer behavior is to study choice correspondences or functions.
The rationalization problem is to assure the existence of a preference which
generates the choice correspondence in some sense. The assumptions used in
solving this problem are called revealed preference axioms. The connections
among these assumptions have been thoroughly investigated, we only refer to
papers by Richter (1966) and Richter (1971), Suzumura (1976) and Clark (1985)
based on the works of Samuelson (1947) and Arrow (1959).

These works do not use topological methods, however. Our intention in
the present paper is to point out that the topological approach to revealed
preference theory can lead to new results on the rationalization problem. Our
investigations are carried out in two frameworks. The �special framework� means
that the choice correspondence is single-valued, that is, it is a choice function.
In the �general framework�, there is no restriction on the chosen sets.
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(1) In the �special framework�, we verify that the so�called Vietoris continu-
ity of the choice function is equivalent to the weak axiom (WARP) and openness
of the revealed preference. The technique that we exploit for the proof was orig-
inally developed in E. Michael's famous paper � Michael (1951) �, which uses
the seminal paper of Eilenberg (1941).

(2) In the �general framework�, we provide a supplementary condition that
can be assumed in addition to WARP, so that the choice correspondence is
upper hemicontinuous.

2. De�nitions and notation

Jn (X), J (X), K (X) and P (X) denote the collection of all subsets of the
universal set X with at most n elements, the collection of all �nite subset of
X, the collection of all compact subset of X and the set of all subset of X,
respectively. Let A(R) = R∩

(
R−1

)c
stand for the asymmetric part and S(R) =

R ∩R−1 denotes the symmetric part of a binary relation R ⊆ X ×X.
The triple (X,B, c) is called a decision structure where B is a subset of

the power set of X and c : B → P (X) is a choice correspondence such that
∅ 6= c (B) ⊆ B. If a binary relation R ⊆ X ×X is given, denote by cR (B) the
R-greatest elements of the set B, that is, cR (B) .= {x ∈ B : (x, y) ∈ R ∀y ∈ B} .
The choice correspondence c of a decision structure is said to be transitive�

rational if there exists a binary, transitive relation R such that c (B) = cR (B)
for any B ∈ B.

The pioneering works by Samuelson (1947), Houthakker (1950), Uzawa (1956),
and Arrow (1959) introduced two kinds of de�nition for the (directly) revealed
preference relation. The �rst one is the weak (x, y) ∈ R if and only if there
exists B ∈ B for which x ∈ c (B) and y ∈ B, while the second one is the strict

(x, y) ∈ P if and only if there exists B ∈ B for which x ∈ c (B) and y ∈ Brc (B) .
The revealed preference axioms can be drawn up exploiting these two kinds of
revealed relations. The most succinct formulation of the weak axiom of revealed

preference (WARP) is the inclusion R ⊆
(
P−1

)c
.

Let (X, τ) be a topological space, and for any open set U ∈ τ ,

U+ .= {B ∈ P (X) : B ⊆ U} and U−
.= {B ∈ P (X) : B ∩ U 6= ∅} .

The set {U+ : U ∈ τ} forms the subbase of the upper Vietoris topology and
{V − : V ∈ τ} is the subbase of the lower Vietoris topology on the hyperspace
of X. The Vietoris (or �nite) topology is generated by the upper and lower
Vietoris open sets. The elements of the �lter base of this topology are sets
of the form 〈V1, ..., Vn〉

.= {B ⊆ X : B ⊆ ∪n
i=1Vi and B ∩ Vi 6= ∅} where Vi ∈ τ,

and n is a positive integer. We refer to Hildenbrand (1974) and (Klein and
Thompson, 1984) concerning basic results on Vietoris topology and applications
to mathematical economics. Note that a set-to-set function is said to be upper
hemicontinuous if it is continuous when its domain is supplied with the Vietoris
topology and its range is endowed with the upper Vietoris topology.
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Recall that relation R is compatible with topology τ if the upper and lower
level sets Rx and Rx are closed sets and A (R)x

and A (R)x are open sets. For
the sake of simplicity, an asymmetric relation P is said to be open if the level
sets P x and Px are open for any x ∈ X.

3. Results

The revealed preference axioms are drawn up about the nature of consistent
behavior. The gist of the main theorem of this paper is that rationality of
decision making can also be encapsulated by some continuity property of choice.

Theorem 1. Suppose that (X, τ) is a connected separated topological space,

Jn (X) carries the Vietoris topology and c : Jn (X) → X is a choice function

where n ≥ 3. Then the continuity of c is equivalent to WARP together with

openness of the strict revealed preference P .

In this environment WARP means that the choice is transitive-rational. The
theorem therefore characterizes transitive rationality combined with the open-
ness of the strict revealed relation via the continuity of choice. This kind of
continuity of choice at a �nite set means, that if x1 is chosen from the set
{x1, . . . , xn} then the chosen element from the set {x′1, . . . , x′n} will be x′1, if x′i
is close enough to xi for i = 1, . . . , n, respectively. This expresses an intrinsic
property of a decision maker: a small pointwise change of available resources
implies only small change of the chosen goods.

It may occur that a choice function is transitive�rational on two di�erent
connected components but the property of transitive�rationality fails with re-
spect to the entire domain of choice. Of course, the continuity is independent
of the components of the domain hence the connectedness is an unavoidable
assumption.

The condition that the domain of choice must include all sets with at most
n elements seems to be the most restrictive condition of the above theorem.
This assumption is essentially the same as the one �rst appearing in Arrow
(1959), when the domain includes all �nite subsets of the set of available goods.
Nevertheless, as Arrow pointed out, �requiring the choice functions to be de�ned
for �nite sets is thoroughly consistent with the intuitive arguments underlying
revealed preference.� As we will clarify, Theorem 1 remains valid if the domain
of choice is substituted by a set of subsets D, where J (X) ⊆ D ⊆ K (X) which
is exactly the case motivated by Arrow.

4. Proofs

The su�ciency part of Theorem 1 is Proposition 3 which is based on the
connectedness ofX and the openness of some sets (Proposition 2). The necessity
part is a consequence of Proposition 5, which can be regarded as a generalization
of results stating the continuity of the demand correspondence. The propositions
and their proofs are based on Michael's paper: Michael (1951).
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4.1. Preliminaries

First we give a short summary of those statements and basic ideas of revealed
preference theory that will be used to prove our theorems.

Richter (1971) gave the following characterization of transitive-rationaliza-
tion. This result emphasizes the role of the weak revealed preference relation:
a choice which is rationalizable with a transitive underlaying relation can also
be rationalized with the transitive closure of the weak revealed relation.

(R.1) The choice correspondence is transitive-rational if and only if c (B) =
ct(R) (B) for any B ∈ B, where t (R) denotes the transitive closure of weak

revealed relation R.
Let us introduce the weak axioms following Richter (1971) and Suzumura

(1976). The weak congruence axiom (WCA) says: (x, y) ∈ R and y ∈ c (B) ,
x ∈ B implies x ∈ c (B). This means that if at one time x was chosen when y
was available then in another time x has to be also chosen if y is chosen and x
is available. WCA re�ects that some kind of consistent behavior is required of
the decision maker. The weak axiom of revealed preference (WARP) is: if x is
weakly revealed preferred to y then y cannot be strictly revealed preferred to
x, which is of course the same as we de�ned earlier. (R ⊆

(
P−1

)c
, where R is

the weak and P is the strict revealed relations.) Assuming that the chosen sets
are singletons we get the theory which was originally formulated by Houthakker
(1950). In this special case the condition that the strict revealed relation P be
asymmetric is equivalent to WARP. In the general case the relationship of these
axioms is also well known:

(R.2) Let (X,B, c) an arbitrary decision structure, R the weak and P
the strict revealed relations. Then the conditions WCA, WARP and the identity

P = A (R) are equivalent to each other. WARP implies the identity c = cR.
Conversely, the identity c = cR does not imply WARP.

Let us consider now the strong axioms. The strong congruence axiom (SCA)
says: (x, y) ∈ t (R) and y ∈ c (B) , x ∈ B implies x ∈ c (B). Hansson's axiom

of revealed preference (HARP) is: t (R) ⊆
(
P−1

)c
. At �rst sight HARP is dif-

ferent from its traditional formulation that appeared in Suzumura (1976), but
they are equivalent. The following theorem and (R.1) show that this stronger re-
quirement of consistent behavior means transitive-rationality. The equivalence
of SCA and transitive-rationality comes from Richter (1971), and the equiva-
lence of SCA and HARP is due to Suzumura (1976). Originally, Richter (1966)
showed that SCA is equivalent to rationality with a transitive and complete
underlying relation.

(R.3) Let (X,B, c) be an arbitrary decision structure and R the weak revealed

relation. Then SCA, HARP and the equation c = ct(R) are equivalent.

The theory becomes much simpler if we impose two restrictions on the do-
main of choice. We summarize the result of investigations initiated by Arrow
(1959). This certi�es that WARP coincides with the transitive-rationality of
the choice in Theorem 1.

(R.4) Let (X,B, c) be a decision structure. If J3 (X) ⊆ B then WARP is

equivalent to the identity c = cR together with the transitivity of weak revealed
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relation R. In this case each of the strong and each of the weak axioms coincides

with the condition that c be transitive-rational.

4.2. Proofs, remarks, counterexamples

Proposition 2. Let (X, τ) be a separated topological space, Jn (X) supplied

with the Vietoris topology, and n ≥ 2 integer. Suppose that the choice function

c : Jn (X)→ X is continuous and x 6= y, x, y ∈ X are �xed.

Then the following collections of sets {E ∈ Jn−2 (X) : c (E ∪ {x, y}) 6= x} and
{E ∈ Jn−2 (X) : x /∈ E, c (E ∪ {x, y}) = x} are open in the Vietoris topology on

Jn−2 (X).

Proof. Let E ∈ Jn−2 (X) such that c (E ∪ {x, y}) = z 6= x. Let V be a
neighborhood of z that does not contain x. The continuity of c implies that there
exists a basic Vietoris neighborhood 〈V1, ..., Vk〉 of E∪{x, y} such that for every
F ∈ 〈V1, ..., Vk〉∩Jn (X)⇒ c (F ) ∈ V, therefore c (F ) 6= x. Let i1, ..., ij be indices
for which Vik

∩ E 6= ∅. Clearly,
〈
Vi1 , ..., Vij

〉
is a Vietoris neighborhood of E,

satisfying F∪{x, y} ∈ 〈V1, ..., Vk〉∩Jn (X) for every F ∈
〈
Vi1 , ..., Vij

〉
∩Jn−2 (X).

Thus we obtained that for every F having the above property c (F ∪ {x, y}) 6= x.
Assume x /∈ E and c (E ∪ {x, y}) = x. Let us consider disjoint open sets

U, V for which E ∪ {y} ⊆ V , x ∈ U. Since c is continuous there is Vietoris
neighborhood 〈V1, ..., Vk〉 of E ∪ {x, y} such that whenever F ∈ 〈V1, ..., Vk〉 ∩
Jn (X) then c (F ) ∈ U. Let i1, ..., ij be those indices for which Vik

and E have
common element. In this case

〈
Vi1 ∩ V, ..., Vij

∩ V
〉
is a Vietoris neighborhood

of E that satis�es that c (F ∪ {x, y}) ∈ U for every F ∈
〈
Vi1 ∩ V, ..., Vij ∩ V

〉
∩

Jn−2 (X) . This x is the only element of the set F ∪{x, y} which belongs to U as
well, therefore c (F ∪ {x, y}) = x for every F ∈

〈
Vi1 ∩ V, ..., Vij

∩ V
〉
∩Jn−2 (X).

�

Proposition 3. Let (X, τ) be a connected and separated topological space, Jn (X)
supplied with the Vietoris topology, and n ≥ 2. If c : Jn (X) → X is a con-

tinuous choice function then WARP holds, and the strict revealed relation P is

open.

Proof. First, we have to verify that the relation P is asymmetric. It is known
(see Theorem 4.10 in Michael (1951), that the connectedness of τ implies the
connectedness of Vietoris topology on Jn (X) . It is su�cient to show that
c (E) = c ({c (E) , y}) for every y ∈ E ∈ Jn (X) , y 6= c (E). For, if (x, y) ∈ P
and (y, x) ∈ P both hold then x 6= y and there are sets S1, S2 ∈ Jn (X) such that
{x, y} ⊆ S1∩S2 and x = c (S1) , but y = c (S2) . Therefore x = c ({c (S1) , y}) =
c ({x, y}) = c ({x, c (S2)}) = y, a contradiction.

We are going to verify that c (E) = c ({c (E) , y}) for every y ∈ E and
y 6= c (E) by induction. If E has only two elements then this statement is
obviously true. Let us assume that the equation holds for any set containing at
most m − 1 elements, 3 ≤ m ≤ n. Let E = {x1, ..., xm} be a set with exactly
m elements and c (E) = x1. We show c ({x1, xi}) = x1 if i > 1. Suppose the
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contrary: if there exists k (1 < k ≤ m) for which c ({x1, xk}) = xk then let us
consider the following set.

H .= {F ∈ Jm−2 (X) : c (F ∪ {x1, xk}) = x1}

Clearly, E r {x1, xk} ∈ H and {x1, xk} /∈ H. By Proposition 2 the complement
of H is an open subset of Jm−2 (X) . If F ∈ H and x1 were an element of F
then we would obtain that c ({x1, xk}) = x1 by the the induction hypothesis
for the m− 1 element set F ∪ {x1, xk} and c (F ∪ {x1, xk}) = x1 contradicting
c ({x1, xk}) = xk. Therefore

H = {F ∈ Jm−2 (X) : x1 /∈ F and c (F ∪ {x1, xk}) = x1} .

Applying Proposition 2 again we obtain that H is also a nonempty open subset
of Jm−2 (X) , which contradicts the connectedness of the Vietoris topology on
Jm−2 (X) .

Second, we have to verify that the relation P is open. Let (x, y) ∈ P.WARP
says that c ({x, y}) = x. Choose an open neighborhood U ∈ τ (x) with y /∈ U .
There exist neighborhoods U ′ ∈ τ (x) and V ′ ∈ τ (y) such that c (F ) ⊆ U for any
set F ∈ 〈U ′, V ′〉 by the continuity of c. For an arbitrary element x′ ∈ U ′ ∩ U
set F

.= {x′, y}, so we have c ({x′, y}) = x′. This proves the openness of the
upper level set P y. The veri�cation of the openness of the lower level sets is
analogous. �

A counterexample shows the necessity of connectedness. Let X = (0, 1)∪{2}
and τ be the relative topology from the Euclidean topology. Let the choice
c : J3 (X)→ X be de�ned by

c (A) .=
{

minA , if 2 ∈ A
maxA , otherwise

On the one hand it is clear that WARP fails in the generated decision structure.
On the other hand, if {x, y, 2} ∈ J3 (X) then there exists a Vietoris neighbor-
hood 〈V1, V2, V3〉 of {x, y, 2}, such that 2 ∈ A for every A ∈ J3 (X)∩〈V1, V2, V3〉 .
This property implies the continuity of c.

Remark 4. Next, we show that Proposition 3 remains valid if we replace the

domain of choice with a set D such that J (X) ⊆ D.

Proof. Denote by Pn, P
′ and P the strict revealed preference relation gen-

erated by the decision structure (X,Jn (X) , c), (X,J (X) , c) and (X,D, c),
respectively. We already know that Pn is asymmetric and open. It is easy to
check, that P ′ = ∪nPn, and Pn ⊆ Pn+1 for every n. This implies that the rela-
tion P ′ is also asymmetric and open. Verifying the asymmetry and the openness
of the relation P we should verify again the equation c (E) = c ({c (E) , y}) for
every y ∈ E ∈ D, as long as c : D → X is continuous. Suppose the contrary:
if x = c (E) , y ∈ E and c ({x, y}) = y then (y, x) ∈ P ′, that is x ∈ P ′y. The
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set P ′y is an open neighborhood of x, therefore there exists a Vietoris neighbor-
hood 〈V1, . . . , Vn〉 of E with the property F ∈ 〈V1, . . . , Vn〉 ∩ B ⇒ c (F ) ∈ P ′y.
Thus, taking a �nite set F ∈ J (X) such that y ∈ F ∈ 〈V1, . . . , Vn〉, the inclu-
sion c (F ) ∈ P ′y holds. On the one hand, the de�nition of the lower level set
says (y, z) ∈ P ′, where z .= c (F ) . On the other hand, the �niteness of F and
the de�nition of the relation P ′ implies that (z, y) ∈ P ′, which contradicts the
asymmetric property of P ′. The rest of the proof of Proposition 3 is as above.
�

The following proposition is the converse of the previous one in some sense
and belongs to the problem drawn up in �general framework�.

To explain why Vietoris topologies are natural to use, consider the classical
consumer decision-making problem in which continuity of the demand function
is vital. However, if the demand correspondence is in fact set-valued, a topology
on the subsets has to be used. Our de�nition of upper hemicontinuity (through
Vietoris topologies) is identical to the usual (see Hildenbrand (1974)).

If we introduce the budget correspondence β (p) .=
{
x ∈ Rn

+ : p · x ≤ 1
}

(which is Vietoris continuous at a strictly positive price vector) then the de-
mand correspondence is the composition of a choice correspondence and the
budget correspondence (i.e. d = c ◦ β). Therefore, the upper hemicontinuity of
the demand correspondence is a straightforward consequence of the continuity
of choice, endowing the domain with Vietoris topology, and supplying the range
with upper Vietoris topology.

At this point our paper is related to the celebrated article of Uzawa (1960).
It is well-known that if a compact subset K ∈ K (X) is given, and R is a

transitive and complete relation with the openness of its asymmetric part then

K has at least one greatest element with respect to R that is, the chosen set
cR (K) is nonempty. This fact means that all compact sets belong to the set
B de�ned below, and the subsequent theorem is a generalization of results on
the continuity of the demand correspondence. Note that Uzawa exploits an
additional convexity assumption for deriving the continuity of demand function.
(See Theorem 6 in Uzawa (1960)).

Proposition 5. Let R be a transitive, complete relation and suppose that A (R)x

and A (R)x
are open level sets. De�ne the subset of the power set of alternatives

B .=
{
B ⊆ X : B ∩ F 6= ∅ ⇒ cR (B ∩ F ) 6= ∅ ∀F ∈ F

}
,

where F denotes all closed subsets of X. Then we obtain a decision structure(
X,B, cR

)
where the correspondence cR is upper hemicontinuous.

Proof. It is easy to see that
(
X,B, cR

)
is a choice structure satisfying WCA

(R.3 and R.1). Let E ∈ B be a �xed set and U ∈ τ such that cR (E) ⊆
U. We exhibit a Vietoris neighborhood of E, for which any set F from this
neighborhood cR (F ) ⊆ U . When E ⊆ U then U+ is suitable, because F ∈
U+ ⇒ cR (F ) ⊆ F ⊆ U. It can be assumed that E ∩ U c 6= ∅ in the rest of this
proof. By the de�nition of B there is element y belonging to the set cR (E ∩ U c) .
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Clearly, (x, y) ∈ R for any �xed x ∈ cR (E) . If (y, x) were also an element of
R then y ∈ cR (E) ⊆ U would be satis�ed by the WCA, contradicting y ∈ U c.
Therefore (x, y) ∈ A (R).

First we assume that there is no z ∈ X, for which (x, z) ∈ A (R) and (z, y) ∈
A (R) . In this case let N1

.= A (R)y ∩ U, N2
.= A (R)x . Obviously N1 and

N2 are open sets, such that x ∈ N1, y ∈ N2 and hence E ∈ N−1 ∩ N
−
2 . We

verify that E ⊆ N1 ∪N2 is also satis�ed. E ∩ A (R)y ⊆ U holds by the choice
of y. We know that the transitivity and the completeness of R imply negative
transitivity of relation A(R). From the negative transitivity of the A (R) follows
N2 ∪A (R)y = X. Hence we have

E ⊆ N2 ∪ (E ∩A (R)y) ⊆ N2 ∪ (A (R)y ∩ U) = N2 ∪N1.

Thus 〈N1, N2〉 is a Vietoris neighborhood of E. If F ∈ 〈N1, N2〉 ∩ B, and
furthermore t1 ∈ F∩N1 and t2 ∈ F∩N2 then (t2, t1) /∈ R for in the opposite case
both t1 and t2 would also be suitable for such a point z which satis�es (x, z) ∈
A (R) and (z, y) ∈ A (R) . We obtain that cR (F ) ∩ N2 = ∅ and, consequently,
cR (F ) ⊆ N1 ⊆ U holds for any F ∈ 〈N1, N2〉 ∩ B.

Second, we suppose that there exists a point z, such that (x, z) ∈ A (R) and
(z, y) ∈ A (R) . In this case let N1

.= U, N2
.= U ∩A (R)z

, N3
.= A (R)z . Clearly,

these are open sets having elements in common with E because x ∈ N1, x ∈ N2,
y ∈ N3.We verify again that E ⊆ N1 ∪N2 ∪N3 is satis�ed. Let us observe that
A (R)z ∩ E ⊆ A (R)y ∩ E ⊆ U and S (R)z ∩ E ⊆ A (R)y ∩ E ⊆ U, because of
the transitivity of R. Hence

E ⊆ A (R)z ∪ (A (R)z ∩ E) ∪ (S (R)z ∩ E)
⊆ A (R)z ∪ (A (R)z ∩ U) ∪ U = N3 ∪N2 ∪N1.

Thus 〈N1, N2, N3〉 is really a Vietoris neighborhood of E. Take an arbitrary
element F from the set 〈N1, N2, N3〉 ∩B. If t2 ∈ N2 and t3 ∈ N3 then (t2, t3) ∈
A (R) that is, (t3, t2) /∈ R. From this it follows that cR (F ) ∩ N3 = ∅ by the
de�nition of cR. Therefore cR (F ) ⊆ N1 ∪N2 ⊆ U. �

Let us consider a choice correspondence c satisfying WARP with domain D,
where J3 (X) ⊆ D ⊆ K(X). The condition that the domain includes all sets
with at most three elements assures the transitivity and the completeness of
the weak revealed relation R and c (B) = cR (B) for any B ∈ D (R.4). Clearly,
D ⊆ B also holds, where B is de�ned as in the previous theorem, because WARP
implies the equation P = A (R) (R.2), thus the asymmetric part of the weak
revealed relation is open, supposing that the strict revealed relation is open.
Hence, the following proposition is a corollary of Proposition 5.

Proposition 6. Let J3 (X) ⊆ D ⊆ K(X) be the domain of the choice corre-

spondence c : D → P (X) which satis�es WARP and the strict revealed relation

P be open. Then c is upper hemicontinuous.

Turning back to the �special framework� we are ready to present the proof of
the main result.
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Proof of Theorem 1. The special case of Proposition 6 says that if c :
Jn (X) → X a choice function, n ≥ 3, WARP holds true, and the revealed
preference P is open then c is continuous. The proof of the converse statement
is given in Proposition 3. �

Let us consider again the problem which was originally formulated by Arrow
(1959).

Remark 7. If the domain of choice D satis�es J (X) ⊆ D ⊆ K(X) and c :
D → X is a continuous choice function then the special case of Proposition 6

and Remark 4 show that Theorem 1 remains true.

Finally, a counterexample shows that Theorem 1 fails in the case when the
choice function is actually set-valued. If J3 (R) carries the Vietoris topology and
c : J3 (R)→ J3 (R) is the choice function de�ned by c(A) .= {max(A),min(A)}
for every set A with at most three elements then c is continuous. Nevertheless
WCA does not hold: indeed 1, 2 ∈ c ({1, 2}) and 2 ∈ c ({0, 1, 2}) but 1 /∈
c ({0, 1, 2}).

We have seen that bringing the results of Michael's paper into view that had
become the base of the set valued topology applied in numerous areas can lead
to new results in the �eld of revealed preference theory.
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