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Abstract: We develop a new model of addictive behavior that takes as a

starting point the classic rational addiction model of Becker and Murphy, but

incorporates uncertainty. We model uncertainty through the Wiener stochastic

process. This process captures both random events such as anxiety, tensions

and environmental cues which can precipitate and exacerbate addictions, and

those sober and thought-provoking episodes that discourage addictions. We

derive closed-form expressions for optimal (and expected optimal) addictive

consumption and capital trajectories and examine their global and local prop-

erties. Our theory provides plausible explanations of several important patterns

of addictive behavior, and has novel implications for addiction control policy.
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1 Introduction

Addiction to certain substances such as alcohol, tobacco, cocaine, marijuana, and heroin,

or activities like gambling, eating, sex, watching television, playing computer games, and

internet use, can be so powerful that it often has a dire effect on the lives of people involved.

According to the 2011 and 2012 World Health Organization reports on the harmful use of

alcohol and tobacco, these two addictive substances cause approximately 2.5 million and

5 million deaths respectively each year around the world. The number of people who are
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dependent on alcohol, tobacco or other substances far exceeds the death toll. Alcohol use

is the world’s third biggest risk factor for disease and disability and is a causal factor in

60 types of diseases and injuries and a component cause in 200 others. It is also closely

associated with many serious social problems such as violence, child neglect and abuse,

and absenteeism in the workplace. Tobacco smoking alone kills even more than acquired

immune deficiency syndrome/human immunodeficiency virus (AIDS/HIV), malaria and

tuberculosis combined. Across the globe, 12% of all deaths amongst people aged 30 years

and above have been identified to be attributable to tobacco. In particular, tobacco smok-

ing accounts for 71% of all lung cancer deaths and 42% of all chronic obstructive pulmonary

disease. Both alcohol drinking and tobacco smoking contribute to family poverty whereby

money spent on them can take away a significant part of total household income that may

be necessary for the family’s use of other goods and services. A worrisome development

is that the consumption of alcohol and tobacco in developing countries is accelerating and

more and more women have also begun to smoke and drink as these countries become more

affluent and women also have more economic power. This trend is blindingly obvious in

China.4

Addiction has long been recognized as a fundamental and baffling problem for re-

searchers, social workers and governments.5 The primary goal of studying (harmful) ad-

diction is to try to understand its behavior and ultimately to explore its treatment and

methods of prevention. Among many theories and models developed so far stands out

Becker and Murphy (1988)’s theory of rational addiction (see e.g., Vuchinich and Heather

2003, West 2006, and Moss and Dyer 2010) as a classic economic analysis of addiction.

Addictive behavior for drinking, smoking, eating, gambling and others is habit-forming,

cannot be static and must be dynamic. The key symptoms of such behavior are tolerance,

withdrawal and reinforcement. Tolerance means that repeatedly using a substance or do-

ing an activity over time requires more and more of the substance or activity to achieve

the same level of satisfaction as the individual previously experienced. Withdrawal is a

negative state at which an individual will feel extremely uncomfortable when he reduces

or stops the consumption of a substance or an activity. For instance, typical alcohol with-

4Although the number of smokers has been decreasing considerably in developed countries in the last

few decades due to governments’ legislations on cigarettes and unrelenting campaigns of concerned health

groups against tobacco, smoking is still a very serious health problem in some developed countries. A

recent BBC investigation by Peter Taylor (2014) states: “Though the (smoking) habit is slowly declining,

about one in five British adults still smoke. Smoking among 20 to 34-year-odds has actually increased in

the past few years. And though the tobacco industry insists it does not target children, every year 200,000

of those aged 11-15 start smoking.”
5Surprisingly or not, even several academic journals including Addiction, Addictive Behaviors, The

American Journal on Addictions, Psychology of Addictive Behaviors, are entirely devoted to the study of

addiction. The sheer volume of research illuminates the immense importance of the subject.
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drawal symptoms include agitation, delirium tremens, and seizures. Reinforcement refers

to the type of behavior that the more an individual consumes a substance or partakes of

an activity today, the more he wants to do in the future.6 Becker and Murphy lay out a

dynamic economic model that not only captures these fundamental features of addiction,

but also gives sensible predictions about addictive behavior.

In their model, Becker and Murphy use a utility function to quantify the “benefit” or

“pleasure” from consuming an addictive good and a normal good. The utility function

depends both on the consumption level of the addictive good and the normal good and

on the addictive capital that has been accumulated so far. They impose first- and second-

order conditions on the utility function so that tolerance, withdrawal and reinforcement

are satisfied. The individual is assumed to be fully aware of the negative consequence of

consuming the addictive good and capable of weighing all options rationally and making a

consistent plan to maximize utility over his life time. Becker and Murphy use a quadratic

function to approximate the utility function and provide detailed analysis of the dynamic

aspects of addictive consumption. Their modeling of rational addiction has subsequently

become the standard approach to the study of consumption of addictive goods such as

tobacco, alcohol, cocaine, coffee and gambling and has also found strong and consistent

empirical support from a number of studies (see e.g., Becker, Grossman and Murphy 1991,

1994, Chaloupka 1991, Mobilia 1990, Keeler, Hu, Barnett and Manning 1993, Olekalns and

Bardsley 1996, Grossman and Chaloupka 1998, Grossman, Chaloupka, and Sirtalan 1998,

Suranovic, Goldfarb and Leonard 1999, Fenn, Antonovitz and Schroeter 2001, and Adda

and Cornaglia 2006).

The purpose of the current paper is to develop a new model of addictive behavior that

takes as its starting point the classic model of Becker and Murphy (1988), but incorporates a

crucial factor –uncertainty– into the model. Uncertainty is a fact of life and even more so for

addictive people. It is well-known that anxiety, insecurity and tension can precipitate and

worsen an addiction. This mental state is often caused by the interactions of genetic factors

with unpredictable and stressful events such as unemployment, death of a loved one, marital

breakup, and peer pressure. Also random events come from exposure to environmental

cues. As cases in point, sight of a cigarette advertisement can induce an irresistible impulse

to smoke; warm and sunny weather boosts the mood for sex, while cold and gloomy

weather dampens the mood for sex. Another unfortunate fact is that addicts of harmful

substances usually make their lives more unpredictable, because they can lose their jobs

more easily, their marriage can be less stable, and they are also more vulnerable to diseases

and accidents. Generally speaking, uncertainty exacerbates addiction; addiction reinforces

6Becker andMurphy (1993) develop an advertising model which also shares this feature of reinforcement,

that is, advertisements are complementary to consumption of the advertised good.

3



uncertainty. Vicious circles can arise in an addict’s life. Events that can precipitate

and aggravate addiction will be called harmful events, while events such as compelling

campaigns against drugs that can discourage addiction will be called beneficial events. Our

model accommodates both harmful and beneficial random events. We adopt the standard

Wiener stochastic process to capture uncertainty; see e.g., Mirrlees (1963), Merton (1969,

1971), and Black and Scholes (1973). More precisely, in contrast to Becker and Murphy’s

deterministic addiction capital accumulation process, we use the Wiener stochastic process

to describe how uncertainty influences the accumulation of addiction capital. In general

we show in Proposition 2 that addictive consumption will decrease as the price of the

addictive good increases. The incorporation of uncertainty entails simplification of some

parts of the model. Our analysis therefore focuses on the essential and tractable case where

the normal good is ignored or its consumption level is fixed. Surprisingly in this case closed-

form solutions can be obtained for optimal addictive consumption and capital trajectories

(Theorem 1). The explicit formulas reveal the complex evolutionary nature of addictive

behavior, which is determined by a host of factors including uncertain events, volatility

of shocks, the individual’s attitude towards risk, time preference, and addictive capital

depreciation rate. They enable us to derive both qualitative and quantitative properties of

the dynamics of addictive behavior and infer policy implications.

In our analysis, we explore a class of multivariate power utility functions that not

only capture three basic characteristics of addictive behavior –tolerance, withdrawal and

reinforcement–, but also are tractable and can thus facilitate the establishment of various

properties of the model. These utility functions are called addictive multivariate power

functions and admit meaningful and intuitive interpretations. For instance, in the case of

harmful addiction like smoking cigarettes the total utility value from addictive consumption

is always negative, whereas in the case of beneficial addiction such as music and jogging

(see Stigler and Becker 1977, Becker and Murphy 1988) the utility value from addictive

consumption will be positive. In the analysis of Becker and Murphy (1988) and several

subsequent studies, the quadratic utility function is used as an approximation near a steady

state. A major drawback of this approximation is that it is then extremely difficult to know

the global pattern of dynamic addictive behavior and sometimes even locally it may not

be a good approximation. Fortunately, the addictive multivariate power utility function

makes the approximation obsolete and meanwhile allows us to derive closed-form solutions

and obtain fresh insights into the evolution of addictive behavior and into policy issues,

and to establish both global and local properties of dynamic addictive behavior.

We shall also highlight several other results. For instance, it will be easy to understand

why anxiety and tension can precipitate an addiction. This is so because anxiety and

tension will make the individual more present-oriented, and the more present-oriented he
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is, the more he will consume and thus become more addicted today rather than tomorrow.

It is shown in Proposition 4 that while on the one hand, the more volatile the situation an

individual faces, the more susceptible to change his addictive consumption will be, on the

other hand on average his addictive consumption will decrease and it shows a similar pat-

tern to normal goods. Our results indicate whether the individual’s addictive consumption

level will converge to zero, remain constant or go to infinity does not depend on his initial

state but on uncertainty and his personal parameters such as his attitude to risk, time pref-

erence and addictive capital depreciation rate. Our results also offer a natural explanation

of why cycles of binges and abstention attempts can occur and when cold turkey could be

used to end addiction. Binges refer to a phenomenon in which an individual sporadically

does too much of a particular activity, especially drinking or eating, in a short period of

time. One important policy implication of our analysis is that instead of harsh treatment

like going cold turkey, which can be extremely painful or sometimes even life-threatening,

there always exists soft treatment–a gradual and less painful process toward addiction ces-

sation. Another policy implication is that our theory allows a broad and flexible treatment

to promote abstention: soft treatment, harsh treatment, or a combination of both.

We conclude this introduction by briefly reviewing a number of related studies in the

literature. Dockner and Feichtinger (1993) study a variant of two-state-variable model of

Becker and Murphy (1988) and examine cyclical consumption behavior. Orphnides and

Zervos (1995) propose a discrete-time infinite horizon model of rational addiction in which

individuals have unknown addictive power. They stress the informational role of exper-

imentation and the importance of subjective beliefs and explain why addicts may regret

their past consumption decisions. Recently several important behavioral models have been

proposed. Laibson (2001) studies the choices of a rational decision maker who has a cue-

contingent habit formation like addiction. The model shows why tastes and cravings can

change rapidly from moment to moment and why the individual should actively try to

avoid temptations. Gruber and Koszegi (2001) present a model of addiction that uses hy-

perbolic discounting preferences and exhibits forward-looking behavior. They also provide

an empirical test for their model based on cigarette consumption. Bernheim and Rangel

(2004) introduce a model based on three premises: addictive consumption is usually a

mistake; experience with addictive substance sensitizes the involved person to environ-

mental cues that trigger mistaken usage; addicts are well aware of their susceptibility to

cue-triggered mistakes and try to respond wisely. They explore the model’s positive impli-

cations for typical patterns of addiction and public policy. Compared with a large amount

of empirical work on the venerable Becker-Murphy addiction model, not much empirical

work has been reported on these relatively new behavioral addiction models. Our model

follows most closely the model of Becker and Murphy (1988) but goes beyond their model
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by incorporating uncertainty in a significant and insightful way.

This paper proceeds as follows. Section 2 reviews the Becker-Murphy model and in-

troduces preliminaries. Section 3 contains the main results including the model under

uncertainty, closed-form solutions for optimal addictive consumption and capital trajec-

tories, and their basic properties. Section 4 analyzes the deterministic case and explores

policy implications. Section 5 concludes. Most of the proofs are deferred to the appendices.

2 Preliminaries

The great Chinese philosopher Confucius says: “One can gain new insight through re-

flecting on the past.” Let us begin by briefly reviewing the Becker-Murphy model. Despite

some criticisms7, it remains a natural model that does not only capture several fundamental

patterns of addictive behavior but also gives sensible predictions.

In the Becker-Murphy model, the utility of an individual at any moment t in time

depends on the consumption of a normal good z(t) and of an addictive good c(t). The

addictive good differs crucially from the normal good in that not only the current con-

sumption of the addictive good but also its accumulated consumption A(t) from the past

affect the individual’s utility. We can formally describe this utility function as

u(t) = u(c(t), A(t), z(t)), (1)

where c(t) and z(t) are the current consumption of the addictive good and the normal

good at time t respectively, and A(t) is called addictive capital at time t. A(t) is used as a

measure to reflect the accumulated effect of the past consumption of the addictive good.

The utility function u is assumed to be strictly concave of c, A, and z and to have second

partial derivatives for each of the arguments.

To explain and capture three fundamental addiction characteristics: tolerance, with-

drawal, and reinforcement, Becker and Murphy (1988) impose the following natural and

mild conditions on the utility function u:

uc > 0, ucc < 0. (2)

uA < 0, uAA < 0. (3)

ucA > 0. (4)

uz > 0, uzz < 0. (5)

7See for instance Akerlof (1991, p.5). See also Winston (1980) and Schelling (1984) for different opinions

about the rational approach to addictions (Stigler and Becker 1977).
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Here (2) and (5) are most familiar, indicating that the marginal utilities of both addictive

good and normal good are positive and decreasing. It means that the more of either good

the higher utility but the lower marginal utility the individual will get. The inequality

(2) describes withdrawal effect, implying that the individual’s utility would fall should the

consumption of the addictive good be reduced. The negative marginal utility of addictive

capital A given by (3) captures tolerance, saying that less cumulative past consumption of

the addictive good will enhance current utility. This assumption is markedly different from

typical ones in economic theory whose marginal utilities are assumed to be positive. Like

addictive good and normal good, the marginal utility of addictive capital is also decreas-

ing. Finally, inequality (4) reflects reinforcement between current addictive consumption

and addictive capital, stating that past consumption will bolster current consumption.

Reinforcement is also called adjacent complementarity (see Ryder and Heal 1973, and Ian-

naccone 1986).

In the Becker-Murphy model, a rational addict makes a consistent plan to maximize

his utility over time when he chooses his consumption bundle each time. This decision

problem is formulated as

maxc(t),z(t)
∞
∫

0

u(c(t), A(t), z(t)) exp(−ρt)dt

s.t. Ȧ(t) = c(t)− δA(t), A(0) = A0 > 0
∞
∫

0

[z(t) + pc(t)c(t)] exp(−rt)dt ≤ R0.

(6)

Here the objective function is an accumulation of the individual’s utility over an infinite

lifetime and ρ is a constant rate of time preference. The first constraint describes the

addictive capital accumulation process, the parameter δ is the depreciation rate of the

addictive stock over time and A0 is the initial addictive stock. Ȧ(t) stands for the rate of

change over time in A. The second constraint is the individual’s budget constraint, r is

the constant interest rate, R0 is the discounted present value of lifetime income. The price

of the normal good is normalized to 1, and pc(t) is the price of the addictive good at time

t. The addict’s goal is to select a bundle of the normal good z(t) and the addictive good

c(t) each time t under the two constraints so as to maximize his lifetime utility.

In general, it is very difficult to obtain a closed form solution to a general optimal control

problem (see Kamien and Schwartz 1991, and Sethi and Thompson 2000). Unlike other

known optimal control problems, the problem (6) is especially hard to deal with due to its

peculiar, unique and complex nature of the constraints (3) and (4) on the utility function

u. The function u is too general to be tractable. In order to analyze the problem (6),

Becker and Murphy make use of the following quadratic function as an approximation of

the utility function u near a steady state

F (t) = αcc(t)− αAA(t)−
αcc
2
c2(t)−

αAA
2
A2(t) + αcAc(t)A(t)− υpcc(t) (7)
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where all parameters αc, αA, αcc, αAA, αcA, υ and pc are nonnegative. We will show that

using the function F greatly limits the scope of the results derived by Becker and Murphy.

To see this, by using formula (16) of Becker and Murphy (1988, p.678) we have

αAA < (ρ+ 2δ)αcA

Because u is assumed to be concave, F must be concave. It follows from the Hessian

matrix derived from F that αccαAA−α2
cA ≥ 0. Then we have α2

cA ≤ αccαAA. If we assume

αAA ≥ αcc, then αcA ≤ αAA. To summarize the above discussion we have

Proposition 1 In order for the function F to satisfy the concavity assumption we must

have

αcA ≤ αAA ≤ (ρ+ 2δ)αcA

provided that αAA ≥ αcc.

This result indicates that if the depreciation rate δ and the time preference ρ are small,

the range for parameters to satisfy the inequality is very narrow.8 If ρ + 2δ < 1, the

quadratic function F becomes even incompatible with the basic assumption in the Becker-

Murphy model. If the time preference and the depreciation rate are treated not much

different from those in general consumption or investment problems, ρ + 2δ < 1 seems to

be a reasonable benchmark (see Weitzman 2001). This demonstrates that the quadratic

function sometimes cannot be even used locally as an appropriate approximation.

3 Main Results

3.1 The Model under Uncertainty

Having the above preparations, we can now introduce the general rational addiction prob-

lem under uncertainty:

maxc(t),z(t) E{
∫∞

0
u(A(t), c(t), z(t)) exp(−ρt)dt}

s.t. dA(t) = (c(t)− δA(t))dt+ σA(t)dv(t), A(0) = A0 > 0

Ẇ (t) = rW (t)− (z(t) + c(t)pc(t)), W (0) =W0

(8)

where all variables and parameters in (8) have the same meaning as in the basic problem

(6), except for v(t), σ, and W (t). W (t) is the wealth at time t; W0 is the initial wealth

which can be regarded as the discounted present value of a consumer’s lifetime income.9

8It is also possible to give other results showing the limitation of using the quadratic function.
9This budget constraint is essentially the same as the one in the problem (6).
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Ẇ (t) is the rate of change over time in W . The key difference from the basic model (6) is

that a stochastic term σA(t)dv(t) is introduced here. v(t) is a standard Wiener process. σ

is an instantaneous volatility rate. The stochastic term is used to capture a host of random

events that join forces with the intentional addictive consumption to influence addiction

capital accumulation.

In the following we discuss how to determine both the optimal path of the addictive

consumption and the optimal path of addictive capital. For the problem (8), the corre-

sponding Hamilton-Jacobi-Bellman (HJB) equation is given by (see Kamien and Schwartz,

1991, p.269)

ρJ = max
c,z

{u(A, c, z) + JA(c− δA) + JW [rW − (z + cpc)] +
1

2
σ2A2JAA}, (9)

where the parameter time t is omitted in every term and will be often ignored when no

confusion can arise. The first order conditions of (9) are

uc + JA − pcJW = 0, and uz − JW = 0. (10)

Recall that ucc = ∂2u
∂c2

< 0 and uzz = ∂2u
∂z2

< 0. Then uc and uz are strictly decreasing

functions with respect to c and z, respectively. So their inverse functions exist and can be

written as

c = u−1
c (pcJW − JA), and z = u−1

z (JW ). (11)

From uz−JW = 0 of (10) and (5) we know JW > 0. Now we have the following simple but

basic observation saying that the fundamental economics law still holds under uncertainty.

Proposition 2 For the problem (8) the addictive consumption is a decreasing function of

its price pc, ceteris paribus.

Proof: Notice that because u−1
c is a strictly decreasing function, we have ∂c

∂pc
is negative.

That is to say, the addictive consumption c will decrease if its price pc increases. ✷

When a model involves uncertainty, it is useful and often necessary to focus on essential

variables of the model by ignoring other nonessentials. To analyze the effect of uncertainty

on addictive behavior and obtain substantial insights into the problem (8), without loss of

much generality we shall assume that the normal good consumption is fixed, say, z = 0,

and the individual has a sufficient amount of income. Now the general problem (8) becomes

maxc(t) E{
∫∞

0
u(A(t), c(t)) exp(−ρt)dt}

s.t. dA(t) = (c(t)− δA(t))dt+ σA(t)dv(t), A(0) = A0 > 0
(12)

Because this is an autonomous stochastic optimal control problem with infinite time hori-

zon, we can assume that the value function is independent of time (see Kamien and
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Schwartz 1991, p. 269). Thus by setting J = J(A), we have the HJB equation as fol-

lows

ρJ = max
c

{u(A, c) + JA(c− δA) +
1

2
σ2A2JAA}. (13)

The first order condition is

uc + JA = 0 (14)

Because ∂2u
∂c2

< 0 and thus uc is a strictly decreasing function, the inverse function of uc

exists and can be given as

c = u−1
c (−JA). (15)

Using (15) to substitute for c in (13) gives the HJB equation

ρJ = u(A, u−1
c (−JA)) + JA(u

−1
c (−JA)− δA) +

1

2
σ2A2JAA. (16)

In order to derive a closed-form formula for both the optimal path of the addictive

consumption and the optimal path of the addictive capital, we shall explore the following

multivariate power utility function

u(A, c) = −
Aβ

cα
, β ≥ α + 1, α > 0. (17)

We call this function the addictive multivariate power utility function, which resembles the

familiar Cobb-Douglas function but has a different requirement on parameters. It is easy

to calculate 1st and 2nd derivatives of this addictive utility function

uc = α Aβ

c(α+1) > 0, ucc = −α(α + 1) Aβ

c(α+2) < 0

uA = −βA
β−1

cα
< 0, uAA = −β(β − 1)A

β−2

cα
< 0

ucA = αβA
β−1

cα+1 > 0.

The following simple result shows that the addictive multivariate power utility function

satisfies all the conditions (2), (3), (4), and (5) required for any addictive utility function.

More importantly, this utility function makes the use of an approximation like the quadratic

function F of (7) obsolete.

Proposition 3 If β ≥ α + 1 > 1 and 0 < θ < 1, then for any given constant ν ≥ 0

the function u(A, c, z) = − Aβ

(c+ν)α
+ zθ satisfies inequalities (2), (3), (4), and (5), and u is

concave for A > 0, c > 0 and z ≥ 0.
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3.2 Closed-Form Solutions

We shall derive an optimal solution to the problem (12) where the utility function u(A, c)

takes the form of (17). Now the maximization problem can be transformed into the mini-

mization problem:

minc(t) E{
∫∞

0
(A(t))β

(c(t))α
exp(−ρt)dt}

s.t. dA(t) = (c(t)− δA(t))dt+ σA(t)dv(t), A(0) = A0 > 0.

Let J̃ be the value function of the minimization problem. It is clear that J = −J̃ . Then

the HJB equation becomes

ρJ̃ = min
c
{
Aβ

cα
+ J̃A(c− δA) +

1

2
σ2A2J̃AA}. (18)

By first order condition, we have

c = (
αAβ

J̃A
)

1
1+α . (19)

Using (19) to substitute for c in (18) yields

ρJ̃ = Aβ((
αAβ

J̃A
)

1
1+α )−α + J̃A((

αAβ

J̃A
)

1
1+α − δA) +

1

2
σ2A2J̃AA. (20)

Let us guess that the value function is of the following form

J̃(A) = aAγ , γ 6= 0.

Then we have

J̃A = aγAγ−1, J̃AA = aγ(γ − 1)Aγ−2.

Using these formulas in (20) results in

ρaAγ = Aβ((
αAβ

aγAγ−1
)

1
1+α )−α + aγAγ−1((

αAβ

aγAγ−1
)

1
1+α − δA) +

1

2
σ2A2aγ(γ − 1)Aγ−2

which can be rewritten as

ρaAγ = [(
aγ

α
)

α
1+α + aγ(

α

aγ
)

1
1+α ]A

β+αγ−α
1+α − δaγAγ +

1

2
σ2aγ(γ − 1)Aγ. (21)

We select parameter γ to make A’s power equal in every term of (21). Then we have

β + αγ − α

1 + α
= γ.
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Solving this equation gives γ = β − α. Replacing γ by β − α in (21) leads to

ρa = (
a(β − α)

α
)

α
1+α + a(β −α)(

α

a(β − α)
)

1
1+α − δa(β − α) +

1

2
σ2a(β −α)(β −α− 1).

It follows that

a = (
(β−α

α
)

α
1+α + (β − α)

α
1+αα

1
1+α

ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)

)1+α.

Replacing γ by β − α and the constant a by the above formula in J̃(A) = aAγ produces

an explicit value function10

J̃(A) = (
(β−α

α
)

α
1+α + (β − α)

α
1+αα

1
1+α

ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)

)1+αAβ−α

Differentiating both sides of this equation with respect to A gives

J̃A = (β − α)(
(β−α

α
)

α
1+α + (β − α)

α
1+αα

1
1+α

ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)

)1+αAβ−α−1. (22)

−J̃A is the shadow price of addictive capital. Replacing J̃A by the above formula in (19),

we can obtain the expression of the optimal addictive consumption11

c(t) =
α

1 + α
[

ρ

β − α
+ δ −

1

2
σ2(β − α− 1)]A(t). (23)

Using this formula to substitute for c(t) in dA(t) = (c(t)− δA(t))dt+ σA(t)dv(t) yields

dA(t) = {
α

1 + α
[

ρ

β − α
−

1

2
σ2(β − α− 1)]−

δ

1 + α
}A(t)dt+ σA(t)dv(t), A(0) = A0.

Solving this stochastic differential equation gives

A(t) = A0 exp{[
α

1+α
( ρ
β−α

− 1
2
σ2(β − α− 1))− δ

1+α
− σ2

2
]t + σv(t)}

= A0 exp((η − δ − σ2

2
)t+ σv(t))

(24)

where η = α
1+α

( ρ
β−α

+ δ − 1
2
σ2(β − α − 1)). Obviously, in order for the solution A(t) to

be meaningful (i.e., A(t) ≥ 0), η needs to be positive. Using A(t) in (23) we obtain the

optimal addictive consumption and its expectation

c(t) = A0η exp((η − δ −
σ2

2
)t+ σv(t)) (25)

E{c(t)} = A0η exp((η − δ)t) (26)

10Recall that J(A) = −J̃(A). So we can obtain the analytical results about the effect of different factors

on the total utility. Such results will be discussed in detail in the following sections.
11See the derivation of (23) in the Appendix B.
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Observe that (24) and (25) have identical structures and (25) and (26) have rather similar

structures. (25) gives the optimal addictive consumption trajectory which is a geometric

Brownian motion, while (26) provides the expected optimal addictive consumption trajec-

tory which is a constant with respect to t. These two formulas will be used to analyze both

short-run and long-run addictive behavior. We are ready to present the following major

theorem which validates the optimality of the derived solutions and whose proof is given

in the Appendix C.

Theorem 1 The formulas (24) and (25) are an optimal addictive capital trajectory and

an optimal addictive consumption trajectory to the problem (12), respectively.

It is worth mentioning that although many problems arising from physics, economics and

engineering etc have been naturally formulated as stochastic (control) problems, only very

few closed-form solutions have been found; see Black and Scholes (1973) for their remark-

able option pricing formula and Merton (1971) for a well-known explicit solution in a

special case of his problem. The interested reader may refer to Fleming and Soner (2006),

and Yong and Zhou (1999) on stochastic control theory in detail.

3.3 Cycles of Binges and Abstention Attempts

Binges are very common in alcohol drinking, cigarette smoking, eating and some other

kinds of addiction. By binge we mean a short period of excessive indulgence in a good

or an activity. Knowing the harmful effect of addiction, addicts also often attempt to

reduce or quit their addictive consumption. We call this phenomenon abstention attempt.

In fact cycles of binges and abstention attempts, such as overeating and dieting, are a

familiar addictive behavioral pattern. Such cycles are usually irregular and are triggered

by random events. Our model is capable of capturing this important feature of dynamic

addictive behavior. In our model (12), random events are described by the standard

Wiener process v(t), A(t) is a state variable, and c(t) is a control variable. v(t) is a random

variable and directly affects the level of addictive capital A(t). The individual cannot

directly control his addictive capital A(t) but can influence it by choosing an appropriate

addictive consumption c(t). In the model, beneficial events plunge the addictive capital

A(t) to (local) lows while harmful events compel A(t) to jump to (local) highs.

Harmful random events include marital breakup, job loss, death of a loved one, and

other stressful events (Becker and Murphy 1988), and environmental cues (Goldstein 1994,

Laibson 2001, and Bernheim and Rangel 2004). Laibson (2001, p. 86) points out: “Such

cue-based motivational effects arise in a wide range of domains, including feeding, drug

use, sexual activity, social competition, aggression, and exercise/play.” Certain harmful

events can be happy occasions; for instance, friends gathering can create binge drinking
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or smoking or eating. Harmful events can induce powerful or overwhelming cravings for

addictive consumption. In our model, this means that such events will instantly spur the

addictive capital to reach a peak. Because of adjacent complementarity, i.e., reinforcement,

between addictive capital and addictive consumption, the addict will immediately respond

with a large increase of addictive consumption in order to sustain his current utility.

Beneficial events can be the death of a friend caused by addiction, a lesson of good

counseling, compelling campaigns against drugs, reading of a good book on addiction

control, a piece of horrific news on addiction, and etc. Such events usually appear to be

sober or thought-provoking episodes. They can prompt addicts to have a strong desire

to reduce or quit their addictive consumption. In our model, these events will instantly

plummet the addictive capital to a bottom. Also because of reinforcement effect, addicts

will immediately reciprocate with a dramatic decrease of addictive consumption in order

to maintain their current utility levels.

In summary, irregular cycles of binges and abstention attempts fit well into our general

framework. Furthermore, it is easy to see from the formulas (24) and (25) that the dynamic

addictive consumption synchronizes with the movement of addictive capital. In fact, both

consumption c(t) and capital A(t) movements share the same pattern with only a constant

magnitude difference of η. The fluctuation of the Wiener process reflects the irregularity

of cycles of binges and abstention attempts.

3.4 Properties of the Solution and the Utility Function

We will now examine the closed-form solutions given by (25) and (26) in detail and see

how the parameters affect the addictive consumption and capital patterns. We will also

investigate several basic properties of the general addictive multiplicative utility function.

To obtain the optimal addictive consumption path we have used the utility function

u(A, c) = −Aβ

cα
. Observe that −α reflects the elasticity e(c) = cuc

u
of utility over addictive

consumption, and β is the elasticity e(A) = AuA
u

of utility over addictive capital. Typi-

cally utility functions contain the same number of variables as the number of goods for

consumption. It is worth stressing here that although the utility function u(A, c) for the

rational addiction model contains two variables A and c, it only involves one commodity

c to consume. This means we need to adapt standard analysis to this context. As it is

well-known, the curvature of the utility function measures the individual’s attitude toward

risk. For the concave utility function u(A, c) the parameter β − α roughly reflects the

degree of concavity and might be called the degree of risk aversion. The bigger β − α is,

the more concave the utility function is, and the more risk averse the individual will be.

Let ψ = β − α. We now have the following property immediately from (26).
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Proposition 4 The expected optimal addictive consumption is a decreasing function of

the level σ2 of uncertainty ceteris paribus, i.e.,
∂E{c}
∂σ2

< 0.

Proposition 4 tells that the level σ2 of uncertainty affects addictive consumption negatively

on average. The more volatile the less expected consumption.

Proposition 5 Both the optimal addictive consumption and the expected optimal ad-

dictive consumption are decreasing functions of the generalized degree ψ of risk aversion

ceteris paribus, i.e., ∂c
∂ψ

< 0 and
∂E{c}
∂ψ

< 0.

Proposition 5 shows that as individuals become more risk averse, they incline to be less

addicted to harmful substances.

Proposition 6 The optimal addictive consumption is an increasing function of the time

preference ρ, and the minus elasticity α of utility over addictive consumption, respectively,

but a decreasing function of the elasticity β of utility over addictive capital ceteris paribus,

i.e., ∂c
∂ρ

> 0, ∂c
∂α

> 0, ∂c
∂β

< 0. The same conclusion holds on average, i.e.,
∂E{c}
∂ρ

> 0,
∂E{c}
∂α

> 0, ∂E{c}
∂β

< 0.

In Proposition 6, the first formula ∂c
∂ρ
> 0 shows that even in the case of uncertainty present-

oriented individuals tend to be more addicted to harmful goods than future-oriented indi-

viduals. This is consistent with what Becker and Murphy (1988, p. 682) observe for the

case without uncertainty. The second formula ∂c
∂α

> 0 indicates that individuals become

more willing to consume addictive goods as elasticity −α is decreasing. The reason for

this is that due to withdrawal effect individuals’ utility would increase should the addic-

tive consumption increase, because increasing α would reinforce withdrawal effect, it will

increase their demand for addictive goods. The third formula ∂c
∂β
< 0 suggests that as indi-

viduals’ elasticity β over addictive capital increases, they become less addicted to harmful

goods. This is because marginal utility over additive capital is negative, as elasticity β in-

creases, it will lower additive capital and as a result reduce addictive consumption because

of reinforcement effect. Observe that the two parameters α and β are opposing forces for

addictive consumption and are reflected in the degree of risk aversion β − α.

Proposition 7 The optimal addictive consumption is an increasing function of the

depreciation rate δ for small time t but will become a deceasing function of the depreciation

rate for large time t ceteris paribus, i.e.,
∂c(t)
∂δ

= A0

1+α
(α − tη) exp((η − δ − σ2

2
)t + σv(t)).

The same conclusion holds on average, i.e.,
∂E{c(t)}

∂δ
= A0

1+α
(α− tη) exp(η − δ)t.

On the one hand, it is easy to see from (25) and (26) that other things being equal a

sufficiently high depreciation rate δ will drive addictive consumption to zero. On the other
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hand, Proposition 7 indicates that the addictive consumption increases with depreciation

rate when time t is close to zero. These two conclusions appear to be contradictory.

However, they are not. The reason is that ∂c
∂δ

> 0 holds true only when time t is near

zero or rather small, whereas ∂c
∂δ

will become negative when time t is sufficiently large.

The former case is consistent with Becker and Murphy (1988, p.678) but the latter does

not appear in their model. If we look at the addiction consumption pattern both in short

run and in long run, it is possible that addictive consumption may first increase and then

decrease with time for sufficiently large depreciation rate. An increase in δ will reduce the

shadow price of addictive capital and thus increase addictive consumption; while a higher δ

will also decrease the addictive capital more quickly which may reduce the tolerance effect

and thus drop addictive consumption. The former force is stronger at the beginning stage,

but the later force will become stronger and stronger at later stage if the depreciate rate

is higher enough.

Proposition 8 The expected addictive consumption E{c(t)} will converge to zero as

time goes to infinity in the case of η− δ < 0, E{c(t)} will tend to infinity with time in the

case of η − δ > 0, and E{c(t)} = A0η for all t in the case of η = δ.

Proposition 8 manifests two contrasting long-run addictive consumption patterns. The

parameter η − δ could be used as an indictor of stability, which will be analyzed further

for the deterministic case in Section 4. The case of η − δ ≤ 0 indicates that the dynamic

behavior of the optimal addictive consumption is inherently stable in the sense that no

matter what the individual’s initial addictive capital is, his optimal addictive consumption

and capital will die out in the end. The opposite case is η − δ > 0 and shows that the

individual’s dynamic addictive behavior is unstable in the sense that no matter where he

starts with, he will become more and more addicted and will at last totally lose control of

his appetite for harmful goods. Observe that the indicator of stability η − δ = α
1+α

( ρ
β−α

−
1
2
σ2(β − α− 1))− δ

1+α
is determined jointly by several basic factors α, β, δ, and σ. These

factors add new elements in explaining rational addictive behavior compared with Becker

and Murphy (1988). They mainly focus on the effect of initial addictive capital on the

steady state of addictive capital.

When there is no uncertainty, i.e., σ2 = 0, we have c(t) = α
1+α

( ρ
β−α

+δ)A0 exp[
1

1+α
( αρ
β−α

−

δ)t]. Then we have the following proposition for this deterministic case.

Proposition 9 If there is no uncertainty, then c(t) → 0 as t → ∞ for αρ
β−α

− δ < 0;

and c(t) → ∞ as t → ∞ for αρ
β−α

− δ > 0; and c(t) = A0
α

1+α
( ρ
β−α

+ δ)(> 0) for all t ≥ 0

when αρ
β−α

− δ = 0.

With respect to Proposition 9, the following several points are obvious. First, addictive

consumption will finally converge to zero if the depreciation rate δ is sufficiently high;
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If the consumer dislikes risk very much, i.e., if β − α is large enough, then addictive

consumption will also finally converge to zero. However, individuals will become more

addicted to harmful goods as they become more impatient. So in the case of αρ
β−α

− δ > 0,

the individual becomes sufficiently impatient and thus intends to consume more addictive

good today. As a result, this will increase the addictive capital and on the other hand

reinforcement effect will induce the individual to consume more in the future. Therefore

as time goes to infinity, the addictive consumption can spiral out of control.

In Becker and Murphy (1998), they identify the basic conditions (2), (3), (4), and (5)

that an addictive utility function should satisfy. To analyze the dynamic behavior of the

addictive consumption c(t) and capital A(t) near a steady state, they used the quadratic

function as an approximation, because a concrete addictive function was not available at

that time. The use of the quadratic function, however, does not seem to be very satisfactory,

because the adjacent complementary condition can be violated by the quadratic function

itself, or before the state reaches the restricted ideal region. Our analysis dispenses with

this approximation and is global and valid for all c > 0 and A > 0.

To derive the optimal addictive consumption we have explored the utility function of

the form u(A, c) = −Aβ

cα
with β ≥ α + 1 > 1, which is a special case of the multiplicative

separable function u(A, c) = f(A)g(c). We shall give two basic properties for this type of

addictive utility function and one property for a general harmful addictive utility function.

The first result says that if the addictive utility takes the form of u(A, c) = f(A)g(c)

and represents a harmful addiction, then the utility value must be negative. The negative

utility might be somehow surprising because many familiar utility functions typically take

only positive values.

Proposition 10 If the utility function u(A, c) = f(A)g(c) satisfies conditions (2), (3)

and (4), then u(A, c) < 0.

Proof: If u(A, c) = f(A)g(c) > 0, then we must have (i) f(A) > 0, g(c) > 0 or (ii)

f(A) < 0, g(c) < 0.

If (i) holds, then uA(A, c) = fA(A)g(c) < 0 by (3). Combining this with g(c) > 0, we

have fA(A) < 0. Notice further ucA = fA(A)gc(c) > 0 by (4). Then we have

gc(c) < 0 (27)

On the other hand, uc(A, c) = f(A)gc(c) > 0 by (2). Combining this with f(A) > 0 in (i)

we have gc(c) > 0. Obviously, gc(c) > 0 contradicts (27).

Similarly, if (ii) holds, then f(A) < 0. Thus we have gc(c) < 0 from uc(A, c) =

f(A)gc(c) > 0. Combining this with ucA = fA(A)gc(c) > 0, we have

fA(A) < 0 (28)
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On the other hand, we have g(c) < 0 from (ii). Combining this with uA(A, c) = fA(A)g(c) <

0, we have fA(A) > 0 contradicts (28). In summary we have u(A, c) = f(A)g(c) < 0. ✷

In contrast to harmful addiction, beneficial addiction means that the marginal utility

of addiction capital is positive (Becker and Murphy 1988, p.678), i.e., uA > 0 but all the

other conditions in (2), (3) and (4) remain unchanged. For instance, u(A, c) = Aβcα with

α > 0, β > 0, and α+ β ≤ 1, is a beneficial addictive function. The following result shows

that the value of beneficial addictive utility is always positive.

Proposition 11 If the utility function u(A, c) = f(A)g(c) satisfies (2), (3) with uA > 0,

and (4), then u(A, c) > 0.

The last property concerns a general harmful addictive utility function saying that the

value of the utility function must be negative if the addictive capital is large enough.

Proposition 12 Under the condition of (3), lim
A→∞

u(c, A) = −∞ for any fixed addiction

consumption c = c̄.

Proof: It follows from (3) that ∂u(c,A)
∂A

< 0 and ∂2u(c,A)
∂A2 < 0 for any c > 0 and A > 0. If

we let u(c̄, A) = ū(A) for c = c̄ > 0 , then 0 > ∂u(c̄,A)
∂A

= ∂ū(A)
∂A

= dū(A)
dA

and 0 > ∂2u(c̄,A)
∂A2 =

∂
∂A

(∂u(c̄,A)
∂A

) = ∂
∂A

(∂ū(A)
∂A

) = ∂2ū(A)
∂A2 = d2ū(A)

dA2 . Let dū(A)
dA

= M(A). From d2ū(A)
dA2 < 0 we have

d2ū(A)
dA2 = d

dA
dū(A)
dA

= dM(A)
dA

< 0. Let dū(A)
dA

|A0 = M(A0) = M0 and ū(A0) = ū0 for any fixed

A0. Then we have dM(A)
dA

< 0, M(A0) = M0 < 0, which implies that M(A) < M0 for any

A > A0. Recall that dū(A)
dA

= M(A). So we have dū(A)
dA

< M0 for any A > A0. Combining

this with the initial condition ū(A0) = ū0 leads to ū(A) < ū0 +M0A. It is easy to see

that lim
A→∞

ū(A) ≤ lim
A→∞

(ū0 +M0A) = −∞. ✷

This proposition indicates that it is impossible to construct a harmful addictive utility

function which admits only positive value for all c > 0 and A > 0.

4 On Dynamics of Addiction and Policy Implications

In this section we focus on the deterministic case, derive both qualitative and quantitative

properties of dynamic addictive behavior and explore policy implications. Whenever possi-

ble we also consider the effect of uncertainty. In the deterministic case, a rational addict’s

decision problem (12) becomes

maxc(t)
∫∞

0
− (A(t))β

(c(t))α
exp(−ρt)dt

s.t. Ȧ(t) = c(t)− δA(t), A(0) = A0 > 0.
(29)

18



We can use Pontryagin’s maximum principle to analyze its optimal solution. The Hamil-

tonian function of the problem is

H(t, A(t), c(t), λ(t)) = −
(A(t))β

(c(t))α
+ λ(t)(c(t)− δA(t)), (30)

where λ(t) is the co-state variable, which represents the marginal value of the addictive

capital. The ODE for λ(t) is

λ̇(t) = ρλ(t)−
∂H

∂A
= (ρ+ δ)λ(t) +

βAβ−1

cα
. (31)

The first order condition ∂H
∂c

= 0 implies

λ(t) = −α
Aβ

cα+1
. (32)

It follows that

λ̇(t) =
−αβAβ−1Ȧc + α(α+ 1)Aβ ċ

cα+2
(33)

In the Appendix we prove that the following transversality condition is satisfied

lim
t→∞

λ(t)A(t)e−ρt = 0 (34)

Using Ȧ = c− δA and substituting (32) and (33) into (31) leads to

ċ =
c2

α(α+ 1)A
[
αβ

c
(c− δA)− (ρ+ δ)

αA

c
+ β] (35)

As shown in the Appendix, from the above equation we can directly derive the following

optimal solution of problem (29)

c(t) =
α

1 + α
(

ρ

β − α
+ δ)A0 exp[

1

1 + α
(
αρ

β − α
− δ)t]. (36)

Notice that this solution coincides with the one given by the general formula (25) for

σ = 0. To verify the optimality of this solution it is sufficient to prove the concavity of the

maximized Hamiltonian function with respect to A. It follows from (32) that

c = (
αAβ

−λ
)

1
α+1 (37)

Substituting (37) into (30) yields the maximized Hamiltonian function

H0(t, A, λ) = −
A

β
α+1

( α
−λ

)
α
α+1

+ λ[(
α

−λ
)

1
α+1A

β
α+1 − δA)] (38)

We have the following result with respect to the maximized Hamiltonian function.

Proposition 13 The maximized Hamiltonian function H0(t, A, λ) is concave in A for

every t.
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4.1 General Patterns of Dynamic Addictive Behavior

We first study the qualitative properties of the dynamics of addictive behavior by the

phase diagram method, which permits us to visualize how both addictive consumption and

addictive capital evolve over time. For this purpose we can begin by examining the system

of differential equations ċ = 0 and Ȧ = 0, which are described in detail by

c2

α(α+ 1)A
[
αβ

c
(c− δA)− (ρ+ δ)

αA

c
+ β] = 0 (39)

c− δA = 0 (40)

It follows that

c =
α

β

βδ + ρ+ δ

1 + α
A (41)

c = δA (42)

In the Figures 1 and 2, addictive capital A is depicted on the horizontal axis and addictive

consumption c is on the vertical axis. The lines given by equations (41) and (42) divide

the first quadrant into three regions (I), (II), and (III). In each region, the arrows point

in the direction of motion. For the analysis it is convenient and also sufficient to consider

two distinctive cases by looking at whether α
β
βδ+ρ+δ
1+α

> δ or α
β
βδ+ρ+δ
1+α

< δ. Observe that
α
β
βδ+ρ+δ
1+α

> δ and α
β
βδ+ρ+δ
1+α

< δ can be written in an equivalent form, respectively, as αρ
β−α

> δ

and αρ
β−α

< δ. Recall that these are precisely the conditions in Proposition 9 determining

whether the optimal addictive consumption trajectory is divergent or convergent.12

Let us first look at Figure 1, which depicts the typical case of αρ
β−α

> δ. Because
αρ
β−α

> δ, the optimal trajectory given by the slope c = α
1+α

( ρ
β−α

+ δ)A must lie above

the line ċ = 0, i.e., (41) which must lie above the line Ȧ = 0, i.e. (42). In the figure,

the parameters are given by α = 1, β = 2, ρ = 0.15 and δ = 0.10. In particular, the

optimal trajectory c = α
1+α

( ρ
β−α

+ δ)A can be roughly viewed as an asymptote defined

by dc
dA

= m for a constant m,13 and goes to infinity over time. It is easy to see that any

trajectory originating from the area above the optimal path will go northeast and evolve

into infinity. This means that if a person with an initial addictive capital A0 > 0 starts

with an addictive consumption no less than his optimal initial consumption c∗0, he will be

trapped in addiction and on a road to ruin. Things are not always so gloomy. The good

news is that if an addict forces himself or is forced to consume the addictive good less

than his optimal consumption level, he can be on a path to abstention. The figure depicts

the case in which the optimal initial consumption is c∗0 = 2.5 when the initial capital is

12The case of α
β

βδ+ρ+δ
1+α

= δ is an easy one.
13The proof is given by the Appendix.
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A0 = 20. The optimal consumption goes to infinity as time evolves into infinity. When the

initial consumption is below the optimal level, such as 2.24, 2.2246, or 1 as in the figure,

the corresponding trajectory converges to the origin; however, if the initial consumption is

above the optimal level, such as 2.6, the trajectory will diverge monotonically to infinity.

Figure 1: The case of αρ
β−α

> δ.

Figure 2 depicts the typical case of αρ
β−α

< δ. Because αρ
β−α

< δ, the line Ȧ = 0 must lie

above the line ċ = 0 which in turn must lie above the optimal trajectory c = α
1+α

( ρ
β−α

+δ)A.

In the figure, the parameters are given by α = 1, β = 2, ρ = 0.10 and δ = 0.15. The optimal

trajectory c = α
1+α

( ρ
β−α

+δ)A converges to the origin. Again any trajectory originating from

the area above the optimal trajectory will eventually go northeast and both consumption

and capital levels will go to infinity. However, if an addict consumes no more than his

optimal consumption level, he can totally give up his addiction. The figure depicts the case

in which the optimal initial consumption is c∗0 = 2.5 when the initial capital is A0 = 20.

Other trajectories are given for consumption levels equal to 3.02, 2.75, 2.6, and 1.

Compared with Becker and Murphy (1988), our analysis has shed some new light on the

evolution of additive behavior. Becker and Murphy introduce an addictive capital threshold

as a factor to explain how the initial addictive capital may affect addictive consumption.

According to their analysis, an addict whose initial addictive capital exceeds the threshold
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Figure 2: The case of αρ
β−α

< δ.

will move to a higher equilibrium with higher capital and higher consumption levels,14 but

he can go to abstention if the initial capital is less than the threshold. Hence as Becker and

Murphy (1988, pp. 675, 676 and 692) stress, their theory implies that strong addictions

must require going “cold turkey,” that is, with actions of abruptly giving up all addictive

consumption. It is now known (see e.g., Hughes 2009, and Moss and Dyer 2010, ch. 6) that

cold turkey is not an appropriate treatment for breaking certain addictions, because going

cold turkey can cause immense withdrawal syndrome potentially resulting in death. For

instance, treating alcoholics with this method can trigger life-threatening delirium tremens.

In general, going cold turkey, even if not life-threatening, can be still extremely unpleasant

or painful for most people, because of severe withdrawal effect. Notice that even if an

addict goes cold turkey meaning that he immediately quits or dramatically reduces his

addictive consumption, his addictive capital, however, cannot immediately disappear or

decrease substantially. Instead it will decrease only gradually, meaning that the painful

period might not be short.

Our analysis above offers fresh hope that there does exist a soft treatment-a less painful

but gradual reduction process for ending addiction, no matter how long or how seriously a

person has become addicted, as long as he has a will or is slightly forced to consume (even

14A small deviation from this equilibrium is not strong enough to jump out from the addiction trap.
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just a little bit) less than his optimal addictive consumption level. Policy implications from

our analysis are that in order to achieve addiction abstention, one can use soft treatment,

or harsh treatment-cold turkey, or both. For instance, if a person has severe withdrawal

symptoms, he can initially use soft treatment until he reaches a tolerable level from which

cold turkey could be explored to terminate addictions once and for all. One caveat is that

our analysis in this section has so far ignored uncertainty. In stochastic environments, even

if a person currently stays in a safe zone, that is, his trajectory lies below his optimal path,

random events may easily trigger him to consume more than his optimal consumption

level and thus drive him into a dangerous zone. This suggests that addiction control is a

complex process and requires extreme caution and constant care in order to stop addiction

and prevent its relapse.

4.2 Analytical Solutions of ODE with General Initial Values

In this subsection we examine how initial addictive consumption c0 and capital A0 affect

evolution of addictive behavior. In the optimal control problem (29), c is a control variable

and A0 is the only given initial condition. The goal was to find the optimal consumption

path c(t) for all t ≥ 0. Now we ask a different but relevant question: given any initial

values c0 and A0, how c(t) and A(t) will evolve over time. To provide quantitative answers,

we need to solve the following system of ordinary differential equations (ODE):

ċ =
c2

α(α+ 1)A
[
αβ

c
(c− δA)− (ρ+ δ)

αA

c
+ β], c(0) = c0 (43)

Ȧ = c− δA, A(0) = A0 (44)

Let m1 =
1

1+α
(βδ+ ρ+ δ)− δ and m2 =

β−α
α

. Recall that η = α
1+α

( ρ
β−α

+ δ). Observe that

η = m1

m2
. We can establish the following theorem whose proof is given in the Appendices I

and J.

Theorem 2 The solutions to (43) and (44) are

A(t) = A0[
A0

c0
em1t

1
η
+ em1t(A0

c0
− 1

η
)
]

1
m2 e−δt (45)

c(t) =
1

1
η
+ em1t(A0

c0
− 1

η
)
A(t) (46)

It is easy to verify that substituting c0 =
α

1+α
( ρ
β−α

+δ)A0 into (45) and (46) yields the same

optimal solution as given by (36). Let c∗0 denote the optimal consumption α
1+α

( ρ
β−α

+ δ)A0.

Using (45) and (46) we can derive the following two results.
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Proposition 14 In the case of αρ
β−α

> δ, both the optimal addictive capital and optimal

addictive consumption are increasing functions of time, that is, A(t) and c(t) are given by

(45) and (46) with c0 = ηA0 > 0. The trajectories (A(t), c(t)) given by (45) and (46) with

c0 > ηA0 are also increasing functions of time and will finally diverge to infinity, whereas

the trajectories (A(t), c(t)) given by (45) and (46) with c0 < ηA0 will be decreasing after a

period of time and converge to the origin.

Proposition 15 In the case of αρ
β−α

< δ, both the optimal addictive capital and optimal

addictive consumption are decreasing functions of time and converge to the origin, that is,

A(t) and c(t) are given by (45) and (46) with c0 = ηA0 > 0. The trajectories (A(t), c(t))

given by (45) and (46) with c0 < ηA0 are also decreasing functions of time and will converge

to the origin, whereas the trajectories (A(t), c(t)) given by (45) and (46) with c0 > ηA0 will

be increasing after a period of time and finally diverge to infinity.

From (45) and (46), we can see that both A(t) and c(t) are positive for all t > 0 if
A0

c0
− 1

η
> 0. Notice that A0

c0
− 1

η
> 0 is equivalent to c0 < ηA0, i.e., the initial values

are inside the stable area characterized by the line of optimal solution c = ηA. What is

the property of trajectories originating above the line of c = ηA? From Figures 1 and 2,

it appears that the trajectories will diverge to infinity as t → ∞. In fact, if the initial

addictive consumption c0 is given by (η + ǫ)A0 with ǫ > 0, it is easy to calculate from

(45) and (46) that both A(t) and c(t) can rise to any substantially high level within a

relatively short period of time t∗ = − 1
m1

ln ε
η+ε

(see the Appendix for its computation).

This means that once an addict enters the unstable zone, his addictive consumption can

easily spiral out of control. This phenomenon is consistent with the addictive behavior of

many powerful substances such as opium and heroin.

We now investigate how initial values A0 and c0 influence a person’s total utility. By

substituting (45) and (46) into the objective function
∫∞

0
− (A(t))β

(c(t))α
e−ρtdt, we obtain the total

value of utility

J(A0, c0) = −
Aβ0
cα0

1 + α

ρ+ (β − α)δ

Proposition 16 For any 0 < c0 ≤ c∗0, we have
∂J(A0,c0)

∂c0
> 0, ∂2J(A0,c0)

∂c0∂A0
> 0,

and
∂J(A0,c0)
∂A0

< 0.

The first inequality says that the marginal utility of initial addictive consumption c0 is

positive. This means that a utility maximizer will try to raise his initial consumption c0

so as to increase his total utility J(A0, c0). The second inequality states that the marginal

utility of initial addictive consumption is an increasing function of initial capital A0. That

is, higher initial addictive capital A0 will induce the agent to consume more addictive good.
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As a result, it will become more difficult to give up his addiction. For example, smoking is

harder to give up for those who have a long smoking history and a high addictive capital

than for those who have a short history and a low capital. The last inequality means that

the marginal utility of initial addictive capital A0 is negative. That is to say, the person

would be quite happy to reduce his initial capital, should it be possible for him to do so. We

should, however, keep in mind that an addict cannot directly control his addictive capital

being a state variable, and he can only influence his addictive capital by managing his

addictive consumption being a control variable. Because of the second relation, lowering

capital A0 will also lower consumption c0. The three inequalities give a mixed message

about addiction control. A final point is that even with the same initial addictive A0, the

difficulty of addiction control varies from person to person, because each person’s utility

depends on his personal factors α, β, ρ, and δ.

5 Conclusion

Addictions are fundamental and perplexing types of human behavior, and are extremely

difficult to model because of their unique and mysterious nature. In a path-breaking pa-

per, Becker and Murphy (1988) develop a general rational choice framework for studying

the dynamic behavior of addictive consumption. They model addictions in a determinis-

tic environment as habit formation by capturing three fundamental features of addictive

behavior: tolerance, withdrawal and reinforcement. The theoretical and empirical insights

provided by Becker and Murphy (1988) and many subsequent studies have considerably

advanced our understanding of addiction and also influenced decision makers on addiction

control policy.

The current paper has developed a more realistic rational addiction framework that not

only maintains the essential features of the Becker-Murphy model: tolerance, withdrawal

and reinforcement, but also takes a crucial factor –uncertainty– that addicts have to face

more often than nonaddicts do, into consideration. It is widely observed that random

events such as divorce, unemployment, death of a loved one, peer pressure, exposure to

environmental cues, etc, can precipitate and exacerbate an addiction, while sober and

thought-provoking events such as the death of a friend caused by addiction and compelling

campaigns against drugs, can discourage addiction. In our new framework uncertainty

is modeled through the Wiener stochastic process. Somewhat surprisingly we have been

able to derive closed-form expressions for both the optimal and expected optimal addictive

consumption and capital trajectories. These solutions enable us to derive both global and

local, qualitative and quantitative, properties of dynamic addictive behavior.

Our results explain several typical patterns of addictive behavior including cycles of
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binges and abstention attempts, and also have novel implications for addiction control pol-

icy. For instance, in contrast to the theory of Becker and Murphy implying that cold turkey

must be used to terminate severe addictions, our theory offers an alternative approach-a

soft treatment. That is, we demonstrate that there always exists a gradual and less painful

process for ending addiction. We believe this insight is both important and practical for

policy implementation, because harsh treatment-like going cold turkey can be extremely

dangerous or even life-threatening. To achieve addiction abstention, our theory permits a

flexible and comprehensive approach: the use of soft treatment, or harsh treatment, or a

combination of both.

In our analysis, we have made good use of the addictive multivariate power utility

functions that not only capture three basic characteristics of addictive behavior: tolerance,

withdrawal and reinforcement, but also admit intuitive interpretations and facilitate the

analysis. Becker and Murphy (1988) first propose general conditions that meet the three

basic characteristics of addictive behavior and then use a quadratic utility function as an

approximation to carry out their analysis. In this way it is very difficult if not impossible

to derive global properties of dynamic addictive behavior. In fact, a number of subsequent

studies have also explored similar quadratic functions as an approximation. The great

advantage of the addictive multivariate power utility function is that it dispenses with the

approximation, admits natural and meaningful interpretations, and more importantly it

helps to achieve explicit solutions and therefore permits us to gain clear insights. Even in

the deterministic case, we also obtain substantial new results that go beyond the existing

ones.

The current study also leaves us with some open questions. For the purpose of treat-

ment and prevention of addiction, it would be a great advance if scientists could invent a

device or method to detect and gauge the level of addictive capital in the human body.

Recall that reinforcement, tolerance and withdrawal are part of the widely accepted and

observed syndrome of addiction. The rational models of Becker and Murphy and sub-

sequent researchers have well captured these fundamental features. It is our conjecture

that the ‘substance’ of the addictive capital should exist in an addictive human body. As

pointed out previously, because of the incorporation of uncertainty, we have ignored the

effect of a normal good in our analysis. It is, however, reasonable to expect that many

insights obtained in this article could carry over to the more general model with a normal

good. We believe that the analysis developed here for the basic model provides a useful and

necessary foundation for the study of the more general problem. How to solve the general

problem remains a challenge. Resolving this problem will yield a better understanding of

how pricing and/or taxing on the addictive good affects the addictive behavior.
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Appendix

A Proof of Proposition 3

Since u(A, c, z) = − Aβ

(c+ν)α
+ zθ, it is sufficient to prove that u(A, c) = − Aβ

(c+ν)α
is concave

in A and c. Then we have

uc = α
Aβ

(c+ ν)(α+1)
> 0, ucc = −α(α + 1)

Aβ

(c+ ν)(α+2)
< 0, (47)

uA = −β
Aβ−1

(c+ ν)α
< 0, uAA = −β(β − 1)

Aβ−2

(c+ ν)α
< 0, (48)

ucA = αβ
Aβ−1

(c+ ν)(α+1)
> 0 (49)

Then, from the Hessian matrix

H =

(

uAA uAc

ucA ucc

)

=

(

−β(β − 1) Aβ−2

(c+ν)α
αβ Aβ−1

(c+ν)(α+1)

αβ Aβ−1

(c+ν)(α+1) − α(α + 1) Aβ

(c+ν)(α+2)

)

(50)

We have uAA < 0, ucc < 0 and

uccuAA − (ucA)
2 = [−α(α + 1) Aβ

(c+ν)(α+2) ][−β(β − 1) Aβ−2

(c+ν)α
]− [αβ Aβ−1

(c+ν)−(α+1) ]
2

= α(α+ 1)β(β − 1) A2β−2

(c+ν)(2α+2) − α2β2 A2β−2

(c+ν)(2α+2)

= [(α + 1)(β − 1)αβ − α2β2] A2β−2

(c+ν)(2α+2)

= [(α + 1)(β − 1)− αβ]αβ A2β−2

(c+ν)(2α+2)

= [αβ − α + β − 1− αβ]αβ A2β−2

(c+ν)(2α+2)

= [β − (α + 1)]αβ A2β−2

(c+ν)(2α+2) ≥ 0

(51)

So H is negative semi-definite under the condition of β − (α+ 1) ≥ 0. In other words, the

utility function − Aβ

(c+ν)α
is concave for β ≥ α + 1 > 1. ✷
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B The Derivation of the Formula (23)

Substituting (22) into (19), we have

c(t) = {αA(t)β/[(β − α)(
(β−α

α
)

α
1+α + (β − α)

α
1+αα

1
1+α

ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)

)1+αA(t)β−α−1]}
1

1+α

= α
1

1+αA(t)/[(β − α)
1

1+α
(β−α

α
)

α
1+α + (β − α)

α
1+αα

1
1+α

ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)

]

=
( α
β−α

)
1

1+α [ρ+ δ(β − α)− 1
2
σ2(β − α)(β − α− 1)]

(β−α
α

)
α

1+α + (β − α)
α

1+αα
1

1+α

A(t)

=
α[ρ+ δ(β − α)− 1

2
σ2(β − α)(β − α− 1)]

(β − α) + (β − α)α
A(t)

=
α

1 + α
[

ρ

β − α
+ δ −

1

2
σ2(β − α− 1)]A(t)

✷

C Proof of Theorem 1

For A > 0 and T > 0, let (A(t), c(t)) be an arbitrary admissible addictive capital and

consumption. Let V (·) denote an arbitrary solution of the HJB equation (18). Applying

the well-known Ito Lemma to the function w(t, A) = e−ρtV (A) yields

dw = wtdt+ wAdA+ 1
2
wAA(dA)

2

= −ρe−ρtV (A)dt+ e−ρt(VAdA+ 1
2
VAAdA · dA)

= −ρe−ρtV (A)dt+ e−ρt{VA[(c(t)− δA(t))dt + δA(t)dv(t)]

+1
2
VAA[(c(t)− δA(t))dt + σA(t)dv(t)]2}

= −ρe−ρtV (A)dt+ e−ρt{VA[(c(t)− δA(t))dt + δA(t)dv(t)] + 1
2
VAAσ

2(A(t))2dt}

where we use the rules (dt)2 = dt · dv(t) = dv(t) · dt = 0 and dv(t) · dv(t) = dt. Then we

have

E{w(T,A(T ))− w(0, A(0))} = E{
T
∫

0

e−ρt[−ρV (A(t)) + VA(c(t)− δA(t)) + 1
2
σ2(A(t))2VAA]dt}

= E{
T
∫

0

e−ρt[−ρV (A(t)) + VA(c(t)− δA(t)) + 1
2
σ2(A(t))2VAA + (A(t))β

(c(t))α
− (A(t))β

(c(t))α
]dt}

= E{
T
∫

0

e−ρt[−ρV (A(t)) + VA(c(t)− δA(t)) + 1
2
σ2(A(t))2VAA + (A(t))β

(c(t))α
]dt} − E{

T
∫

0

e−ρt (A(t))
β

(c(t))α
dt}
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where we use the formula E{
∫ T

0
δA(t)dv(t)} = 0. Furthermore, we obtain

w(0, A(0)) = E{w(T,A(T ))}

−E{
T
∫

0

e−ρt[−ρV (A(t)) + VA(c(t)− δA(t)) + 1
2
σ2(A(t))2VAA + (A(t))β

(c(t))α
]dt}

+E{
T
∫

0

e−ρt (A(t))
β

(c(t))α
dt}

From the HJB equation (18) in Section 3.2, we know that

−ρV (A(t)) + VA(c(t)− δA(t)) +
1

2
σ2(A(t))2VAA +

(A(t))β

(c(t))α
≥ 0.

Then

V (A0) = w(0, A(0)) ≤ E{w(T,A(T ))}+ E{

T
∫

0

e−ρt
(A(t))β

(c(t))α
dt} (52)

By using the transversality condition

lim
T→∞

E{w(T,A(T ))} = 0

and

lim
T→∞

E{

T
∫

0

e−ρt
(A(t))β

(c(t))α
dt} = E{

∞
∫

0

e−ρt
(A(t))β

(c(t))α
dt}

we can derive from the inequality (52) that

V (A0) ≤ E{

∞
∫

0

e−ρt
(A(t))β

(c(t))α
dt} (53)

Since (53) holds for any admissible addictive capital A(t) and consumption c(t), we have

V (A0) ≤ min
c(t)

E{

∞
∫

0

e−ρt
(A(t))β

(c(t))α
dt} = J̃

On the other hand, let A∗(t) and c∗(t) be given respectively by (24) and (25) in Section

3.2. Recall that to derive A∗(t) and c∗(t), we have used the form of V (A) = aAγ . Observe

that

−ρV (A∗(t)) + VA(c
∗(t)− δA∗(t)) +

1

2
σ2(A∗(t))2VAA +

(A∗(t))β

(c∗(t))α
= 0
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This means that the HJB equation is satisfied by (A(t), c(t)). Therefore,

V (A0) = w(0, A(0))

= E{w(T,A∗(T ))}+ E{
T
∫

0

e−ρt (A
∗(t))β

(c∗(t))α
dt}

= E{e−ρTV (A∗(T ))}+ E{
T
∫

0

e−ρt (A
∗(t))β

(c∗(t))α
dt}

It remains to show that limT→∞E{w(T,A∗(T ))} = 0. Notice that

limT→∞E{w(T,A∗(T ))} = limT→∞E{e−ρTaA∗(T )β−α}

= limT→∞ aE{exp(−ρT )Aβ−α0 exp{[ α
1+α

( ρ
β−α

− 1
2
σ2(β − α− 1))

− δ
1+α

− σ2

2
]T + σv(T )}β−α}

= limT→∞ aAβ−α0 E{exp{−ρT + (β − α)[ α
1+α

( ρ
β−α

−1
2
σ2(β − α− 1))− δ

1+α
− σ2

2
]T + σ(β − α)v(T )}}

= limT→∞ aAβ−α0 exp{−(β − α)[ ρ+δ
1+α

+ α
2(1+α)

σ2(β − α− 1)]T}

= 0

Then we have

V (A0) = limT→∞E{
T
∫

0

e−ρt (A
∗(t))β

(c∗(t))α
dt}

= E{
∞
∫

0

e−ρt (A
∗(t))β

(c∗(t))α
dt}

≥ minE{
∞
∫

0

e−ρt (A(t))
β

(c(t))α
dt}

= J̃

(54)

By (53) and (54), V (A0) = J̃ . ✷

D Proof of Proposition 5

We prove ∂c
∂ψ

< 0. The same argument works for ∂E{c}
∂ψ

< 0. Plugging ψ = β − α into c(t)

of (25) yields

c(t) = A0(
β − ψ

1 + β − ψ
)(
ρ

ψ
+ δ −

1

2
σ2(ψ − 1))e{[(

β−ψ
1+β−ψ

)( ρ
ψ
+δ− 1

2
σ2(ψ−1))−δ−σ2

2
]t+σv(t)}.

Then we have

∂c
∂ψ

= A0[
−1

(1+β−ψ)2
( ρ
ψ
+ δ − σ2

2
(ψ − 1)) + β−ψ

1+β−ψ
(− ρ

ψ2 −
σ2

2
)](1 + ηt)e[(η−δ−

σ2

2
)t+σv(t)]

= −A0[
η

α(1+α)
+ α

(1+α)2
( ρ
(β−α)2

+ σ2

2
)](1 + ηt)e[(η−δ−

σ2

2
)t+σv(t)]

< 0

as long as α > 0, η > 0 and t ≥ 0. ✷
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E The Optimal Solution of the Case of σ = 0

Consider the system of equations:

ċ =
c

α(1 + α)A
[αβ(c− δA)− α(ρ+ δ)A+ βc] (55)

Ȧ = c− δA, A(0) = A0 (56)

We guess the optimal addictive consumption is a linear function of addictive capital,

i.e. c(t) = η̃A(t), where η̃ is a positive constant to be determined. Substituting it into (56)

leads to

Ȧ = η̃A− δA = (η̃ − δ)A, A(0) = A0 (57)

Solving (57) for A(t) yields

A(t) = A0e
(η̃−δ)t (58)

Then

c(t) = η̃A(t) = η̃A0e
(η̃−δ)t (59)

Substituting (58) and (59) into RHS of (55) leads to

c
α(1+α)A

[αβ(c− δA)− α(ρ+ δ)A+ βc]

= η̃A0e(η̃−δ)t

α(1+α)A0e(η̃−δ)t
[αβ(η̃A0e

(η̃−δ)t − δA0e
(η̃−δ)t)− α(ρ+ δ)A0e

(η̃−δ)t + βη̃A0e
(η̃−δ)t]

= η̃
α(1+α)

[αβ(η̃ − δ)− α(ρ+ δ) + βη̃]A0e
(η̃−δ)t

(60)

Recall that ċ(t) = η̃(η̃− δ)A0e
(η̃−δ)t by (58). Similarly, substituting it into LHS of (55)

gives

ċ(t) = η̃(η̃ − δ)A0e
(η̃−δ)t (61)

With the help of (55), (60), and (61), we have

η̃(η̃ − δ)A0e
(η̃−δ)t =

η̃

α(1 + α)
[αβ(η̃ − δ)− α(ρ+ δ) + βη̃]A0e

(η̃−δ)t (62)
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From (62) we have

η̃ = 1
α(1+α)

[αβ(η̃ − αβ)− α(ρ+ δ) + βη̃] + δ

= αβ+β
α(1+α)

η̃ − 1
α(1+α)

[αβδ + α(ρ+ δ)] + δ

= β
α
η̃ − 1

1+α
(βδ + ρ+ δ) + δ

(63)

Then

(
β

α
− 1)η̃ =

1

1 + α
(βδ + ρ+ δ)− δ (64)

Solving for η̃ in (64), we have

η̃ = α
β−α

[ 1
1+α

(βδ + ρ+ δ)− δ] = α
β−α

( βδ
1+α

+ ρ
1+α

+ δ
1+α

− δ)

= α
β−α

( βδ
1+α

+ ρ
1+α

− αδ
1+α

)

= α
β−α

[ (β−α)δ
1+α

+ ρ
1+α

]

= α
1+α

( ρ
β−α

+ δ)

(65)

Notice that η̃ is identical to η if we set σ = 0 in the expression of η. In the meantime, it

is not hard to check the transversality condition limt→∞ λ(t)A(t)e−ρt = 0; see the following

Appendix.

By Proposition 13, the solution is a global optimal solution. ✷

F Proof of the Transversality Condition (34)

Recall from (32) that

λ(t) = −α
A(t)β

c(t)α+1
(66)

Substituting (66) into limt→∞ λ(t)A(t)e−ρt leads to

lim
t→∞

λ(t)A(t)e−ρt = − lim
t→∞

α
A(t)β

c(t)α+1
A(t)e−ρt (67)

Substituting (58) and (59) into (67), we obtain

lim
t→∞

α
A(t)β

c(t)α+1
A(t)e−ρt = lim

t→∞
αη̃α+1[A0e

(η̃−δ)t]β−αe−ρt (68)
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Then

limt→∞ αη̃α+1[A0e
(η̃−δ)t]β−αe−ρt = limt→∞ αη̃α+1Aβ−α0 e(β−α)(η̃−δ)te−ρt

= limt→∞ α[ α
1+α

( ρ
β−α

+ δ)]α+1Aβ−α0 e(β−α)[
α

1+α
( ρ
β−α

+δ)−δ]te−ρt

= limt→∞ α[ α
1+α

( ρ
β−α

+ δ)]α+1Aβ−α0 e{
α

1+α
[ρ+(β−α)δ]−(β−α)δ}te−ρt

= limt→∞ α[ α
1+α

( ρ
β−α

+ δ)]α+1Aβ−α0 e−
1

1+α
[ρ+(β−α)δ]t = 0

(69)

With the help of (67)-(69), we have limt→∞ λ(t)A(t)e−ρt = 0. ✷

We also provide a second method of proving the above result. The method will be

referred in a later result.

From (67), we have

lim
t→∞

α
A(t)β

c(t)α+1
A(t)e−ρt = α lim

t→∞

A(t)β

c(t)α
A(t)

c(t)
e−ρt (70)

Combing this with (103) leads to

lim
t→∞

A(t)β

c(t)α
A(t)

c(t)
e−ρt = lim

t→∞
Aβ−α0 (

A0

c0
)αe−

1
1+α

[ρ+(β−α)δ]tA(t)

c(t)
dt (71)

Substituting (97) into (71), we have

limt→∞Aβ−α0 (A0

c0
)αe−

1
1+α

[ρ+(β−α)δ]t A(t)
c(t)

= limt→∞Aβ−α0 (A0

c0
)αe−

1
1+α

[ρ+(β−α)δ]t[ 1
η
+ em1t(A0

c0
− 1

η
)]

= limt→∞Aβ−α0 (A0

c0
)αe−m1t[ 1

η
+ em1t(A0

c0
− 1

η
)]

= limt→∞Aβ−α0 (A0

c0
)α( 1

η
e−m1t + A0

c0
− 1

η
)

(72)

Obviously, c0 must be equal to ηA0, i.e.,
A0

c0
= 1

η
, in order for the RHS of (72) to be

zero. ✷

G Concavity of H0(t, A, λ)

The second order derivative of the maximized Hamiltonian function H0(t, λ, A) of (38) is

given by

∂H2
0

∂A2
= −

β
α+1

( β
α+1

− 1)A
β
α+1

−2

( α
−λ

)
α
α+1

+ λ[(
α

−λ
)

1
α+1

β

α+ 1
(

β

α + 1
− 1)A

β
α+1

−2] (73)
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Notice that (32) implies λ(t) is negative for each t. Combining this with (73), we know
∂H2

0

∂A2 ≤ 0 if β ≥ α + 1 > 1. Then the maximized Hamilton function H0(t, λ, A) is concave

in A for each t under the condition of β ≥ α + 1. ✷

H Asymptote

From (55) and (56), we have

dc

dA
=

c
α(1+α)A

[αβ(c− δA)− α(ρ+ δ)A+ βc]

c− δA
(74)

Assume c = mA. Then dc
dA

= m, and

mA
α(1+α)A

[αβ(mA− δA)− α(ρ+ δ)A+ βmA]

mA− δA
= m (75)

Solving for m in (75) yields

m =
α

1 + α
(

ρ

β − α
+ δ) (76)

Then the asymptote can be expressed as

c(t) =
α

1 + α
(

ρ

β − α
+ δ)A(t) (77)

which is exactly the optimal solution of the addictive problem. ✷

I Part 1 of the Proof of Theorem 2

Consider the following ODEs (78) and (79):

ċ =
c2

α(1 + α)A
[
αβ

c
(c− δA)− (ρ+ δ)

αA

c
+ β], c(0) = c0 (78)

Ȧ = c− δA, A(0) = A0 (79)

Here, we should keep in mind that c(0) = c0 is a general initial value of addictive

consumption, not just the optimal one. From (78) and (79), we have

37



ċ
c
= 1

α(1+α)
c
A
[αβ(1− δA

c
)− α(ρ+ δ)A

c
+ β]

= 1
α(1+α)

c
A
{αβ + β − [αβδ + α(ρ+ δ)]A

c
}

= 1
α(1+α)

{(αβ + β) c
A
− [αβδ + α(ρ+ δ)]}

= { 1
α(1+α)

(αβ + β) c
A
− 1

α(1+α)
[αβδ + α(ρ+ δ)]}

= [β
α
c
A
− 1

1+α
(βδ + ρ+ δ)]

(80)

and

Ȧ

A
=

c

A
− δ (81)

Let c(t)
A(t)

= y(t). Then we have c(t) = A(t)y(t) and ċ
c
= Ȧ

A
+ ẏ

y
. Substituting them into

(80) and (81) leads to

ẏ

y
=
β

α
y −

1

1 + α
(βδ + ρ+ δ)−

Ȧ

A
(82)

Ȧ

A
= y − δ (83)

Substituting (83) into (82), we have

ẏ
y
= β

α
y − 1

1+α
(βδ + ρ+ δ)− (y − δ)

= β−α
α
y + δ − 1

1+α
(βδ + ρ+ δ)

(84)

Then

ẏ = [δ −
1

1 + α
(βδ + ρ+ δ)]y +

β − α

α
y2 (85)

Notice that (85) is a Bernoulli equation. It can be changed into the following linear

ODE after a transformation of z(t) = 1
y(t)

.

ż = [
1

1 + α
(βδ + ρ+ δ)− δ]z −

β − α

α
(86)

Denote 1
1+α

(βδ + ρ+ δ)− δ and β−α
α

by m1 and m2, respectively. Then (86) becomes
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ż = m1z −m2, z(0) = z0 (87)

Then its solution is

z(t) = em1t(z0 −

∫ t

0

e−m1sm2ds) = em1t[z0 +
m2

m1
(e−m1t − 1)] (88)

Notice the initial value z0 =
1
y(0)

= 1
c(0)/A(0)

= A0

c0
. Then

z(t) = em1t[
A0

c0
+
m2

m1
(e−m1t − 1)] (89)

Then

c

A
= y(t) =

1

z(t)
=

1

em1t[A0

c0
+ m2

m1
(e−m1t − 1)]

(90)

Substituting (90) into (83) yields

Ȧ

A
=

1

em1t[A0

c0
+ m2

m1
(e−m1t − 1)]

− δ (91)

Solving (91), we have (see the next Appendix for the computation detail)

A(t) = A0{
em1t[1 + m2

m1
/(A0

c0
− m2

m1
)]

em1t + m2

m1
/(A0

c0
− m2

m1
)
}

1
m2 e−δt = A0{

A0

c0
em1t

m2

m1
+ em1t(A0

c0
− m2

m1
)
}

1
m2 e−δt (92)

If we let c0 = ηA0 =
α

1+α
( ρ
β−α

+ δ)A0, i.e.,

A0

c0
=

1
α

1+α
( ρ
β−α

+ δ)
(93)

Noticing the definitions of m1 and m2, we have

m2

m1
=

β−α
α

1
1+α

(βδ+ρ+δ)−δ
=

β−α
α

βδ+ρ+δ−(1+α)δ
1+α

=
β−α
α

(β−α)δ+ρ
1+α

= 1
α

1+α
(β−α)δ+ρ
β−α

= 1
α

1+α
( ρ
β−α

+δ)

= 1
η
= A0

c0

(94)
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Substituting (94) into (92) leads to

A(t) = A0(e
m1t)

1
m2 e−δt = A0e

(η−δ)t (95)

Obviously, it is exactly the expression for the optimal addictive capital. By m2

m1
= 1

η
,

the general solution for addictive capital and (90) can be rewritten as

A(t) = A0[
A0

c0
em1t

1
η
+ em1t(A0

c0
− 1

η
)
]

1
m2 e−δt (96)

c(t)

A(t)
=

1

em1t[A0

c0
+ 1

η
(e−m1t − 1)]

=
1

1
η
+ em1t(A0

c0
− 1

η
)

(97)

Then

c(t) = A(t)
c(t)

A(t)
= A0[

A0

c0
em1t

1
η
+ em1t(A0

c0
− 1

η
)
]

1
m2

1
1
η
+ em1t(A0

c0
− 1

η
)
e−δt (98)

✷

J Part II of the Proof of Theorem 2

Let lnA(t) = w(t). Then w(0) = w0 = lnA0,
Ȧ
A
= ẇ and (91) becomes

ẇ =
1

em1t[A(0)
c(0)

+ m2

m1
(e−m1t − 1)]

− δ (99)

Then

w(t) = w0 +
t
∫

0

{ 1

em1s[
A0
c0

+
m2
m1

(e−m1s−1)]
− δ}dt

= w0 +
t
∫

0

1

em1s[
A0
c0

+
m2
m1

(e−m1s−1)]
dt− δt

= w0 +
t
∫

0

1

(
A0
c0

−
m2
m1

)em1s+
m2
m1

dt− δt

= w0 +
t
∫

0

1
h1em1s+h2

dt− δt

(100)

40



In the last line of (100), we have already assumed h1 =
A0

c0
− m2

m1
and h2 =

m2

m1
. Further,

let x(t) = em1t. Then t = 1
m1

ln x and dt = 1
m1

1
x
dx. Substituting them into (100) gives

w(t) = w0 +
t
∫

0

1
h1em1s+h2

dt− δt

= w0 +
1
m1

em1t
∫

1

1
h1x+h2

1
x
dx− δt

= w0 +
1
m1

em1t
∫

1

1
h1(x+h2/h1)

1
x
dx− δt

= w0 +
1

m1h1

em1t
∫

1

1
x+h2/h1

1
x
dx− δt

= w0 +
1

m1h1

em1t
∫

1

1
h2/h1

( 1
x
− 1

x+h2/h1
)dx− δt

= w0 +
1

m1h2

em1t
∫

1

( 1
x
− 1

x+h2/h1
)dx− δt

= w0 +
1

m1h2
[ln x− ln(x+ h2/h1)]|

em1t

1 − δt

= w0 +
1

m1h2
(ln x

x+h2/h1
)|e

m1t

1 − δt

= w0 +
1

m1h2
(ln em1t

em1t+h2/h1
− ln 1

1+h2/h1
)− δt

= w0 +
1

m1h2
ln em1t(1+h2/h1)

em1t+h2/h1
− δt

(101)

From lnA(t) = w(t) and (101), we have

A(t) = exp(w(t)) = e
[w0+

1
m1h2

ln
em1t(1+h2/h1)

em1t+h2/h1
−δt]

= A0[
em1t(1+h2/h1)
em1t+h2/h1

]
1

m1h2 e−δt

= A0{
em1t[1+

m2
m1

/(
A0
c0

−
m2
m1

)]

em1t+
m2
m1

/(
A0
c0

−
m2
m1

)
}

1
m2 e−δt

= A0[
A0
c0
em1t

m2
m1

+em1t(
A0
c0

−
m2
m1

)
]

1
m2 e−δt

(102)

✷

K The Computation of t∗

Let ε > 0 and c0 = (η + ε)A0. Substituting it into (102) leads to

A(t) = A0(

1
η+ε

1
η
e−m1t + 1

η+ε
− 1

η

)
1
m2 e−δt = A0[

1
η+ε

1
η
e−m1t − ε

η(η+ε)

]
1
m2 e−δt

If the denominator 1
η
e−m1t − ε

η(η+ε)
→ 0, then A → ∞. In fact, it suffices to make the

denominator 1
η
e−m1t − ε

η(η+ε)
→ 0 if t→ t∗ = − 1

m1
ln ε

η+ε
. ✷
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L Objective Value

∞
∫

0

−Aβ

cα
e−ρtdt =

∞
∫

0

−Aα

cα
Aβ−αe−ρtdt

= −
∞
∫

0

[ 1
η
+ em1t(A0

c0
− 1

η
)]α{A0[

A0
c0
em1t

1
η
+em1t(

A0
c0

− 1
η
)
]

1
m2 e−δt}β−αe−ρtdt

= −
∞
∫

0

Aβ−α0 [ 1
η
+ em1t(A0

c0
− 1

η
)]α[

A0
c0
em1t

1
η
+em1t(

A0
c0

− 1
η
)
]
β−α
m2 e−[(β−α)δ+ρ]tdt

= −
∞
∫

0

Aβ−α0 [ 1
η
+ em1t(A0

c0
− 1

η
)]α[

A0
c0
em1t

1
η
+em1t(

A0
c0

− 1
η
)
]αe−[(β−α)δ+ρ]tdt

= −
∞
∫

0

Aβ−α0 (A0

c0
em1t)αe−[(β−α)δ+ρ]tdt

= −Aβ−α0 (A0

c0
)α

∞
∫

0

eαm1te−[(β−α)δ+ρ]tdt

= −Aβ−α0 (A0

c0
)α

∞
∫

0

e{
α

1+α
[(β−α)δ+ρ]−(β−α)δ+ρ}tdt

= −Aβ−α0 (A0

c0
)α

∞
∫

0

e−
1

1+α
[ρ+(β−α)δ]tdt

= −Aβ−α0 (A0

c0
)α 1+α

ρ+(β−α)δ

(103)

Recall that A0

c0
= 1

η
corresponds to the optimal initial condition. Substituting it into (103)

leads to

−Aβ−α0 (A0

c0
)α 1+α

ρ+(β−α)δ

= −Aβ−α0 ( 1
η
)α 1+α

ρ+(β−α)δ

= −Aβ−α0 [ 1
α

1+α
( ρ
β−α

+δ)
]α 1+α
ρ+(β−α)δ

= −Aβ−α0
(1+α)1+α

[ρ+(β−α)δ][α( ρ
β−α

+δ)]α

= −Aβ−α0 { (1+α)

[ρ+(β−α)δ]
1

1+α [α( ρ
β−α

+δ)]
α

1+α
}

1+α

= −Aβ−α0 { (1+α)

[ρ+(β−α)δ]
1

1+α [α
ρ+(β−α)δ
β−α

]
α

1+α
}

1+α

= −Aβ−α0 { (1+α)

α
α

1+α [ρ+(β−α)δ]
1

1+α [ρ+(β−α)δ]

(β−α)

α
1+α

α
1+α

}
1+α

= −Aβ−α0 { (1+α)(β−α)
α

1+α

α
α

1+α [ρ+(β−α)δ]
}

1+α

= −Aβ−α0 {
(1+α)(β−α

α
)
α

1+α

[ρ+(β−α)δ]
}

1+α

= −Aβ−α0 {
(β−α
α

)
α

1+α +α(β−α
α

)
α

1+α

[ρ+(β−α)δ]
}

1+α

= −Aβ−α0 {
(β−α
α

)
α

1+α +(β−α)
α

1+α α
1

1+α

[ρ+(β−α)δ]
}

1+α

(104)

(104) is identical to the one obtained by HJB method if we set σ = 0. ✷
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