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Abstract

We consider the following theoretical problem: a finite number of observations of
a homogeneous-good oligopoly market are made, and in each observation we observe
firms’ prices, outputs and possibly cost information- what restrictions must the ob-
servations satisfy for each observation to be rationalized as a pure strategy Bertrand
equilibrium? We provide a complete characterization of price/output/cost observations
which can be Bertrand rationalized and some partial characterizations of price/output
observations. The conditions which characterize the sets are economically intuitive and
take the form of linear inequalities. Moreover, together with recent results established
by Carvajal and Quah (2009), we can characterize which homogeneous-good market
observations are consistent with either the Bertrand or Cournot oligopoly models.
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1 Introduction

Suppose we make a finite set of observations T = {1, ...,m}, m ≥ 1, of a perfectly homogeneous-

good oligopoly market. There is a finite number of firms N = {1, ..., n}, n ≥ 2, which

compete in the market. In each observation we observe each firm’s price, their output, and

possibly their cost information. Given this information how should we go about checking

whether these observations are consistent/inconsistent with firms playing a Nash equilibrium

in prices? That is to say, if each firm simultaneously and independently chooses a price, with

a commitment to supply all the demand forthcoming at that price, a classical Bertrand game,

what observable restrictions does the Nash equilibrium in prices impose upon the outcomes?

In this paper we solve this theoretical problem by providing a complete characterization of

the observations which can be ‘rationalized’ by the classical Bertrand model. We identify

two main conditions which are economically meaningful and take the form of linear inequal-

ities. The first of these conditions is what we term the monopoly deviation condition which

requires that we do not observe a situation where one firm could profitably deviate by serving

the entire market demand. The second condition is what we term the tie deviation condition

which requires that we do not observe a situation where one firm could profitably deviate by

joining a price tie. Together with a weak monotonicity condition on observed costs we find

that these conditions provide a complete characterization of the observations which can be

Bertrand rationalized with standard primitives.

This paper continues the tradition in economic theory of analyzing what structure, if any,

various equilibrium concepts impose upon observable outcomes. Although the preference

based approach to economic theory, where we state specific primitives and analyze equilib-

rium existence and comparative statics etc., is still the way economic theory is mainly done,

the establishment of observable restrictions provides a useful complement to primitive-based

theory for a number of reasons. First, it allows us to establish whether economic equilib-

rium concepts impose any structure upon the observable outcomes and therefore whether

it is possible, even at a theoretical level, to refute equilibrium concepts. Second, by asking

whether a set of observations can be revealed consistent/inconsistent with a given equilib-

rium concept we often permit greater variety of economic primitives than when we directly

state primitives and analyze equilibrium properties. For example, when analyzing classical

Bertrand games it is typical to assume that cost functions of firms are convex. Here we

impose no such restrictions. Instead, we simply require that observations are consistent with

an increasing cost function. Finally, the structure of equilibrium sets is a useful addition to

the stock of theoretical knowledge regarding canonical economic models.

There is a substantial literature on revealed preferences in economic models so we shall
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only mention the key touchstones in the literature here. The most frequent recourse to

revealed preference is in the context of consumer theory where Samuelson’s weak axiom of

revealed preference is well-known to constitute a necessary condition for the existence of a

‘rationalizing’ preference relation. That is to say, for those observations which violate the

weak axiom it is not possible to find a utility function which would generate the observations

from utility maximization. An early counter example, by John R. Hicks, showed that in a

three-commodity economy consumer’s Walrasian demands may satisfy the weak axiom and

still exhibit intransitive choices (and therefore be revealed inconsistent with utility maxi-

mization).1 Afriat (1967) was a seminal paper in that it looked for necessary and sufficient

conditions upon price/quantity observations for the existence of a rationalizing utility func-

tion. The key condition was a strengthening of the weak axiom, a form of cyclical consistency,

which is equivalent to Hendrik Houthakker’s strong axiom of revealed preference.2

This early literature on revealed preferences in consumption theory clearly illustrates the

method of characterizing observable restrictions. The method starts from the basis that there

is something unobservable (preference) which is fixed across observations, and something

which is observable (budget sets/choices) which change across observations. The literature

then asks what restrictions must be placed on the observables for them to be consistent

which the existence of a well-behaved unobservable. Following in this tradition we shall

say that a set of oligopoly observations is Bertrand rationalizable if there exists a market

demand for each observation and a cost function for each firm which is able to account for

the observed market outcomes. Hence, the analogue with consumer theory is that the cost

function represents the type of each of the firms which is fixed across observations whereas

the changes in the market demand represent the observable which accounts for the changes

in observed outcomes.

The canonical general equilibrium model which brings consumption choices together with

market clearing conditions was thought to have few observable restrictions because of the

well-known result that generically economies have a finite, and cardinally odd, set of equilib-

ria but no other general restrictions are imposed upon the equilibrium price set. The results

of Debreu-Mantel-Sonnenschein went further by showing that for any bounded continuous

function defined on a compact subset of the price space (not including the origin) which

satisfies Walras law and is homogeneous of degree zero in prices there exists an economy

1See, for example, Mas-Colell et al. (1995, p.35). Although observations which satisfy the weak axiom
of revealed preference also satisfy the weak weak axiom of revealed preference and can be rationalized by a
complete, but not necessarily transitive, preference relation (Jerison and Quah, 2008).

2Forges and Minelli (2009) have extended Afriat’s theorem to budget sets which may have nonlinear
frontiers such as in strategic market games.
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which generates the function as the excess demand.3 For a long time these results were

thought to seriously undermine the usefulness of the general equilibrium model. However,

in an important paper Brown and Matzkin (1996) analyzed what restrictions observations

of prices and individual endowments must satisfy to belong to the equilibrium manifold.4

That is to say, what restrictions must prices and endowments satisfy so that there exist

quasiconcave utility functions for each trader such that the observed prices and endowments

are points on the equilibrium manifold generated by those preferences. They showed that

there exist non-trivial restrictions and exhibited simple exchange economies which could not

be rationalized as Walrasian equilibria.5

There is however a fundamental difference between this paper and the seminal works

of Afriat (1967) and Brown and Matzkin (1996) in that the latter were characterizing the

observable outcomes of non-strategic equilibrium concepts whereas this paper is concerned

with the strategic Nash equilibrium. It is only in the last ten years or so that research has

turned to applying the revealed preference method to the Nash equilibrium.6 However, as

the Nash equilibrium is a full rationality concept it is perhaps not surprising that it should

be amenable to characterization in terms of observables. This more recent literature is what

is most closely related to this paper. Sprumont (2000) considered the case where we observe

players choices from all possible subsets of strategy choices, all action spaces were finite, and

identified two conditions, expansion and contraction consistency, which are necessary and

sufficient to be able to rationalize the observed choices as Nash equilibria.7 Zhou (2005) con-

sidered two-player games where players’ strategy sets were the unit interval and assumed that

we observe a finite subset of choices. She then asked what conditions the observed choices

must satisfy to be able to find payoff functions for the players which are quasiconcave in own

strategy and continuous in all strategies which would explain the observed choices as Nash

equilibria. By exploiting the path connectedness of the best response correspondence she

provided a no-improper-crossing condition which if satisfied means the observations admit

rationalizing payoff functions. Most closely related to this paper is work by Carvajal and

3This remains true even if one restricts attention to distribution economies where individual endowments
are collinear and the distribution of income is independent of prices (Kirman and Koch, 1986).

4The equilibrium manifold being the graph of the Walras correspondence.
5Although as Rizvi (2006, p.239) notes the Brown and Matzkin results do not overturn Kenneth Arrow’s

statement that“in the aggregate, the hypothesis of rational behaviour has in general no implications” because
their results rely on us being able to observe individual endowments.

6A survey of the recent developments of testable restrictions in both equilibrium theory and game theory
is provided by Carvajal et al. (2004).

7Anticipating this work, Sprumont (2000, p.221) noted at the end of his paper that it would be interesting
to characterize observable restrictions in games with more “economic flesh” such as oligopoly games.
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Quah (2009) which considered the Cournot oligopoly model. They assumed we make a finite

number of observations of a homogeneous-good oligopoly market and in each observation

we observe a single market price, firms’ outputs and possibly also cost information. They

show that if the observations satisfy a marginal condition, which roughly means that we

do not observe instances where firms can profitably deviate by reducing their outputs, then

providing observed costs are co-monotone with outputs, the observations can be rationalized

as Cournot equilibria. If cost information is unavailable, then any set of observations can

be Cournot rationalized if one permits a general increasing cost function. However, they

introduce a stronger criterion of a ‘convincing rationalization’, which means that the cost

function must be constructed so that the marginal cost lies between the observed marginal

costs, and show that this imposes restrictions upon price/output observations.

This paper aims to add to this literature by examining the other benchmark oligopoly

model. We start from the same point as Carvajal and Quah (2009) by assuming that we

observe firms’ prices, outputs and possibly cost information and look for the restrictions

which the Bertrand equilibrium imposes upon the observables. The case when firms have the

same price in a given observation could clearly also be consistent with firms choosing outputs

in equilibrium. This special case is one of the most interesting aspects of the results provided

here as we shall be able to perform revealed preference analysis on example observations

to establish their consistency with either the Bertrand or Cournot equilibrium concepts.

However, given the idealized nature of the Bertrand model it is unlikely that the conditions

provided here could be used to test real-world market competition. Nevertheless, given

the prominence of the model in the literature we consider the characterizations to be of

considerable theoretical interest. In the next section of the paper we set out the general

theoretical problem and provide the major results. The mathematical requirements are

limited as we only use basic set theory to organize the observations. In the next section we

present a couple of simple examples and use them to apply the theoretical results. The final

section draws some conclusion regarding future directions for research in this area.

2 Revealed Nash equilibria in oligopoly games

Before addressing the main problem of observable restrictions which the Nash equilibrium

imposes upon oligopoly outcomes we shall first define the standard notions of Bertrand

and Cournot equilibrium as well as when a set of observations admit a rationalization by

either of the models. Although there is a vast literature regarding the two models, the aim

here is to present the simplest form of the equilibrium concept. First consider a perfectly
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homogeneous-good market with N = {1, ..., n}, n ≥ 2, firms. Each firm has a cost function

Ci : <+ → <+ which is strictly increasing, continuous and satisfies Ci(0) = 0. The market

demand D : <+ → <+ is continuous and strictly decreasing whenever D > 0. We shall let the

function F : <+ → <+ denote the inverse market demand in what follows. Now consider first

the notion of a Bertrand equilibrium. Those wanting a more detailed exposition of the model

are referred to Baye and Kovenock (2008) or Vives (1999, Ch.5). Each firm simultaneously

and independently chooses a Pi ∈ <+. Firms in the market commit to supplying all the

demand forthcoming at any price.8 If a firm posts the unique minimum price in the market

then it obtains all the market demand and its payoff is PiD(Pi)−Ci(D(Pi)). If a firm ties with

m− 1 firms at the minimum price then they share the demand equally between themselves

and the payoff of each firm is given by 1
m
PiD(Pi) − Ci(

1
m
D(Pi)). If a firm is undercut by

any other firm in the market then it obtains zero demand, and given the assumption that

the cost function passes through the origin, its payoff is zero. These payoffs are summarized

below.

πi(Pi, P−i) =


PiD(Pi)− Ci(D(Pi)) if Pi < Pj ∀j 6= i;

1
m
PiD(Pi)− Ci(

1
m
D(Pi)) i ties with m− 1 firms;

0 if Pi > Pj for some j.

(1)

Given this specification of the payoffs we can state the Bertrand equilibrium as a Nash

equilibrium of this price-setting game.

Definition 1 A pure strategy Bertrand equilibrium is a Nash equilibrium of the game with

payoffs defined by eq.(1). That is, a vector of prices (PB
i , P

B
−i) such that πi(P

B
i , P

B
−i) ≥

πi(Pi, P
B
−i) for all Pi ∈ <+ and i ∈ N .

Now consider the alternative case when firms choose outputs which are sent to the market.

For a more detailed exposition of the Cournot model the reader is referred to Vives (1999.

Ch.4). Each firm simultaneously and independently chooses a Qi ∈ <+. Given the total

output chosen by the firms the market demand clears this output and sends back a single

market-clearing price. The payoff which any firm receives, given the vector of chosen outputs

is (Qi, Q−i), is given below.

πi(Qi, Q−i) = F (
n∑

j=1

Qj)Qi − Ci(Qi) (2)

The Cournot equilibrium is then a Nash equilibrium of this output-setting game.

8This is what distinguishes Bertrand competition from Bertrand-Edgeworth competition.
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Definition 2 A pure strategy Cournot equilibrium is a Nash equilibrium of the game with

payoffs defined by eq.(2). That is, a vector of outputs (QC
i , Q

C
−i) such that πi(Q

C
i , Q

C
−i) ≥

πi(Qi, Q
C
−i) for all Qi ∈ <+ and i ∈ N .

These are the the most commonly used equilibrium concepts in oligopoly theory and yet

little has been known, until recently, about what structure they impose upon the observable

outcomes in the market. We now turn to this problem. Suppose we make a finite number

of observations, T = {1, ...,m}, m ≥ 1, of a homogenous-good oligopoly market. In each

period we observe the price of each firm, Pit, their output, Qit, and their costs incurred, Cit.

The total set of observations can then be summarized as (Pit, Qit, Cit)i∈N,t∈T . To organize

the observations let P ∗t = mini∈N Pit. That is, P ∗t is the minimum price posted in the market

in observation t. Let Q∗t =
∑

i∈N Qit denote the aggregate output produced in observation

t. The set of firms which tie at the minimum price, what we shall informally call the set of

‘active firms’, is given by At = {i ∈ N : Pit = P ∗t }.
We shall impose certain restrictions upon the type of observations which we make to

ensure that they are not immediately inconsistent with the models. For example, if we were

to observe an observation where firms have different prices then such a set of observations is

clearly never going to be consistent with firms choosing outputs and the market sending back

a single market-clearing price. Similarly, if we make observations where two firms produce

output at different prices, so the law of one price fails, then such a set of observations is

always going to be inconsistent with the Bertrand model which postulates that all trade

takes place at the minimum price. Therefore we shall introduce the notion of a generic

homogeneous-good set of oligopoly observations which has the basic features of a perfectly

homogeneous-good market.

Definition 3 A set of oligopoly observations is a generic homogeneous-good market data set

if it satisfies the following conditions:

i) Pit > 0, Qit ≥ 0, Cit ≥ 0, PitQit ≥ Cit and Qit 6= Qit′ whenever t 6= t′.

ii) If Pit > Pjt then Qit = 0.

iii) If Pit = Pjt = P ∗t then Qit = Qjt.

iv) |At| ≥ 2.

The first part imposes mild conditions that we observe positive prices, non-negative outputs,

revenues are greater than costs and firms’ outputs change across observations. The require-

ment that outputs change across observations means we observe some variation in the data

and it stops the data contradicting itself. The second part means that the market is consis-

tent with the law of one price: if any firms raises their price above that of another firm then
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they receive zero demand and produce zero output. The third part states that firms tieing

at the minimum price split the demand equally. In the literature on price games, alternative

sharing rules at minimum price ties have been used, but as this is the most common rule

used in the literature we shall consider this case here. The final part states that we do not

observe a monopolist in any observation. A special type of data set is what we shall term

a single-price data set : this is a generic homogeneous-good data set with the additional

property that Pit = P ∗t for all i ∈ N and t ∈ T . This special case where we observe a single

price by all firms in each observation is particularly interesting from a theoretical perspective

because we shall be able to analyze whether observations are consistent/inconsistent with

either the Bertrand or Cournot equilibrium concepts.

When a set of observations is consistent with firms playing a Nash equilibrium in prices or

outputs we shall term the observations as rationalizable by the Bertrand or Cournot models

respectively. As noted at the beginning, we shall assume that variations in observed outcomes

are due to changes in the market demand across observations with firms’ cost functions fixed

across observations. The method of revealed preference starts from the basis that there is

something observable which changes across observations and something unobservable which

remains fixed across observations. The method then asks what restrictions must be placed

upon the observables such that they are consistent with the existence of a well-behaved

unobservable. Formally, we define the notion of Bertrand rationalizability below.

Definition 4 A set of generic homogeneous-good observations, (Pit, Qit, Cit)i∈N,t∈T , is Bertrand

rationalizable if there exist C2 functions, C̄i : <+ → <+ for each i ∈ N , D̄t : <+ → <+ for

each t ∈ T , such that:

i) C̄i(0) = 0 and C̄ ′i(x) > 0 for all x > 0.

ii) D̄t(x) ≥ 0 and D̄′t(x) ≤ 0 with the latter inequality holding strictly whenever D̄t(x) > 0.

iii) C̄i(Qit) = Cit and D̄t(P
∗
t ) = Q∗t .

iv) The set of observed prices (P1t, ..., Pnt) is a Bertrand equilibrium in pure strategies for

each t ∈ T .

The first three parts state that we can find standard demands for each observation and cost

functions for each firm such that the cost and demand functions explain the observed de-

mands and costs. The final part states that these cost and demand functions must also be

such that the observed set of prices in each observation constitute a pure strategy Bertrand

equilibrium. The alternative concept of Cournot rationalizability requires that we can find

inverse demands for each observation and cost functions for each firm such that these func-

tions explain the observed outputs and costs. Moreover, the cost and inverse demand func-

tions must be such that the observed outputs in each observation constitute a pure strategy
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Cournot equilibrium. For completeness we state this formally below.

Definition 5 A single-price data set, (P ∗t , Qit, Cit)i∈N,t∈T , is Cournot rationalizable if there

exist C2 functions, C̄i : <+ → <+ for each i ∈ N , F̄t : <+ → <+ for each t ∈ T , such that:

i) C̄i(0) = 0 and C̄ ′i(x) > 0 for all x > 0.

ii) F̄t(x) ≥ 0 and F̄ ′t(x) ≤ 0 with the latter inequality holding strictly whenever F̄t(x) > 0.

iii) C̄i(Qit) = Cit and F̄t(Q
∗
t ) = P ∗t .

iv) The set of observed outputs (Q1t, ..., Qnt) is a Cournot equilibrium in pure strategies for

each t ∈ T .

Before stating conditions which characterize the rationalizable sets we shall introduce some

notation which helps organize the observations. Let Ri(t) = {t′ ∈ T : Qit′ ≥ Q∗t}. That

is, Ri(t) is the set of observations when the output of firm i is greater than the aggregate

output in observation t. Let Si(t) = {t′ ∈ T : Qit′ < Qit}. The set Si(t) is those observations

when the output of firm i is less than its own output in observation t. We shall also want

to compare firms’ outputs with regards to the following quantity Q̂t = Q∗t/(|At| + 1). We

introduce Mi(t) = {t′ ∈ T : Qit′ ≥ Q̂t} which is the set of observations when the output of

firm i is greater than or equal to Q̂t.

Definition 6 A set of generic homogeneous-good oligopoly observations, (Pit, Qit, Cit)i∈N,t∈T ,

satisfy the increasing cost condition (ICC) if, whenever Si(t) 6= ∅, then Cit −Cit′ > 0 for all

t′ ∈ Si(t).

The interpretation of the increasing cost condition is straightforward: it states that whenever

we observe a firm producing a higher output then its observed costs should increase. It should

be clear that this is a necessary condition for rationalization by either oligopoly model. If

violated then we would not be able to construct an increasing cost function which explains

the observed costs.

Definition 7 A set of generic homogeneous-good oligopoly observations, (Pit, Qit, Cit)i∈N,t∈T ,

satisfy the monopoly deviation condition (MDC) if, whenever Ri(t) 6= ∅, then P ∗t Qit −Cit ≥
P ∗t Q

∗
t − Cit′ for all t′ ∈ Ri(t) with the inequality holding strictly whenever Qit′ > Q∗t .

The monopoly deviation condition requires that the observed profit of any firms is at least as

great as the profit they could obtain from supplying the entire market demand and incurring

a cost at least as large as that required to meet the demand. Note that if the relevant

inequalities are not defined then this does not violate the condition. The key point is that

we do not observe a violation of the condition. The intuition behind the condition is that

when it is satisfied we shall be able to find cost and demand function which are consistent

with firms not wanting to post a price which undercuts the observed minimum price.
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Definition 8 A set of generic homogeneous-good oligopoly observations, (Pit, Qit, Cit)i∈N,t∈T ,

satisfy the tie deviation condition (TDC) if, whenever Mi(t) 6= ∅, then P ∗t Q̂t ≤ Cit′ for all

t′ ∈Mi(t) and i ∈ N\At with the inequality holding strictly whenever Qit′ > Q̂t.

The tie deviation condition states that if a firm is not active in a given observation then

the revenue it could obtain from tieing at the minimum price, note that Q̂t is the share of

the demand which the firm could obtain from tieing at the minimum price, is less than the

cost which the firm would obtain from supplying a quantity at least as high as Q̂t. As with

the monopoly deviation condition, if the relevant inequalities are not defined then this does

not violate the condition. All that matters is that we do not observe a violation when the

relevant quantities are defined. The intuition behind the condition is that if satisfied we shall

be able to construct cost and demand functions such that inactive firms cannot profitably

deviate by joining a minimum price tie.

Definition 9 A single-price data set, (P ∗t , Qit, Cit)i∈N,t∈T , satisfies the marginal condition

(MC) if, whenever Si(t) 6= ∅, then P ∗t Qit′ − Cit′ < P ∗t Qit − Cit for all t′ ∈ Si(t).

The marginal condition applies to single-price data sets and says we do not observe a period

where one firm could reduce its output and increase its profits provided that the market price

remains unchanged. As with the previous conditions, if the inequality is not defined this

does not contradict the condition. We now present the first main result which is a complete

characterization of which generic homogeneous-good data sets can be Bertrand rationalized.

Theorem 1 A set of generic homogeneous-good oligopoly observations, (Pit, Qit, Cit)i∈N,t∈T ,

is Bertrand rationalizable if and only if it satisfies ICC, MDC and TDC.

Proof. First we prove the necessity part of the result and second the sufficiency part. It should

be clear from the definition of Bertrand rationalizability that if ICC is violated we cannot

construct a cost function which satisfies part (i) and (iii) of Definition 4. Suppose instead

that MDC is violated. Then there is an i, t and t′ ∈ Ri(t) such that P ∗t Qit−Cit ≤ P ∗t Q
∗
t − Cit′

and Qit′ > Q∗t . If the observations are rationalizable we have that P ∗t Qit − C̄i(Qit) ≤
P ∗t D̄t(P

∗
t )− C̄i(Qit′). Then firm i could set a price P ∗t − ε, and by choosing ε > 0 to be

sufficiently small, we have D̄t(P
∗
t − ε) < Qit′ and C̄i(D̄t(P

∗
t − ε)) < C̄i(Qit′). This means

firm i could obtain a strictly higher profit by deviating to price P ∗t − ε and contradicts the

observed prices being a Bertrand equilibrium.9 Suppose that TDC is violated. Then there is

an i, t and t′ ∈Mi(t) such that i ∈ N \ At, P
∗
t Q̂t−Cit′ ≥ 0 and Qit′ > Q̂t. If the observations

are rationalizable we have P ∗t Q̂t− C̄i(Qit′) ≥ 0. As i ∈ N \ At the firm obtains zero observed

9The same argument applies when P ∗t Qit − Cit < P ∗t Q∗t − Cit′ and Qit′ = Q∗t .
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profit in period t, but this means firm i could deviate and join the minimum price tie at P ∗t
and obtain P ∗t Q̂t − C̄i(Q̂t) > 0 as C̄i(Q̂t) < C̄i(Qt′).

10

To see that the conditions in the theorem are also sufficient we first show how to construct

firms’ cost functions given the observed costs. Second we show how to construct the market

demands. Finally we show that the constructed functions satisfy all the requirements of

Definition 4. In constructing the relevant functions it is helpful to introduce the following

notation. We shall let ri(t) = {t′ ∈ Ri(t) : Qit′ < Qit ∀t ∈ Ri(t)} so that ri(t) is that

observation in Ri(t) which minimizes the output of firm i across the observations in Ri(t).

We shall let si(t) = {t′ ∈ Si(t) : Qit′ > Qit ∀t ∈ Si(t)}. That is, si(t) is that observation

belonging to Si(t) which maximizes the output of firm i across the observations in Si(t). Let

mi(t) = {t′ ∈ Mi(t) : Qit′ < Qit ∀t ∈Mi(t)}. That is, mi(t) is that observation belonging to

Mi(t) which minimizes the output of firm i across the observations in Mi(t).

First, as the observed costs satisfy ICC we can construct a smooth, strictly increasing

cost function for each firm with the properties that C̄i(Qit) = Cit and C̄i(0) = 0. Now we

impose the following three restrictions upon these cost functions:

(1) For all t ∈ T such that Ri(t) is non-empty and Qiri(t) > Q∗t choose the cost function so

that C̄i(Q
∗
t ) > max{P ∗t (Q∗t −Qit) + Cit, Cisi(t)}.

(2) Define Vi = {t′ ∈ T : Ri(t
′) = ∅}, vi = {t′ ∈ T : Q∗t′ ≤ Q∗t∀t ∈ Vi} and wi =

maxt∈Vi
P ∗t (Q∗t −Qit) + Cit. Then the cost functions are constructed so that C̄i(Q

∗
vi

) > wi.

(3) For all i ∈ N \ At and Qimi(t) > Q̂t construct the cost function so that C̄i(Q̂t) > P ∗t Q̂t.

The restriction in (1) can always be satisfied because as MDC is satisfied we have that

P ∗t Qit−Cit > P ∗t Q
∗
t −Ciri(t) and the cost function can be chosen so that C̄i(Q

∗
t ) = Ciri(t)− ε

provided ε > 0 is sufficiently small. The restriction in (2) can always be satisfied because it

states that for those observations when we do not observe the firm i producing an output at

least as large as the aggregate market output we can choose the cost function so that MDC is

satisfied. The restriction in (3) can be satisfied because as TDC is not violated we have that

whenever i ∈ N \ At then P ∗t Q̂t − Cimi(t) < 0 whenever Qimi(t) > Q̂t and the cost function

of firm i can be constructed so that C̄i(Q̂t) = Cimi(t) − ε provided ε > 0 is sufficiently small.

To see how to construct the market demands for each observation consider the following

piecewise-affine market demand D̄t(Pt) = max{0, 2Q∗t−Q∗tPt/P
∗
t }. This is strictly decreasing

on the interior of the output space and satisfies D̄(P ∗t ) = Q∗t .11 Note that the revenue

as a function of price is R(Pt) = 2Q∗tPt − Q∗tP
2
t /P

∗
t . The marginal revenue is R′(Pt) =

2Q∗t − 2Q∗tPt/P
∗
t . Therefore R′(P ∗t ) = 0 and revenue is maximized at P ∗t . This means

10The same argument applies when P ∗t Q̂t − Cit′ > 0 and Qit′ = Q̂t.
11The kink which occurs when demand becomes zero could be smoothed out on a small interval to give a

C2 function.
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PtD̄t(Pt) < P ∗t D̄t(P
∗
t ) whenever Pt 6= P ∗t . This property will be useful in showing that these

functions are sufficient for Bertrand rationalizability.

To see that these functions are sufficient for Bertrand rationalizability note that we have

satisfied parts (i)−(iii) of Definition 4 and that all that remains to be shown is that given the

constructed functions the set of observed market prices constitutes a pure strategy Bertrand

equilibrium. Consider any firm i ∈ At or i ∈ N \ At increasing their price. As |At| ≥ 2 they

lose any demand and make zero profit which cannot be an improvement upon the observed

profit. Second, consider a firm i ∈ N \ At which lowers their price to tie at P ∗t . As the

constructed cost function satisfies P ∗t Qt−C̄i(Q̂t) ≤ 0 this cannot be a improvement upon zero

profit. Finally, suppose a firm undercuts the market and posts a price P ∗t −ε, ε > 0. The profit

the firm would obtain is (P ∗t −ε)D̄t(P
∗
t −ε)−C̄i(D̄t(P

∗
t −ε)). As the market demand achieves

maximum revenue at P ∗t we have (P ∗t − ε)D̄t(P
∗
t − ε) < P ∗t D̄t(P

∗
t ) = P ∗t Q

∗
t . As the market

demand is strictly decreasing and cost functions strictly increasing we have C̄i(D̄t(P
∗
t −ε)) >

C̄i(Q
∗
t ). Combining these two inequalities gives (P ∗t − ε)D̄t(P

∗
t − ε) − C̄i(D̄t(P

∗
t − ε)) <

P ∗t Q
∗
t − C̄i(Q

∗
t ). As the constructed cost functions satisfy P ∗t Qit− C̄i(Qit) ≥ P ∗t Q

∗
t − C̄i(Q

∗
t )

we have P ∗t Qit − C̄i(Qit) > (P ∗t − ε)D̄t(P
∗
t − ε)− C̄i(D̄t(P

∗
t − ε)). We can conclude that no

firm can profitably undercut the market and the set of observed prices constitutes a pure

strategy Bertrand equilibrium. �

When we have the special case of a single-price data set this could be consistent with

firms choosing outputs and letting the market determine a single-market clearing price. It

turns out that the structure imposed by the Cournot equilibrium upon the observable market

outcomes can be characterized by the increasing cost condition and the marginal condition.

Theorem 2 A single-price data set, (P ∗t , Qit, Cit)i∈N,t∈T , is Cournot rationalizable if and

only if it satisfies ICC and MC.

Proof. See Carvjal and Quah (2009, p.14, Thereom 1).12 �

The result in Theorem 2 actually applies to a broader class of data sets than that con-

sidered here in that one could allow firms to produce different quantities and the result still

holds. It is worth noting that the characterizations in Theorem 1 and 2 are quite different in

terms of what they impose upon the observables. The key condition for a set of observations

to be Bertrand rationalizable is that we do not observe a situation where a firm can bene-

fit from increasing its output and serving the entire market demand (monopoly deviation)

whereas the condition for Cournot rationalizability is that we do not observe a situation

where a firm can benefit from decreasing its output (marginal condition). Despite it often

12They assume that the data satisfies the increasing cost condition and therefore state the result in solely
in terms of the marginal condition.
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being assumed that price competition will result in lower prices than quantity competition

it is well-known that when the set of Bertrand equilibria of a market is non-empty then it is

possible for the Cournot equilibrium price to also constitute a Bertrand equilibrium (Vives,

1999, p.122). Therefore it is interesting to establish which market outcomes are consistent

with both of the oligopoly models. We provide the following characterization.

Theorem 3 A single-price data set, (P ∗t , Qit, Cit)i∈N,t∈T , is Bertrand and Cournot rational-

izable if and only if it satisfies ICC, MC and MDC.

Proof. The result follows from combining the conditions in Theorems 1 and 2 and noting

that a single-price data set trivially satisfies TDC. �

The previous results started from the assumption that we are able to observe prices,

outputs and cost information.13 What happens to these results if we drop cost information

from the data set? That is, can any set of generic homogeneous-good market observations

be Bertrand or Cournot rationalized? If any set of generic observations of prices and outputs

could be explained by the models then they can not be refuted even at a theoretical level. It

turns out that there are non-trivial restrictions imposed by the Bertrand equilibrium upon

generic data sets. To see this consider the following example of a symmetric duopoly, n = 2,

with two observations, m = 2.

(P,Q)

t=1 (1, 4)

t=2 (2, 2)

If these observations are Bertrand rationalizable then we should be able to find a cost

function for the first observation which satisfies 0 < C̄(4) ≤ 4 as firms do not make losses.

In the second observation the monopoly deviation condition requires that we can choose

the cost function so that 4 − C̄(2) ≥ 8− C̄(4) with 0 < C̄(2) < C̄(4). Inspection of these

inequalities reveals that they cannot be simultaneously satisfied and the table is an example

of a data set of prices and outputs which cannot be Bertrand rationalized. We now introduce

two conditions for generic price and output data sets.

Definition 10 A generic homogeneous-good set of prices and outputs, (Pit, Qit)i∈N,t∈T , sat-

isfies the revenue condition (RC) if, whenever Ri(t) 6= ∅, then P ∗t′Qit′ > P ∗t (Q∗t −Qit) for all

t′ ∈ Ri(t) and i ∈ At.

13We could have started instead by assuming that we observe prices, outputs and profits and then inferred
cost information as the difference between revenue and costs.
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The revenue condition states that the observed revenue which a firm obtains when it supplies

an output at least as large as the observed aggregate output must be strictly greater than

the increase in the revenue which a firm would obtain from supplying the entire market at

the existing price.

Definition 11 A generic homogeneous-good set of prices and outputs, (Pit, Qit)i∈N,t∈T , sat-

isfies the tied revenue condition (TRC) if i ∈ At then we do not observe a t′ ∈ T such that

i ∈ N \ At′ and P ∗t′Q̂t′ ≥ P ∗t Qit and Q̂t′ ≤ Qit with at least one of the inequalities holding

strictly.

The tied revenue condition requires that if we observe a firm supplying the market in a given

observation then we should not observe the same firm not supplying the market whenever it

can obtain at least as high a revenue and produce a strictly smaller output or produce the

same output and obtain a strictly higher revenue. We now present the following result which

shows that both the revenue condition and tied revenue condition are necessary conditions

for Bertrand rationalizability.

Proposition 1 A generic homogeneous-good set of prices and outputs, (Pit, Qit)i∈N,t∈T , is

Bertrand rationalizable only if it satisfies RC and TRC.

Proof. Suppose we have a generic set of observations which violate RC. Then there is an

i, t and t′ ∈ Ri(t) such that P ∗t′Qit′ ≤ P ∗t (Q∗t −Qit). If the observations are rationalizable

we should be able to find a cost function such that C̄i(Qit′) ≤ P ∗t′Qit′ and C̄i(Qit) ≤ P ∗t Qit

as firms do not make losses. MDC also requires that C̄i(Qit′) − C̄i(Qit) > P ∗t (Q∗t −Qit).

However, if C̄i(Qit′) ≤ P ∗t′Qit′ we must have that C̄i(Qit′)− C̄i(Qit) < P ∗t (Q∗t −Qit) and the

observations are not Bertrand rationalizable.

Suppose that we have a set of generic observations which violate TRC. Then there is an

i, t and t′ such that i ∈ At, i ∈ N \ At′ and P ∗t′Q̂t′ > P ∗t Qit and Q̂t′ ≤ Qit. If the observations

are rationalizable we should be able to find a cost function so that C̄i(Qit) ≤ P ∗t Qit. However,

as Q̂t′ ≤ Qit and P ∗t′Q̂t′ > P ∗t Qit this implies that P ∗t′Q̂t′ − C̄i(Q̂t′) > 0 and that firm i has a

profitable deviation by posting the minimum price in observation t′.14 �

If one returns to the example data set it is clear that the reason that set of observations

could not be Bertrand rationalized is because it violates RC: in observation one each firm

produces a output equal to the aggregate market output in the second observation and

obtains a revenue of 4. The revenue condition then requires that 4 > 2(4 − 2) which is

violated. It is also straightforward to construct example data sets which satisfy the conditions

14The same argument applies when P ∗t′Q̂t′ ≥ P ∗t Qit and Q̂t′ < Qit.
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in Proposition 1 and yet still fail to be Bertrand rationalizable so unfortunately the conditions

cannot be easily extended to provide sufficient conditions. However, we shall introduce a

strengthening of the revenue condition which can be applied to single-price observations of

prices and outputs.

Definition 12 A single-price data set of prices and outputs, (P ∗t , Qit)i∈N,t∈T , satisfies the

strengthened revenue condition (SRC) if, whenever Ri(t) 6= ∅, then P ∗t′Qit′ > P ∗t Q
∗
t for all

t′ ∈ Ri(t).

The following result shows that this condition alone is sufficient for a single-price set of prices

and outputs to be Bertrand rationalizable.

Proposition 2 A single-price data set of prices and outputs, (P ∗t , Qit)i∈N,t∈T , is Bertrand

rationalizable if it satisfies SRC.

Proof. As SRC is satisfied we have P ∗ri(t)
Qiri(t) > P ∗t Q

∗
t whenever this is defined.15 Subtract-

ing P ∗t Qit from each side of the inequality gives P ∗ri(t)
Qiri(t)−P ∗t Qit > P ∗t Q

∗
t −P ∗t Qit. The ra-

tionalizing cost function can then be chosen so that C̄i(Qiri(t)) = P ∗ri(t)
Qiri(t), C̄i(Qit) = P ∗t Qit

and the constructed costs satisfy ICC. We then also have C̄i(Qiri(t))−C̄i(Qit) > P ∗t (Q∗t −Qit)

and MDC is satisfied. As the data set is a single-price data set TDC is trivially satisfied and

the rationalizability of the data set follows from Theorem 1. �

Up until now we have not considered what structure the Cournot equilibrium imposes

upon single-price data sets of prices and outputs and what the relationship is with the

Bertrand equilibrium conditions. It turns out that the Cournot equilibrium imposes no

restrictions upon prices and outputs. The following result states that any single-price data

set of prices and outputs can be Cournot rationalized.

Proposition 3 Any single-price data set of prices and outputs, (P ∗t , Qit)i∈N,t∈T , is Cournot

rationalizable.

Proof. See Carvajal and Quah (2009, p.19, Corollary 1). �

This represents a significant difference between the two models. If one permits a general

increasing cost function then any single-price data set of prices and outputs can be Cournot

rationalized whereas the Bertrand equilibrium imposes non-trivial restrictions even upon

single-price data sets. Once cost information is unavailable the Cournot model cannot be

refuted. However, if one restricts the rationalizing cost function beyond requiring that it just

explain the observed costs and be strictly increasing then it is possible that some single-price

data sets of prices and outputs cannot be Cournot rationalized.16

15Recall that ri(t) = {t′ ∈ Ri(t) : Qit′ < Qit ∀t ∈ Ri(t)} was introduced in the proof of Theorem 1.
16Carvajal and Quah (2009) introduce the notion of a ‘convincing rationalization’ where the cost function
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3 Examples of revealed Nash equilibria in oligopoly

games

One of the advantages of the revealed preference method is that we can write down possible

observations and test their compatibility with different equilibrium concepts. We now pro-

ceed in this fashion and apply the conditions derived in the previous section to two simple

data sets to demonstrate their theoretical usefulness.

3.1 Example 1

(P,Q,C)

t=1 (3, 1, 1)

t=2 (4, 2, 7)

Consider the example observations given in the table of a symmetric duopoly, n = 2,

with two observations, m = 2. This is a single-price data set and could potentially be

consistent with either the Bertrand or Cournot equilibrium solutions. First, we can note

that Si(2) = {1}. The increasing cost condition requires Ci2 − Ci1 = 7 − 1 > 0 which

is satisfied. Second, note that Ri(1) = {2} as in observation two each firm produces an

output equal to the aggregate market output in observation one. The monopoly deviation

condition requires that we do not observe a firm able to increase its observed profits by

supplying the entire market demand. This means we require P ∗i1Qi1 − Ci1 = (3)(1) − (1) =

2 ≥ (3)(2)− 7 = −1 = P ∗1Q
∗
1 − Ci2 which is satisfied. As this is a single-price data set the

tie deviation condition is trivially satisfied and we can conclude that the observations can

be Bertrand rationalized. Now consider the marginal condition. We require that we do not

observe a situation where a firm could benefit from reducing its output. This means we

require P ∗2Qi2 − Ci2 = (4)(2)− 7 = 1 > (4)(1)− 1 = 3 = P ∗2Qi1 − Ci1 which is violated. We

can conclude that this set of observations cannot be Cournot rationalized.

3.2 Example 2

Consider the example observations given in the table above of a symmetric duopoly, n = 2,

and two observations, m = 2. Again as this is a single-price data set the observations could

must be chosen so that the marginal cost lies between the observed marginal costs and show that this
restriction rules out certain types of observations being Cournot rationalizable.
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(P,Q,C)

t=1 (3, 1, 2)

t=2 (4, 2, 4)

potentially be consistent with firms playing either the Bertrand or Cournot equilibrium.

First, note that Si(2) = {1}. The increasing cost condition requires Ci2 − Ci1 = 4 − 2 > 0

which is satisfied. Second, note that Ri(1) = {2} as in observation two each firm produces

an output equal to the aggregate output in the first observation. The monopoly deviation

condition requires that P ∗i1Qi1−Ci1 = (3)(1)−2 = 1 ≥ (3)(2)− 4 = 2 = P ∗1Q
∗
1−Ci2 which is

violated. Therefore this set of observations cannot be Bertrand rationalized. The marginal

condition requires that no firm can benefit by reducing their outputs. The condition requires

that P ∗2Qi2 − Ci2 = (4)(2) − 4 = 4 > (4)(1) − 2 = 2 = P ∗2Qi1 − Ci1. Therefore this set of

observations can be Cournot rationalized.

4 Conclusion

Following on from the works of Sprumont (2000), Zhou (2005) and Carvajal and Quah (2009)

which characterized Nash equilibrium sets in abstract games, the aim of this paper has been

to show that the method of revealed preferences can be applied to oligopoly games. To this

end, we have provided characterizations of observations which can be rationalized by the

Bertrand and Cournot equilibrium solutions. The results show that both equilibrium con-

cepts impose non-trivial restrictions upon observables and it is possible for a set of market

observations to be revealed inconsistent with either of the equilibrium concepts. Moreover,

the conditions which characterize the sets, monopoly deviation, tie deviation and marginal

condition, are economically intuitive and take the form of linear inequalities. However, if we

only observe prices and outputs then the Cournot equilibrium imposes no restrictions upon

the observables whereas the Bertrand equilibrium does. An open problem is what restric-

tions other oligopoly models impose upon observable outcomes. For example, in Bertrand-

Edgeworth competition where firms are free to ration the demand which they receive, then

a homogeneous-good may be traded at different prices, which is true of real-world markets,

and the market outcomes may be quite different from Bertrand or Cournot competition. The

difficulty in proceeding in this direction is that the equilibrium solution is often in mixed

strategies and it is not straightforward how revealed preference theory should be extended
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to test stochastic choice behaviour.17
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