
Price Discovery and Interventions in Frozen Markets∗

Braz Camargo†

Sao Paulo School of Economics - FGV

Kyungmin Kim

University of Iowa

Benjamin Lester‡

Federal Reserve Bank of Philadelphia

February 19, 2014

Abstract

We study how government intervention in frozen markets affects the process of information

aggregation or price discovery. We find a fundamental trade-off between ensuring that buyers

participate in the market—so that trade actually occurs—and ensuring that prices are informa-

tive about the quality of the asset being traded. The policy that balances this trade-off, and

hence maximizes price discovery, is quite different than the policy that maximizes gains from

trade, which has been the sole objective in most previous studies of interventions in frozen

markets. We then study how the policy maximizing price discovery depends on features of the

environment, such as the severity of the initial market freeze and the opacity of the assets for

sale.
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“The complete evaporation of liquidity in certain market segments of the US secu-

ritisation market has made it impossible to value certain assets fairly.” — Official
Statement of BNP Paribas, after stopping withdrawals from three investment funds on
August 9, 2007.

“For some of the securities there are just no prices [...] As there are no prices, we can’t

calculate the value of the funds.” — Alain Papiasse, Head of Asset Management, BNP
Paribas.

1 Introduction

Information aggregation is one of the fundamental functions of a market.1 Hence, when markets

fail or “freeze,” not only are gains from trade left unrealized, but the process of information aggre-

gation or price discovery is disrupted as well. Given the potential ramifications of frozen markets,

a natural question is what role a government can play in “unfreezing” a market. Answering this

question has become particularly important in light of the financial crisis that occurred in 2007-

2008, when the collapse of trade in several key financial markets had deleterious effects on the

economy as a whole. However, nearly all of the literature that has emerged to study policy inter-

ventions in frozen markets has focused exclusively on the ability of various government programs

to restore gains from trade, while ignoring the effect of these programs on price discovery.

This failure to consider the effects of government intervention on the process of price discovery

is a serious omission. After all, the information contained in asset prices often plays a crucial role in

the decision-making processes of many agents in the economy. For example, information produced

about a particular type of asset can reduce information asymmetries in markets for similar (or

even identical) assets, thereby helping other agents to realize gains from trade.2 The information

produced about a particular class of assets could also allow for a more accurate assessment of the

balance sheet of a bank that owns these assets. This could be valuable to depositors who have to

1See, e.g., Hayek [1945], Grossman [1976], and Hellwig [1980].
2For recent examples of papers that study information spillovers in financial markets, see Benveniste et al. [2003],

who provide evidence from the IPO market, or Cespa and Foucault [2013], who document the effects of informational
spillovers after a “flash crash.”
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decide whether to withdraw their funds from such a bank or to invest additional funds.3 The same

information could also be valuable to regulators who have to decide whether or not to “bail out”

such a bank if it faces financial distress.4 In either case, more accurate asset prices could reduce the

incidence of liquidating banks that would ultimately be solvent and bailing out banks that would

ultimately find themselves insolvent. More generally, there are myriad of channels through which

information contained in asset prices guides real economic decisions.5

Once we recognize that the informational content of asset prices is important for a variety

of markets, agents, and real economic decisions, a crucial question arises: what is the effect of

government interventions in frozen markets on price discovery? The goal of this paper is to provide

some answers to this question.

We begin with a standard model of trade: an auction with one seller and N buyers. An auction

is a natural starting point because it provides rigorous micro-foundations for price formation and,

hence, has served as a workhorse model in the literature on information aggregation (see, e.g.,

[Wilson, 1977] and [Milgrom, 1979]). Then we add three simple ingredients that allow us to

address the question posed above.

First, we introduce a friction that serves as an impediment to trade: asymmetric information

about the quality of the seller’s asset. In particular, we assume that the seller’s asset is either of

high or low quality, and that this is the seller’s private information. This friction is not only a

classic explanation for market failures in general, but it is also one of the most commonly cited

reasons for the specific interruptions that occurred during the recent financial crisis.6

Second, we allow buyers to acquire information about the quality of the asset before they

bid. More specifically, each buyer can acquire a noisy signal about the quality of the asset at

a cost, which is drawn independently for each buyer from a given distribution. This ingredient

3See, e.g., Goldstein and Pauzner [2005], who provide a model that describes how information about fundamentals
can change the probability of a bank run.

4During the recent financial crisis, Hart and Zingales [2011], McDonald [2013], and Flannery [2010] all offered
policy prescriptions that utilize the information contained in current market prices. See Bond and Goldstein [2012] for
a recent theoretical contribution.

5See, e.g., Dow and Gorton [1997], Chen et al. [2007], Foucault and Gehrig [2008], Bakke and Whited [2010], and
Foucault and Frésard [2012] for specific examples, and Bond et al. [2012] for a broad overview of the literature that
studies the interaction between price discovery and real investment decisions.

6See, e.g., Gorton [2009].

3



ultimately allows us to analyze buyers’ incentives to produce information and how those incentives

are influenced by features of the economic environment.

Last, we introduce a simple policy to “unfreeze” the market, whereby the government provides

partial insurance to the winning bidder against the event of acquiring a low quality asset or “lemon.”

In particular, we assume that a buyer who pays a high price and discovers that the asset is of low

quality only suffers a fraction γ of the loss, and the government bears the remainder of the loss.

This is a natural policy to study for two reasons. First, it directly addresses the underlying friction

in the market; since the market freeze occurs because of buyers’ concerns for over-paying for a

“lemon,” providing a sufficient level of insurance to buyers can unambiguously restore trade in

the environment we consider. Second, this form of intervention captures the essential features of

several policies that have actually been implemented in response to market interruptions. In fact,

as we describe in detail later in the text, the program we study is almost identical to the Public

Private Investment Program for Legacy Assets, or PPIP, which was introduced in March of 2009 in

order to “support market functioning and facilitate price discovery, mostly in the mortgage-backed

securities market[.]”7

We present our model of trade with these key ingredients in Section 2, and provide a complete

characterization of the model’s equilibrium in Section 3. The equilibrium strategies are composed

of a cut-off cost k∗ such that buyers acquire a signal about the quality of the asset if, and only

if, their cost of acquiring the signal is not greater than k∗, along with optimal bidding strategies

for each buyer conditional on their information set at the time of bidding. Then, in Section 4,

we use the equilibrium characterization to achieve our primary goal—namely, to gain a better

understanding of how government policy affects the amount of information that is produced in the

auction. We do this in a number of steps.

First, we analyze the relationship between each buyer’s incentive to acquire a signal about

7This quote is taken from the Quarterly Report of the Department of the Treasury, January 30, 2013. The idea of
curing a frozen market by sharing in participants’ potential losses was not exclusive to PPIP, though. For example,
Swagel [2009] describes an FDIC proposal for foreclosure avoidance that included “a loss-sharing insurance plan,
under which the federal government would make good on half of the loss suffered by a lender that modified a loan
according to the IndyMac protocol but later saw the loan go into default and foreclosure.” A similar philosophy
underlies the “ring fence insurance schemes” he describes, whereby money from the Troubled Asset Relief Program
was used to share losses on a large pool of assets owned by Citi.
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the asset’s quality (captured by the equilibrium cut-off k∗) and the amount of insurance provided

by the intervention (captured by the policy parameter γ). We show that there exists a unique,

interior policy choice, γ̃ ∈ (0, 1), that maximizes buyers’ incentives to become informed (i.e.,

acquire a signal). Intuitively, when the amount of insurance is too low, the problem of adverse

selection remains severe, the expected gains from trade are small, and thus buyers are hesitant to

acquire information and bid for the asset. However, when the program provides too much insurance

against losses, a moral hazard problem emerges: buyers become more willing to “gamble” and bid

aggressively without first becoming informed.

Next, we examine how the buyers’ equilibrium behavior affects the amount of information

produced in the auction. Note that this is not a straightforward task: as we will show, each choice

of γ induces a distribution of winning bids, and thus a distribution of signals about the quality

of the asset, and it is notoriously difficult to compare such distributions or information structures

in a way that does not depend crucially on the specific details of the decision problem to which

they are applied (see, e.g., [Athey and Levin, 1998]). We overcome this challenge by studying the

expected reduction in entropy that results from an agent observing the winning bid. This “entropy

informativeness” metric has been popular—and provides a natural benchmark here—both because

it allows for a complete ordering of information structures and because it is model-free, i.e., it

does not depend on the endowments or preferences of the agents in the model, nor on the decision-

making process to which the information is applied.8 In fact, since our results do not depend on

a specific model of information spillovers, they are informative both for environments in which

price discovery is beneficial for welfare and for environments in which information production is

harmful (such as [Dang et al., 2012]).

Using entropy informativeness as a metric, we show that there is an inherent trade-off between

ensuring that gains from trade are realized and promoting price discovery. We establish that pro-

viding full insurance for the buyers (i.e., setting γ = 0) maximizes gains from trade, but minimizes

the informational content of the winning bid. The quantity of information produced is maximized

at a value of γ ∈ (0, γ̃), at which buyers obtain enough insurance so that they are willing to bid for

8The notion of entropy was first introduced in this context by Shannon [1948]. For early discussions of this
measure’s use in economics, see Marschak [1959] and Arrow [1972]. For a more recent treatment, see Sims [2003],
Veldkamp [2011], and Cabrales et al. [2013].
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the asset, but not so much insurance that they place these bids without first acquiring information.

This trade-off has not been identified in the existing literature. In particular, previous studies have

focused on two potential costs of government intervention: the direct cost of raising funds for an

intervention, and the indirect cost of encouraging risky behavior in the future. Hence, one im-

portant contribution of our paper is to identify a third cost of government intervention: distorting

prices and disrupting the process of information production.

In Section 4, we also examine how the policy that maximizes entropy informativeness depends

on certain features of the economic environment, such as the (initial) severity of the lemons prob-

lem (i.e., the ex ante probability that the asset is a lemon) and the opacity of the market (i.e., the

informativeness of signals about the quality of the asset). We show that reducing adverse selection

and reducing market opacity have different, opposing implications for the policy that maximizes

information production: this policy requires providing less insurance when adverse selection is less

severe, while it requires providing more insurance when the asset is less opaque. This difference

stresses the subtleties of how policy interacts with price discovery.

In Section 5, we discuss some of our assumptions and possible extensions to our framework.

First, since the number N of buyers in each auction is potentially a policy choice, a natural ques-

tion is how the informational content of prices varies with N . We show that, for each γ, there

is an optimal number of participants for maximizing information production. Second, we discuss

the robustness of our results to alternative signal structures. Finally, we illustrate how our frame-

work can accommodate an alternative theory of market crashes, the so-called “cash-in-the-market

pricing.” Section 6 concludes.

Related Literature. This paper primarily contributes to the literature on optimal interventions

in frozen markets, which is young but growing fast; a non-exhaustive list includes Tirole [2012],

Philippon and Skreta [2012], Chari et al. [2010], Camargo and Lester [2011], Guerrieri and Shimer

[2011], Chiu and Koeppl [2011], Philippon and Schnabl [2011], House and Masatlioglu [2010],

Diamond and Rajan [2012], and Farhi and Tirole [2012]. As we noted above, the majority of

this literature focuses on how government interventions can improve allocations, while ignoring

the effects of these interventions on the process of information production. To the best of our
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knowledge, the only other paper that explicitly studies the effects of government interventions on

information production is Bond and Goldstein [2012]. The focus of their analysis is very different

from ours, though; most notably, they are not interested in inefficiencies due to adverse selection,

and thus the interventions in their model play an entirely different role than in our environment.9

From a technical point of view, our paper is related to two strands of the auction literature. The

first strand studies the incentives of bidders to acquire information under various auction formats,

and whether these incentives align with the socially optimal level; see, for example, Matthews

[1984], Persico [2000], Bergemann and Valimaki [2002], and Bergemann et al. [2009]. However,

these papers are interested in neither the informational content of the winning bid, nor the effects

of any form of intervention on information acquisition.10 The second strand examines the extent

to which the winning bid(s) of an auction reflects the underlying value of the good(s) for sale;

see, for example, Wilson [1977], Milgrom [1979], Milgrom [1981], Pesendorfer and Swinkels

[1997], Pesendorfer and Swinkels [2000], Kremer [2002], and Lauermann and Wolinsky [2013]. In

contrast to our paper, this literature typically treats the information set of each bidder as exogenous

and focuses on conditions for the winning bid to completely reveal the underlying value of the

object.11

2 The Model

Environment. There is a single seller who possesses one indivisible asset, and there areN buyers

who are interested in purchasing the asset. The asset is either of high (H) or low (L) quality. If

the asset is of high quality, then the seller receives payoff c from retaining the asset, while a buyer

receives payoff v from acquiring it, where v > c > 0. If the asset is of low quality, then it is of no

value to either the seller or the buyers; that is, it yields all of them zero payoff.

The quality of the asset is the seller’s private information. The buyers have a common prior

9They highlight an interesting feedback effect that is absent from our analysis: the government decides how much
to use market prices in formulating a policy, which affects the incentives of speculators to trade and hence changes the
informational content of these prices.

10Perhaps closest to our framework is Cao and Shi [2001], who study how the number of bidders affects information
acquisition and bidding behavior in the market for loans.

11A notable exception is Jackson [2003], who allows for endogenous information acquisition.
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belief that the asset is of high quality with probability π ∈ (0, 1). Should a buyer acquire an asset

of quality j ∈ {L,H} at some price b, this buyer receives payoff v − b if j = H and −b if j = L,

the seller receives payoff b, and all other buyers receive payoff zero. Should no trade occur, the

seller receives payoff c if j = H and zero if j = L, and all buyers receive payoff zero.

Trading. The game proceeds as follows. First, each buyer i ∈ {1, . . . , N} has the opportunity to

inspect the asset at a cost ki, where each ki is independently and identically drawn from the interval

[0,∞) according to a continuous and strictly increasing cumulative distribution function G. If

buyer i incurs the cost ki, then he receives a private and independently drawn signal si ∈ {`, h}

about the quality of the asset. In order to deliver our results most clearly, we focus on a simple

signal generating process summarized by the matrix

H L

h 1 1− ρ
` 0 ρ

,

where ρ ∈ (0, 1). In words, a buyer who inspects the asset always receives the “good” signal h if

the asset is of high quality. However, if the asset is of low quality, then the buyer receives the “bad”

signal ` only with probability ρ.12 We refer to a buyer who has decided to receive a costly signal

as “informed” and a buyer who has chosen not to receive a signal as “uninformed.” For ease of

exposition, we say that an uninformed buyer observes the signal si = u. A buyer cannot observe

the other buyers’ costs, nor can he observe whether the other buyers are informed or uninformed.

After the information acquisition stage, the buyers simultaneously submit a non-negative bid

for the asset; we denote buyer i’s bid by bi. The seller then decides whether to accept the highest

bid or to reject all bids and retain the asset. If the highest bid is offered by two or more buyers (and

the seller accepts), the asset is awarded to each of those buyers with equal probability.

12Although the informational structure is rather stylized, it has a natural interpretation. One can imagine that there
are certain “red flags” associated with low quality assets, corresponding to signal ` in our environment. A buyer who
studies a seller’s asset will never uncover such a red flag if the asset is of high quality, while he may (with probability
ρ) find one if the asset is of low quality. Many of our results are robust to other specifications, including the case in
which the bad signal occurs with positive probability when the asset is of high quality; see Section 5 for a discussion.
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Assumptions. A buyer who receives the bad signal knows with certainty that the asset is of low

quality. Alternatively, a buyer who receives the good signal is still uncertain about the quality of

the asset, but updates his belief that the asset is of high quality to

π̃ =
π

π + (1− π)(1− ρ)
> π.

In order to focus on the most relevant case, we make the following two assumptions:

ASSUMPTION 1. (Initial Lemons Problem)

π(v − c)− (1− π)c < 0 ⇔ π <
c

v
; (1)

ASSUMPTION 2. (Positive value of inspection)

π̃(v − c)− (1− π̃)c > 0 ⇔ π̃ >
c

v
⇔ ρ >

c− πv
(1− π)c

. (2)

Assumption 1 implies that buyers are not willing to place a “serious” bid b ≥ c without inspecting

the asset. Assumption 2 implies that inspection is sufficiently informative about the quality of the

asset to generate the potential for trade between a buyer who receives the signal h and a seller with

a high-quality asset; that is, a buyer who receives the good signal is willing to bid b ≥ c.

Policy. We consider a simple form of intervention that directly addresses the fundamental fric-

tion, adverse selection. In particular, we assume that the government chooses to provide some level

of insurance to buyers against the possibility of acquiring a low quality asset.

Motivated by the PPIP program that was introduced during the recent financial crisis, we as-

sume that this policy is implemented as follows. A buyer who purchases the asset at price b is

required to put up an amount γb of his own equity, and is issued a nonrecourse loan from the gov-

ernment for the remaining portion of his bid, (1 − γ)b. Should the buyer choose not to repay the

loan, the government can seize the asset, but the buyer is not liable for any additional payments.

Therefore, the buyer’s loss is limited to γb under this program. We assume that a buyer who pur-

chases the asset observes its quality before deciding whether to repay the loan.13 Hence, a buyer

13Perfect observability is not a crucial assumption. All of our results go through if the purchaser receives additional
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who acquires the asset at price b repays the loan if the asset is of high quality, earning a payoff of

v − b, and defaults otherwise, suffering a loss of γb. Thus, it is easy to see that the government

policy is tantamount to insurance: it provides a rebate of size (1− γ)b to an “unlucky” buyer who

pays price b ≥ c and receives a low-quality asset.14

Strategies and Equilibrium. The seller’s behavior is straightforward in our model: a seller

with a low-quality asset accepts any positive bid, while a seller with a high-quality asset accepts

the highest bid b if b ≥ c and rejects all bids otherwise. It simplifies our analysis to assume

that a bid of zero is rejected by both types of sellers, even though sellers with low-quality assets

are indifferent between accepting and rejecting such a bid; one could imagine, for example, an

arbitrarily small transaction cost associated with trading an asset of low quality. In what follows,

we take the behavior of the sellers as given and focus on the behavior of the buyers.

A strategy for buyer i ∈ {1, . . . , N} has two components. First, he must decide whether or not

to inspect the asset given the cost ki. The optimal inspection strategy for a buyer is obviously a

cutoff rule: inspect the asset if, and only if, the cost ki is not greater than the value of doing so.

Therefore, we represent a buyer’s inspection strategy by his cutoff cost k. Second, a buyer must

formulate an optimal bidding strategy as a function of his private information: namely, the signal

si ∈ {u, `, h} he receives about the quality of the asset.15 We let a cumulative distribution function

Fs represent the mixed bidding strategy of a buyer with signal s; Fs(b) is the probability that a

buyer with signal s bids b or less.

A symmetric equilibrium is a strategy profile (k, Fu, F`, Fh) in which: (i) a buyer inspects the

asset if, and only if, the cost of doing so is not greater than the benefit; and (ii) each buyer’s bid is

information about the quality of the asset before he makes the repayment decision.
14The actual PPIP was only slightly different. Like our model, an auction would be organized for a pool of asset-

backed securities with a fixed (known) number of bidders. The winning bidder was required to finance a fraction 1
12 of

the purchase price with his own equity. The treasury would match the investor’s equity investment in exchange for a
50% share in profits. The remaining 5

6 of the purchase price would be financed by a nonrecourse loan from the FDIC.
Hence, the main features of PPIP—an auction in which downside insurance was offered to the winning bidder by way
of a nonrecourse loan—is identical to our formulation. We abstract from the profit-sharing feature, though including
this would not substantially change our results.

15In principle, a buyer can also condition his bidding strategy on his cost of inspection, ki. However, at the time of
bidding, the costs of inspection are already sunk and, therefore, intrinsically irrelevant to the buyers’ bidding problems.
Hence, we assume that a buyer’s bidding strategy depends only on his signal. In addition, it is possible to show that
allowing buyers to condition their bids on their inspection costs does not affect equilibrium payoffs and outcomes.
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optimal given his private information and the strategies of the other buyers.

3 Equilibrium Characterization

In this section, we characterize the symmetric equilibrium of the trading game described in the

previous section. The main challenge is to jointly characterize the buyers’ equilibrium inspection

and bidding strategies. After all, the value of inspection for buyers depends on their bidding

behavior, which in turn depends on the inspection decisions of other buyers.

We overcome this challenge by proceeding in two steps. First, we consider the model in which

the probability that each buyer is informed, which we denote by λ, is taken as exogenous and

characterize the equilibrium for all possible values of λ and γ. Then, we use the equilibrium

characterization of the model with exogenous inspection probabilities to determine the value of

inspection for a buyer, conditional on the other buyers inspecting the asset with probability λ. This

allows us to characterize the equilibrium of the original game, where the probability that each

buyer is informed is determined endogenously, for each choice of γ. In particular, we show that,

for each γ ∈ [0, 1], there exists a unique cutoff k∗ such that the value of being informed is exactly

k∗ when the probability that each buyer is informed is λ∗ = G(k∗).

We restrict the analysis in the text to the case of γ > 0, as this is the most relevant case. How-

ever, we also report several properties of the equilibrium as γ converges to zero, as this captures an

important benchmark—the case in which buyers are fully insured against losses. As we will show,

as the buyers’ “skin in the game” vanishes, the incentive to acquire information converges to its

minimum value, while gains from trade are maximized.16

16The analysis at γ = 0 itself is slightly different, as multiplicity of equilibria arises, with different bidding strategies
across these equilibria (though ex ante payoffs are the same). For example, besides the (natural) equilibrium in which
agents who observe the signal ` bid zero, there exists an equilibrium in which these agents bids b = v even if they know
that the asset is worthless: after all, buyers are fully insured. The second equilibrium is neither interesting nor robust
(it is not the limit of equilibria as γ converges to zero). This is why we analyze only the case of γ > 0 and consider
the full insurance case as the limiting case when γ converges to zero. However, for completeness, in the Appendix we
establish the key property of all equilibria at γ = 0; namely, that the equilibrium cutoff cost for inspecting the asset is
zero (see Proposition 7).

11



3.1 Equilibrium with Exogenous Information Acquisition

Suppose each buyer inspects the asset with probability λ ∈ (0, 1).17 The behavior of a buyer who

observes the signal ` is trivial: since this signal reveals that the asset is of low quality, a weakly

dominant strategy for the buyer is to bid b = 0, yielding payoff V` = 0. Therefore, in what follows,

we take as given the behavior of buyers who receive the signal `, and concentrate on the behavior

of uninformed buyers and informed buyers who receive the signal h. In a slight abuse of notation,

we refer to the former as “type u” buyers and the latter as “type h” buyers. Note that bidding

b ∈ (0, c) is suboptimal for both types of buyers, as such an offer is accepted only when the asset

is of low quality, in which case the buyer surely suffers a payoff loss of γb.

For each s ∈ {u, h}, denote the minimum and maximum of the support of Fs by bs and bs,

respectively. In addition, denote by Vs(b) the expected payoff to a type s buyer who bids b, and

let Vs be the equilibrium payoff of a type s buyer. We first establish several basic properties of the

equilibrium bidding strategies.

Lemma 1. The following holds in equilibrium for all γ > 0: (i) bu ≤ bh; (ii) bh > c; (iii) Fs(b)

is continuous and strictly increasing in b when b ∈ [max{c, bs}, bs] for each s ∈ {u, h}; and (iv)

bu = 0.

We relegate the proof of Lemma 1 to the Appendix and sketch the intuition here. The first

property is a typical single crossing property: a buyer who is more optimistic about the quality of

the asset has a higher willingness to pay and therefore bids a higher price. As a result, the supports

of Fh and Fu overlap at most at a single point. The second property states that type h buyers place

serious bids with positive probability. Indeed, if type h buyers always bid zero, then a profitable

deviation for such a buyer would be to bid b = c and obtain a payoff π̃(v − c)− (1− π̃)γc, which

is positive by Assumption 2. The third property states that the mixed bidding strategies Fu and Fh

have neither atoms nor gaps on [c, bh]. If there were an atom, then a buyer who bids slightly above

the atom obtains a strictly higher payoff than a buyer who bids at the atom. Similarly, if there

were a gap in the support of the distribution of bids, then a bid at the lower end of the gap would

be strictly preferable to a bid at the upper end of the gap, as both bids have the same probability
17Below, we give conditions under which λ ∈ (0, 1) for all γ > 0 when information acquisition is endogenous.
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of winning. The last property states that bu = 0, which implies that Vu = 0. Indeed, if bu ≥ c,

then a type u bidder who bids b = bu wins only when the asset is of low quality, in which case his

expected payoff is strictly negative.

Taken together, the properties in Lemma 1 imply that any equilibrium takes one of the following

three forms. First, it could be that c < bu ≤ bh, so that even type u buyers make serious bids.

Second, it could be that bu = 0 and bh ≥ c, so that type u bidders never make serious bids, while

type h buyers always place a serious bid. Finally, it could be that bu = bh = 0, so that even type

h buyers make an offer of zero with positive probability. The equilibrium set can be characterized

by analyzing each case separately. Since the analysis is similar for all three cases, we focus on the

second case in detail here and relegate the other cases to the Appendix.

In the second case, in which uninformed buyers always bid zero, the expected payoff to a type

s ∈ {u, h} buyer who bids b ≥ c is

Vs(b) = πs [1− λ+ λFh(b)]
N−1 (v − b)− (1− πs) {1− λ+ λ [ρ+ (1− ρ)Fh(b)]}N−1 γb, (3)

where πu = π and πh = π̃. Indeed, an uninformed buyer bids less than b for sure, while an

informed buyer bids less than b with probability Fh(b) if the asset is of high quality and with

probability ρ + (1 − ρ)Fh(b) if the asset is of low quality. Hence, if the asset is of high quality,

then the buyer wins the asset with probability [1− λ+ λFh(b)]
N−1 and obtains a payoff of v − b.

On the other hand, if the asset is of low quality, then the buyer wins the asset with probability

{1− λ+ λ [ρ+ (1− ρ)Fh(b)]}N−1 and suffers a loss of γb.

Given (3), an equilibrium in which bu = 0 and bh ≥ c can be constructed as follows. First, it

must be that bh = c; if bh > c, then a type h buyer strictly prefers bidding c to bh, as this decreases

his payment without changing his probability of winning. Second, the expected payoff to a type h

buyer can be found by considering a type h buyer who bids bh = c. From (3), it follows that

Vh = π̃(1− λ)N−1(v − c)− (1− π̃)(1− λ+ λρ)N−1γc.

Finally, for each b ∈ [c, bh], Fh(b) can be derived from (3) and the fact that the buyer must be

indifferent between all bids in the support of Fh.
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The equilibrium under consideration exists if, and only if, a type h buyer has no incentive to

bid 0 and a type u buyer has no incentive to bid more than c. The first condition is that Vh ≥ 0,

which is equivalent to (
1 +

λρ

1− λ

)N−1
≤ π̃(v − c)

(1− π̃)γc
. (4)

The second condition is that Vu(b) ≤ 0 for all b ≥ c. Since π < π̃ implies that a type u bidder

strictly prefers b to b′ > b whenever a type h buyer is indifferent between b and b′, a necessary and

sufficient condition for Vu(b) ≤ 0 for all b ≥ c is that Vu(c) ≤ 0, which is equivalent to(
1 +

λρ

1− λ

)N−1
≥ π(v − c)

(1− π)γc
. (5)

Combining (4) and (5), an equilibrium in which bu = 0 and bh ≥ c exists if, and only if,

π(v − c)
(1− π)γc

≤
(

1 +
λρ

1− λ

)N−1
≤ π̃(v − c)

(1− π̃)γc
.

It is clear from the explicit construction above that the equilibrium is unique for each pair (λ, γ) ∈

(0, 1)× (0, 1] satisfying (4) and (5).

Proposition 1 summarizes the characterization of the equilibria with bu = 0 and bh = c de-

scribed above and provides a characterization of the other two types of equilibria, namely, the

equilibria with c < bu ≤ bh and the equilibria with bu = bh = 0. Loosely speaking, for an equilib-

rium with c < bu ≤ bh to exist, it must be that a type u buyer obtains a non-negative payoff from

bidding c when all type u buyers bid zero; a necessary and sufficient condition for this is found

by reversing the sign in the inequality in (5). Similarly, for an equilibrium with bu = bh = 0 to

exist, it must be that a type h buyer obtains a negative payoff from bidding c when all other type h

buyers bid b ≥ c; a necessary and sufficient condition for this is found by reversing the sign in (4).

Proposition 1. For each (λ, γ) ∈ (0, 1)× (0, 1], there exists a unique symmetric equilibrium. Let

λ(γ) ≥ 0 be the smallest value of λ that satisfies[
1 +

λρ

1− λ

]N−1
≥ π(v − c)

(1− π)γc

14



Figure 1: Equilibrium Regions
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and λ(γ) ∈ (λ(γ), 1) be the only value of λ that satisfies[
1 +

λρ

1− λ

]N−1
=

π̃(v − c)
(1− π̃)γc

.

(1) If λ ∈ (0, λ(γ)), then bh = bu > c. The expected payoff of a type h buyer is

Vh =
ρv

π + (1− π)(1− ρ)

{
1

(1− π)(1− λ+ λρ)N−1γ
+

1

π(1− λ)N−1

}−1
. (6)

(2) If λ ∈ [λ(γ), λ(γ)], then bu = 0 and bh = c. The expected payoff of a type h buyer is

Vh = π̃(1− λ)N−1(v − c)− (1− π̃)(1− λ+ λρ)N−1γc. (7)

(3) If λ > λ(γ), then bh = bu = 0. In this case, Vh = 0.

Figure 1 plots the values of λ and γ where each of the three types of equilibria exist.18 To

understand each type of equilibrium, it is helpful to note that, holding γ constant, an increase

in λ worsens the winner’s curse for both types of buyers and thus weakens their incentives to

place serious bids. This effect, however, is stronger for type u buyers, as type h buyers are better

informed about the quality of the asset. Similarly, holding λ constant, an increase in γ implies

that buyers are less insured against acquiring a lemon, which also leads to less aggressive bidding.

18One can easily show that λ(γ) is strictly decreasing in γ and that λ(γ) is strictly decreasing in γ as long as
π(v − c) > (1− π)γc, with λ(γ) = 0 otherwise.
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Therefore, when both λ and γ are small, both types of buyers bid aggressively; in the first case

of Proposition 1, even uninformed buyers place serious bids. As λ and γ increase, the winner’s

curse for uninformed buyers becomes sufficiently strong that they stop placing serious bids; in the

second case, only informed buyers place bids greater than c. Finally, when λ and γ are sufficiently

close to one, the winner’s curse becomes sufficiently strong for informed buyers, too—so much so,

in fact, that they bid b = 0 with positive probability in the last case.

3.2 Equilibrium with Endogenous Information Acquisition

We now complete the description of equilibria by endogenizing the information acquisition deci-

sion of buyers. In equilibrium, the cutoff inspection cost coincides with the value of conducting

an inspection. We first derive the ex ante value of inspection as a function of the policy γ and the

probability λ that other buyers inspect the asset, which we denote by VI = VI(λ, γ). Then, for

each γ > 0, we identify the cutoff inspection cost k∗ that equates the value of inspection to the cost

itself; that is, since G(k) is the probability that each buyer inspects the asset given a cutoff strategy

k, we find the value of k∗ by solving k∗ = VI(G(k∗), γ).

As noted above, the expected payoffs of type ` and u buyers are always zero. Therefore,

VI(λ, γ) = [π + (1− π)(1− ρ)]Vh(λ, γ), (8)

where Vh(λ, γ) denotes the expected payoff of a type h buyer given λ and γ. The following result

is then immediate from Proposition 1.

Lemma 2. For each γ > 0, VI(λ, γ) is continuous in λ, strictly decreasing in λ if λ < λ(γ), and

equal to zero if λ ≥ λ(γ).

Given these properties of VI , it is straightforward to characterize the equilibrium of the original

game, where information acquisition is endogenous. For simplicity, we assume that G(0) > 0.

Together with the fact that G(v− c) < 1, the assumption that G(0) > 0 ensures that in equilibrium

the probability that each buyer inspects the asset lies in the open interval (0, 1).19

19While the assumption that G(0) > 0 helps ensure an interior probability of inspection, this assumption could
easily be relaxed without changing the substance of our results.

16



To summarize the analysis so far, for each γ > 0, a symmetric equilibrium is a strategy profile

(k∗, F ∗` , F
∗
u , F

∗
h ) such that: (i) a type ` buyer bids zero; (ii) F ∗u and F ∗h are the unique bidding

strategies for type u and type h buyers, respectively, of the game with exogenous information

acquisition when λ = G(k∗); and (iii) k∗ = VI(G(k∗), γ). The existence of an equilibrium cutoff

cost follows from the fact that VI(λ, γ) is continuous in λ for all γ > 0. The cutoff cost is unique

given that VI(λ, γ) is nonincreasing in λ. Note that G(k∗) < λ(γ) for all γ > 0 since VI(λ, γ) = 0

if λ ≥ λ(γ). Thus, the payoff to type h buyers is positive in equilibrium when γ > 0.

Proposition 2. For each γ > 0, there exists a unique symmetric equilibrium. The cutoff inspection

cost k∗ is positive if, and only if, G(0) < λ(γ).

In what follows, we assume that G(0) < λ(1), which is a sufficient condition for k∗ > 0 for

all γ > 0; this assumption simply rules out the possibility that the mass of agents who become

informed at no cost is so large that the value of becoming informed is zero.20

4 Policy Analysis

We now examine how policy affects buyers’ equilibrium behavior, and the consequences for both

information production and trade. We begin, in Section 4.1, by characterizing the relationship

between the policy parameter γ, the equilibrium cutoff k∗, and the expected gains from trade that

are realized. We highlight that there exists a unique policy choice γ̃ > 0 that maximizes buyers’

incentives to acquire information, while gains from trade are maximized as γ converges to zero.

Then, in Section 4.2, we use the results from 4.1 to address our main question; namely, un-

derstanding the implications of policy on the amount of information that is revealed to an outsider

who observes the winning bid of the auction. We first define a metric for information production

by deriving the outsider’s expected reduction in entropy after observing the winning bid. Then we

establish that the quantity of information produced is maximized at a value of γ ∈ (0, γ̃), which

provides enough insurance to encourage buyers to participate in the auction by bidding b ≥ c, but

not so much insurance that they place these bids without first acquiring information. Since setting

20For a given γ > 0, if G(0) > λ(γ), then k∗ = 0 and the equilibrium is simply described by Proposition 1 with
λ = G(0). In this case, a marginal change in the policy γ obviously has no effect on k∗.
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γ = 0 maximizes gains from trade, this result shows that policymakers face an inherent trade-off

between ensuring that gains from trade are realized and promoting price discovery. This trade-off

has not been identified in the existing literature, but it highlights an important, indirect cost of

government interventions: distorting prices and disrupting the process of information production.

Last, in section 4.3, we examine how the policy that maximizes price discovery depends on

several features of the environment. In particular, we show that maximizing information production

typically requires that the policy provides less insurance as the lemons problem becomes less severe

(i.e., as π increases) and when the asset becomes more opaque (i.e., as ρ decreases).

4.1 Policy, Inspection, and Trade

Let k∗(γ) denote the equilibrium cutoff cost when the government policy is γ, and suppose first

that λ∗(γ) ≡ G(k∗(γ)) < λ(γ), so that type u buyers make serious bids in equilibrium. It follows

from (6) in Proposition 1 that VI(λ, γ) is increasing in γ; that is, a policy that provides the buyers

with less insurance leads to an increase in the value of inspection. To understand the intuition

behind this result, recall that the expected payoff of a type h buyer who bids bh = bu is

Vh(bh) = π̃ (1− λ)N−1 (v − bh)− (1− π̃) (1− λ+ λρ)N−1 γbh.

An increase in γ has two opposing effects on Vh(bh) and thus on VI . First, less insurance against

acquiring a lemon directly decreases the expected payoff of any buyer who bids b ≥ c. This

decreases Vh and hence the value of inspection. Second, less insurance also causes buyers to

bid less aggressively. In particular, as γ increases the bids placed by type u buyers fall (i.e., bu

decreases), which makes it cheaper for type h buyers to outbid uninformed buyers. This increases

Vh and hence the value of inspection. In equilibrium, the latter, indirect effect dominates the

former, direct effect, and VI is increasing in γ.21

Now suppose that λ∗(γ) > λ(γ). From (7) in Proposition 1, it follows that an increase in γ
21To see why this is true, recall that the expected payoff of a type u bidder is always zero, so that 0 =

π (1− λ)N−1 (v − bh) − (1 − π) (1− λ+ λρ)
N−1

γbh. Therefore, the two effects discussed above cancel out each
other for type u buyers. In addition, the first, direct effect is relevant only when the asset is of low quality, while
the second, indirect effect is relevant whether the asset is of high or low quality. It follows that the indirect effect
dominates the direct effect for a type h buyer, because he assigns a higher probability to the asset being of high quality
than a type u buyer.
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causes a decrease in VI . Indeed, since uninformed buyers never bid b ≥ c in this type of equilib-

rium, the direct effect discussed above is still present, but the indirect effect is absent. Therefore,

an increase in γ always decreases VI .

Figure 2 plots VI (G(k), γ) against k and illustrates the effect of an increase in γ. Recall that the

equilibrium cutoff, k∗, lies at the intersection of VI (G(k), γ) and the forty-five degree line. Also

recall, from Proposition 1 and (8), that VI has a kink at G(k) = λ(γ). Hence, Figure 2 corresponds

to the case of G(k∗) < λ(γ), where the intersection occurs to the left of the kink. The other case,

with G(k∗) > λ(γ), corresponds to a similar graph, only the intersection with the forty-five degree

line occurs to the right of the kink in VI .
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Figure 2: The effect of an increase in γ when λ∗ < λ(γ)

Given the response of VI to an increase in γ, it is easy to see that k∗ is increasing in γ if

G(k∗(γ)) = λ∗(γ) < λ(γ) and decreasing in γ otherwise. To formalize this result, for each γ > 0,

let k(γ) denote the smallest value of k such that G(k) ≥ λ(γ).22

Proposition 3. There exists a unique and interior γ̃ ∈ (0, 1) such that k∗(γ̃) = k(γ̃). The cutoff

cost k∗(γ) is strictly decreasing in γ when γ ∈ (γ̃, 1], strictly increasing in γ when γ ∈ (0, γ̃), and

converges to zero as γ decreases to zero. Hence, k∗(γ) is maximized when γ = γ̃.

Intuitively, when γ is relatively large, the policy provides little insurance and hence the losses

associated with acquiring a low-quality asset are large. This risk depresses the expected value of
22Note that k(γ) = 0 if γ ≥ π(v − c)/(1− π)c since G(0) > 0.

19



acquiring the asset—even after observing the signal h—and hence the value of becoming informed

is small. On the other hand, when γ is relatively small, the policy insures a large portion of a

buyer’s downside risk and, as a result, a moral hazard problem emerges: even uninformed buyers

bid aggressively. This price competition drives down the expected return from acquiring the asset

and hence the value of acquiring information.

We now discuss how policy affects gains from trade. Notice that gains from trade are not

realized if, and only if, the asset is of high quality but no buyer places a serious bid. We know

that in equilibrium, the type h buyers always bid seriously (λ∗(γ) < λ(γ) for all γ > 0). Hence,

gains from trade are maximized if the type u buyers also always bid seriously. Now observe that

a consequence of the proof of Proposition 1 is that the probability that type u buyers bid seriously

converges to one as γ decreases to zero. We then have the following result.

Proposition 4. Gains from trade are maximized as γ converges to zero.

Propositions 3 and 4 show that the policy that maximizes information acquisition is different

from the policy that maximizes gains from trade. Thus, policymakers face a trade-off between

maximizing gains from trade and maximizing information acquisition. As we are going to see

next, this trade-off implies that policymakers also face a trade-off between maximizing gains from

trade and maximizing price discovery.

4.2 Information Production

In the previous section, we studied the relationship between the amount of insurance provided by

the policy, each buyer’s decision of whether to become informed about the quality of the asset,

and their ensuing bidding behavior. We now turn our attention to understanding the implications

of buyers’ behavior on the informational content of the winning bid. Specifically, we first derive

a metric for measuring the quantity of information contained in a winning bid and then, using this

metric, show that information production is maximized at a value of γ ∈ (0, γ̃) and is minimized

as γ converges to zero.
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Entropy and the Quantity of Information Produced. We assume that the number of bidders,

the policy rule, and the winning bid of an auction are observed by the public, and study the extent

to which these observations reduce uncertainty about the quality of the asset.23 To do so, consider

an agent who does not participate in the auction but can observe both the policy choice, γ, and the

winning bid, p. We adopt the convention that p = 0 when no trade takes place. Given the prior

belief π that the asset is of high quality, and knowing both the signal structure and equilibrium

strategies, the agent can use p to update his belief about the quality of the asset. Denote the agent’s

posterior belief by π+. Since p is a random variable whose distribution depends on γ, each choice

of γ induces a distribution Ω∗(·; γ) of posterior beliefs; Ω∗(π+ ; γ) is the (unconditional) probability

that the agent’s posterior belief is π+ or less when the policy is γ.

Following Sims [2003], we measure the quantity of information produced in a single auction

with policy γ as the expected reduction in uncertainty that results from observing p, where uncer-

tainty is measured by the entropy of the agent’s beliefs. The entropy of a probability distribution

q on a finite set J of events is H(q) = −
∑

j∈J qj log(qj), where qj is the probability of j ∈ J .

Thus, the quantity of information or entropy informativeness of the auction is

I(γ) = H(π)− E
[
H
(
π+
)]
,

where H(φ) = −φ log(φ)− (1− φ) log(1− φ) is the entropy of a belief φ that the asset is of high

quality and the expectation is taken with respect to Ω∗(· ; γ). In order to evaluate how the choice of

γ affects information production, we first deduce the distribution Ω∗(· ; γ). Afterwards, we study

how I(γ) depends on γ.

The Distribution of Posterior Beliefs. For each γ ∈ (0, 1] and λ ∈ (0, λ(γ)), let φ(p;λ, γ)

denote the agent’s posterior belief that the asset is of high quality after observing a winning bid

23The assumption that only the winning bid is observed is motivated in part by realism; losing bids are rarely
observed in practice. This assumption is also consistent with the actual implementation of PPIP. For example, on
September 19, 2009 the FDIC issued a press release providing details of an auction that occurred on August 31, 2009.
The information in the press release included the assets for sale (a pool of residential mortgage loans with an unpaid
principal balance of approximately $1.3 billion), the name of the winning bidder (Residential Credit Solutions), the
number of total bidders who participated in the auction (twelve), the winning bid (approximately $885 million), and
the leverage ratio used to finance the purchase (6-to-1). More details of this auction, or others like it, are available at
http://www.fdic.gov.
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p when the probability that buyers become informed is λ and the choice of policy is γ.24 The

following result reports basic properties of φ(p;λ, γ); the proof and derivation are in the Appendix.

Lemma 3. The posterior belief φ(p;λ, γ) satisfies the following properties: (i) φ(0;λ, γ) <

φ(c;λ, γ); (ii) φ(p;λ, γ) is strictly increasing in p when p ∈ [c, bh]; and (iii) φ(bh;λ, γ) = π̃.

The first two facts in Lemma 3 are intuitive. Indeed, since type ` buyers only bid zero, while

type u and type h buyers sometimes bid b ≥ c, observing trade at some price p ≥ c is more

indicative that the asset is of high quality than observing no trade. Moreover, as p increases, so

too does the conditional probability that the other buyers received signal h or u (as opposed to `)

but bid b ≤ p. However, for any p < bh, bids less than p are more likely when the asset is of low

quality. Hence, φ(p;λ, γ) < π̃ for all p ∈
[
c, bh

)
because of what an observer infers about the

losing bids. It is only when p = bh that observing the winning bid is equivalent to observing the

high signal, for in this case bids less than p have the same probability regardless of the asset’s type.

Given φ(p;λ, γ), along with the equilibrium characterization of Section 3, we can now con-

struct Ω∗(· , γ) for each γ ∈ (0, 1]. Let Ω∗j(π
+; γ) be the probability that the agent’s posterior belief

is π+ or less when the policy is γ and the asset quality is j ∈ {L,H}. Moreover, in a slight abuse

of notation, let φ(p) = φ(p;λ∗(γ), γ) and φ−1(π+) = φ−1(π+;λ∗(γ), γ) be the inverse of φ(p),

which is well defined by Lemma 3. Then,

Ω∗H(π+; γ) =



0 if π+ ∈ [0, φ(0))

[(1− λ∗(γ))F ∗u (0)]N if π+ ∈ [φ(0), φ(c))

[(1− λ∗(γ))F ∗u (φ−1(π+))]
N if π+ ∈

[
φ(c), φ(bu)

)
[(1− λ∗(γ))]N if π+ ∈

[
φ(bu), φ(bh)

)
[1− λ∗(γ) + λ∗(γ)F ∗h (φ−1(π+))]

N if π+ ∈
[
φ(bh), φ(bh)

]
(9)

24We restrict attention to λ < λ(γ) since we know that in equilibrium the probability of information acquisition is
smaller than λ(γ) for all γ > 0.
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if γ < γ̃, and

Ω∗H(π+; γ) =


0 if π+ ∈ [0, φ(0))

[(1− λ∗(γ))]N if π+ ∈ [φ(0), φ(c))

[1− λ∗(γ) + λ∗(γ)F ∗h (φ−1(π+))]
N if π+ ∈

[
φ(c), φ(bh)

] (10)

if γ ≥ γ̃. Similar calculations, relegated to the Appendix for the sake of brevity, can be used to

derive Ω∗L(· ; γ). Given Ω∗H and Ω∗L, the unconditional distribution of posterior beliefs is then

Ω∗(π+; γ) = πΩ∗H(π+; γ) + (1− π)Ω∗L(π+; γ).

Maximizing Information Production. We now establish that the quantity of information is

maximized at a value of γ that lies strictly between 0 and γ̃, and that maximizing gains from

trade minimizes the informational content of prices.

Proposition 5. I(γ) is maximized at a point that is strictly positive, but strictly smaller than γ̃. In

addition, I(γ) decreases to zero as γ decreases to zero.

The intuition for why I(γ) is maximized at an interior value of γ is simple. From Proposition 3,

a decrease in γ initially increases the incentive of buyers to inspect the asset, which promotes price

discovery by encouraging buyers to actively participate in the auction (i.e., to bid b ≥ c). However,

we also know from Proposition 3 that too much insurance deters information acquisition: if buyers

face little risk when acquiring the asset, they have no incentive to pay the cost of inspection before

placing a serious bid. As a result, if γ becomes too small, buyers still place serious bids, but the

probability that they are informed begins to fall, so the informational content of the winning bid

decreases. In fact, the informational content of the winning bid disappears as γ converges to zero,

since in this case the distribution of posterior beliefs becomes concentrated at the prior belief. The

value of γ that maximizes the quantity of information produced strikes a balance between these

two effects and ultimately encourages both participation and information acquisition.

To understand why I(γ) is maximized at a value of γ that is strictly less than γ̃, it is helpful

to note that a change in γ affects the distribution of posterior beliefs through two margins. First, a

change in γ affects the probability that each buyer acquires information, G(k∗) = λ∗ ; we refer to
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this as the “extensive” margin. Second, a change in γ affects the informational content of winning

bids by its effect on the equilibrium bidding strategies; we refer to this as the “intensive” margin.

Starting at γ̃, a marginal decrease in γ causes λ∗ to fall, which diminishes information production.

However, it also causes uninformed buyers to start placing serious bids, which distinguishes their

bids from type ` buyers. This makes the distribution of winning bids more informative. In a

neighborhood of γ̃, the first effect is of second-order importance (by the usual envelope argument),

so that I(γ) rises in response to marginal decrease in γ. However, as γ continues to fall, the

extensive margin effect dominates and I(γ) eventually falls as well.

4.3 Comparative Statics

We conclude this section with a discussion of how the policy that maximizes buyers’ incentives

to acquire information—and, ultimately, information production—depend on certain features of

the economic environment. We focus on two specific model parameters: the prior belief π, which

determines the severity of the lemons problem; and the signal precision ρ, which captures how

difficult it is for a buyer to learn the true quality of the asset, or the asset’s opacity.

Proposition 6 below establishes that an increase in π and an increase in ρ have the same impli-

cations for buyers’ incentives to acquire information, but very different implications for how these

incentives interact with the policymaker’s choice of γ.

Proposition 6. For any π and ρ satisfying (1) and (2), the maximum cutoff cost, k∗(γ̃), is increasing

in both π and ρ. However, the policy maximizing information acquisition, γ̃, is increasing in π but

decreasing in ρ.

Loosely speaking, the first statement in Proposition 6 follows from the observation that there is

little value in a buyer’s acquiring information when either π or ρ are small: in the former case the

buyer is likely to learn that the asset is worthless, and in the latter case the signal itself is largely

uninformative. Hence, as either of these parameters increase, the expected payoff from acquiring

the signal rises and buyers are willing to spend more in order to become informed.25

25Note that this logic only applies in the presence of an initial lemons problem, i.e., when (1) is satisfied. For
example, when π is sufficiently large, the expected payoff from acquiring information shrinks, as the posterior belief
π̃ converges to the prior as π approaches 1.
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To understand the second statement in Proposition 6, it is helpful to recall that γ̃ offers pre-

cisely the level of insurance that makes type u buyers indifferent between placing a serious bid and

not participating in the auction. Therefore, when π increases and the adverse selection problem

abates, type u buyers strictly prefer to place serious bids with positive probability, which decreases

the payoffs to type h buyers and discourages information acquisition. Hence, by increasing γ and

providing less insurance, the policymaker can discourage bids from uninformed buyers and restore

maximal information acquisition. Alternatively, when ρ increases, the winner’s curse is exacer-

bated and type u buyers strictly prefer not to participate in the auction. In this case, decreasing γ

and providing more insurance encourages additional information acquisition.

The relationships between γ̃ and the parameters π and ρ, established above, help to explain

how these parameters ultimately affect the policy that maximizes information production, which

we denote γI . Though we are unable to derive analytical results, simple numerical examples

provide some general guidelines. Figures 3 and 4, respectively, depict how γI varies with π and ρ

for a typical example.26
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From Figure 3, one can see that the results in Proposition 6 extend to the relationship between

γI and π: as the severity of the lemons problem diminishes, so too does the amount of insurance

26In this case, we set π = .45, v = 1, c = .5, ρ = .75, and assume that k is distributed uniformly over the unit
interval. We stress that these parameter values are not intended to represent a serious calibration, but rather are chosen
purely for illustrative purposes. Extensive experimentation with alternative parameter values revealed very similar
results.
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required to maximize price discovery. Hence, if the policy goal is to encourage information pro-

duction, then the benefits of intervention wane as the adverse selection problem disappears, which

is consistent with the observation that such policies are not useful when markets are not frozen.

Figure 4 suggests that the relationship between γI and ρ is more subtle. For most parameter val-

ues, the relationship we document in Proposition 6 is dominant, and the value of γ maximizing

information production is decreasing in ρ. However, it is possible for γI to be increasing in ρ as ρ

gets close to 1, since changes in γ are affecting both the intensive and extensive margins discussed

in Section 4.2.27

5 Assumptions and Extensions

The Number of Buyers. The analysis above treats the number of buyers in the auction, N , as

exogenous. However, one could imagine that N is actually a second potential instrument available

to policymakers. Since the number of buyers participating in the auction clearly affects the equi-

librium outcome, a natural question is how the informational content of the winning bid is affected

by a change in N .

The answer is that there are two, opposing effects. On the one hand, an increase in the number

of participants decreases the buyers’ expected payoffs, thereby depressing their incentives to ac-

quire information; this result can be easily derived given the expressions for Vh in Proposition 1.

As N increases, k∗ decreases, and thus the probability that each buyer is informed, λ∗ = G(k∗),

also falls. AsN tends to infinity, for any γ, Vh approaches zero and the buyers’ incentive to acquire

information evaporates. On the other hand, ceteris paribus, having more buyers implies more effec-

tive information aggregation. In particular, holding λ constant, increasing N reduces the risk that

no buyer acquires information and, consequently, decreases the probability that socially valuable

information is not generated.

Figure 5 plots the typical shape of I(γ) across different values of N , where we set γ = γI

for each N . Unfortunately, a precise characterization of the optimal N depends on, e.g., the exact

27The intuition is as follows: when ρ is moderately high, there is incentive for the policymaker to decrease γ in order
to encourage information production along both the extensive margin (i.e., to increase k∗) and the intensive margin
(i.e., to reduce Fu(0)). As ρ approaches one, the latter effect vanishes, and γI can actually increase.
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shape of the distribution function G, and hence is not analytically tractable. However, as this

example illustrates, the number of buyers is a second, important consideration for policymakers

when designing a program of this type.

Figure 5: The Quantity of Information and N
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Information Disclosure and Price Discovery. The analysis above also assumes that the winning

bid is observable, but that losing bids are not. This assumption was motivated by realism: whereas

transaction prices can often be observed, losing bids are typically not.28 From a theoretical point

of view, however, it should be fairly obvious that publishing the full vector of bids would be more

informative about the quality of the asset.

On the other hand, the fact that losing bids are not observed can be important for encouraging

buyers to participate in the first place. More specifically, since investors in one auction could

potentially compete in future auctions for similar assets, they may find it valuable to keep their

bids (and thus some of the private information they acquired) private for use at a later time. It

is worth noting, however, that the decision to publish the number of bidders in each auction is

important; using the winning bid to back out the underlying signals of the bidders is known to be

considerably more complicated when the number of bidders is unknown.29

28This assumption is also consistent with the implementation of PPIP, as discussed earlier.
29See, e.g., Athey and Haile [2007].
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Information Structure We employed an extremely simple signal-generating process in our anal-

ysis: there were only two signals, and one signal was assumed to completely reveal the quality of

the asset. Though this information structure greatly simplified our analysis, none of our central

insights depends on it. In other words, the main lessons that arise from the analysis of our stylized

environment carry over to a more general environment.

To see this, suppose an agent who chooses to incur the cost ki can receive one of S signals.

In this case, there are potentially S + 1 types of bidders (including uninformed bidders) at the

bidding stage. Then, as long as these signals satisfy the monotone likelihood ratio property, the

single crossing property that applies to buyers’ interim beliefs and their subsequent bids continues

to hold: buyers who receive “better” signals place higher bids than those who receive “worse”

signals. Moreover, it is straightforward to show that the bids of these agents—perhaps with the

exception of agents who received the lowest signal—converge to v as γ converges to zero. As a

result, as in Proposition 3, the incentive for buyers to acquire information vanishes as γ converges

to zero. Similarly, for γ close to one, informed bidders would place serious bids only if their signal

was sufficiently high. This also reduces buyers’ ex ante incentives to acquire information about the

quality of the asset, which hinders price discovery.

Therefore, as in our simple environment, the value of γ that maximizes price discovery in an

environment with a more general signal structure will be interior: it will provide some insurance

for buyers to participate in the auction by making serious bids, but not so much insurance that they

make those bids without first inspecting the asset. Notice that this reasoning is independent of the

likelihood of the lowest signal, so that our insights do not depend on the assumption that a “bad”

signal perfectly reveals the low quality of the asset.

Budget-Constrained Buyers. Our analysis focuses on the insurance role that nonrecourse lend-

ing plays in alleviating the problem of adverse selection. There is, however, an alternative theory

for why markets crash, often called “cash-in-the-market pricing” (see, e.g., Allen and Gale [1994]).

According to this theory, markets can experience a sudden decrease in prices and trading volume

because the buyers in the market are budget constrained: though they would like to purchase assets

at the current market prices, they cannot acquire the liquid assets required to do so. Interestingly,
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by allowing private investors to leverage and thus relaxing their budget constraints, the nonrecourse

lending we study could also help address this second source of market freezes.

Suppose, for example, that each buyer i = 1, . . . , N has liquid wealth wi, which is a random

draw from a distribution with support [0, w]. Moreover, suppose that bids are constrained by the

inequality

γbi ≤ wi,

so that each buyer is required to finance a fraction γ of the purchase price with his liquid wealth.

Clearly, ifw is sufficiently small, then buyers will not be able to bid bi ≥ c, and thus no information

will be produced. Therefore, γ < 1 certainly has the ability to promote trade and price discovery.

However, as in our benchmark model, decreasing γ too much can potentially be counterproductive.

The reason is that budget constraints relax the winner’s curse. In particular, in our benchmark

model, the expected quality of the asset conditional on winning the auction is revised down because

there is a probability that other buyers received the signal `. However, in a model with budget con-

straints, this effect is diminished; when a buyer wins the auction, it could be because other buyers

received a signal `, but it could also be because they received a signal h but their budget constraint

was binding. Since decreasing γ relaxes budget constraints, it also attenuates the winner’s curse

and thus decreases Vh. As a result, as in our benchmark model, k∗(γ) can also be non-monotonic

in an environment where the market is frozen due to cash-in-the-market pricing. Since the analysis

of this issue is fairly complex, we explore it in greater detail in a separate paper.

6 Conclusion

One of the most important questions to emerge from the financial crisis of 2007-2008 was whether

the government could (and should) intervene in a frozen market. As economists begin to grapple

with this question, it is important to correctly identify the various costs and benefits of intervention.

To date, most of the existing literature has identified the benefit of intervention as restoring gains

from trade, while the costs of intervention have typically been associated with either a direct cost of

taxpayer dollars or an indirect cost of encouraging risky behavior in the future (i.e., moral hazard).

This paper identifies and studies a margin that has been mostly ignored: price discovery. Infor-
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mation produced in financial markets can have widespread effects on economic activity. We show

that policymakers face an important trade-off between restoring gains from trade and maximizing

price discovery; namely, while some amount of intervention may be required in order to incentivize

buyers to participate in the market, too much intervention can erode the informational content of

transaction prices. Hence, policymakers face a delicate balance, which must be calibrated based

on, e.g., the severity of the lemons problem and the opacity of the assets for sale.

This paper is among the first to study the effects of government interventions in frozen markets

on price discovery, and many important questions remain. For example, one might wonder exactly

how the optimal policy depends on the details of the decision problem to which the information

from asset prices is applied; in the working paper version, Camargo et al. [2013], we study one

such decision problem and show that the basic insights generated here are preserved. It would also

be interesting to study how dynamic considerations would change sellers’ incentives to trade their

assets and buyers’ incentives to produce information at a given time. For example, if sellers have

more than one asset, they may choose not to sell a portion of their assets to avoid marking other

assets to market prices, as in Bond and Leitner [2014]. Similarly, if buyers expect information to

be revealed and prices to rise, they may choose to delay bidding, as in Camargo and Lester [2011].

These considerations, and many others, are left for future work.
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Appendix
Proof of Lemma 1

For each j ∈ {L,H}, let Qj(b) be the ex-ante probability that a buyer bids b or less when the
asset is of quality j ∈ {L,H}; notice that QH(b) = (1 − λ)Fu(b) + λFh(b), while QL(b) =
(1− λ)Fu(b) + λ[ρ+ (1− ρ)Fh(b)]. Now, for each b ≥ c and j ∈ {L,H}, let ξj(b) be such that

ξj(b) =
N−1∑
s=0

1

s+ 1

(
N − 1

s

)
Qj(b−)N−1−s[Qj(b)−Qj(b−)]s.

By construction, ξj(b) is the probability that a buyer who bids b ≥ c wins the auction when the
asset is of quality j ∈ {L,H}. It is easy to see that ξj(b) is nondecreasing in b.30 The following
two facts are useful in the proof of (iii):

ξj(b) =
1

N

N−1∑
s=0

Qj(b)
sQj(b−)N−1−s; (11)

ξj(b)

ξj(b+)
=

1

N

N−1∑
s=0

(
Qj(b−)

Qj(b)

)s
. (12)

Proof. Notice that
N−1∑
s=0

1

s+ 1

(
N − 1

s

)
asbN−1−s =

(a+ b)N − bN

Na

for all a, b > 0.31 Hence,

ξj(b) =
Qj(b)

N −Qj(b−)N

N [Qj(b)−Qj(b−)]

and, since ξj(b+) = Qj(b)
N−1,

ξj(b)

ξj(b+)
=

N−1∑
s=0

1

s+ 1

(
N − 1

s

)(
Qj(b−)

Qj(b)

)N−1−s [
1− Qj(b−)

Qj(b)

]s
=

1− (Qj(b−)/Qj(b))
N

N [1− (Qj(b−)/Qj(b))]
.

Equations (11) and (12) are now a consequence of the fact that cN −dN = (c−d)
∑N−1

s=0 c
sdN−1−s

for all c, d > 0.
(i) The result is obvious if bu = 0. Suppose then that bu ≥ c, and let πu = π and πh = π̃. Since the
expected payoff to a type s ∈ {u, h} buyer who bids b is

Vs(b) = πsξH(b)(v − b)− (1− πs)ξL(b)γb,

30Let b′ > b. Since Fs(b
′
−) ≥ Fs(b) for each s, we then have that ξj(b′) ≥ Qj(b

′
−)

N−1 ≥ Qj(b)
N−1 ≥ ξj(b).

31For a proof of this fact, let A(y) =
∑N−1

s=0
1

1+s

(
N−1
s

)
(ya)sbN−1−s and B(y) = yA(y). The desired result holds

since A(1) =
∫ 1

0
B′(y)dy and B′(y) = (b+ ya)N by the binomial formula.
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we have that

Vh(b) =
1

π + (1− π)(1− ρ)
Vu(b) +

(1− π)ρ

π + (1− π)(1− ρ)
ξL(b)γb; (13)

recall that π̃ = π/(π + (1 − ρ)(1 − π)). The second term in the right-hand side of (13) is strictly
increasing in b. In addition, by the optimality of bu for a type u buyer, we have that Vu(bu) ≥ Vu(b)
for all b ∈ [c, bu]. It then follows that Vh(bu) > Vh(b) for all b ∈ [c, bu], which implies that bh ≥ bu.

(ii) Suppose Fh(0) = 1. By (i), this implies that Fu(0) = 1 as well. Hence, the payoff to a type h
buyer who bids b = c is equal to π̃(v − c)− (1− π̃)γc, which is greater than zero by Assumption
2. Thus, bidding b = 0 is suboptimal for a type h buyer, a contradiction.

(iii) We begin by establishing that there are no atoms on the relevant region of the support. First,
notice that πs(v− b)− (1− πs)γb > 0 if b is a mass point of Fs. Indeed, since QH(b−) < QL(b−)
when b ∈ [bu, bh] is a mass point of either Fu or Fh, equation (11) implies that ξH(b) < ξL(b) in
this case. The desired result follows from the fact that

Vs(b) = [ξH(b)− ξL(b)]πs(v − b) + ξL(b)[πs(v − b)− (1− πs)γb].

Now let η(b) = ξH(b)/ξL(b). We claim that η(b+) ≥ η(b) for all b ∈ [bu, bh]. Indeed, by (12),

η(b+) ≥ η(b)⇔ ξL(b)

ξL(b+)
≥ ξH(b)

ξH(b+)
⇔ QL(b)−QL(b−)

QL(b)
≤ QH(b)−QH(b−)

QH(b)
.

The desired result follows from the fact that QL(b) ≥ QH(b) and

QL(b)−QL(b−) = (1− λ)(Fu(b)− Fu(b−)) + λ(1− ρ)(Fh(b)− Fh(b−))

≤ (1− λ)(Fu(b)− Fu(b−)) + λ(Fh(b)− Fh(b−)) = QH(b)−QH(b−).

Suppose then that b is a mass point of Fs. This implies that

Vs(b+) = πsξh(b+)(v − b)
{

1− (1− πs)γb
πs(v − b)η(b+)

}
≥ πsξh(b+)(v − b)

{
1− (1− πs)γb

πs(v − b)η(b)

}
> πsξh(b)(v − b)

{
1− (1− πs)γb

πs(v − b)η(b)

}
,

where the strict inequality follows from the fact that ξH(b+) > ξH(b) and πs(v − b) > (1− πs)γb.
Thus, bidding b is suboptimal for a type s buyer, a contradiction.

Now we establish that there are no gaps. Suppose Fu is constant in some interval [b1, b2] ⊆
(max{c, bu}, bu]; if b1 = max{c, bu}, then b1 is a mass point of Fu. In this case, a type u bidder
strictly prefers bidding b1 to b2, for both bids imply the same and positive probability of winning,
while the first bid implies a smaller payment. Thus, Fu(b) is strictly increasing in b when b ∈
[max{c, bu}, bu]. A similar argument applies to Fh.

(iv) Suppose bu > 0 and consider a type u buyer who bids bu. By (i) and (iii), the buyer wins if,
and only if, all other buyers are of type `, which is only possible if the asset is of low quality. So,
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the expected payoff to the buyer is strictly negative, which cannot be the case.

Proof of Proposition 1

We know from Lemma 1 that if b ≥ c, then

Vs(b) = πs [(1− λ)Fu(b) + λFh(b)]
N−1 (v − b)

−(1− πs) [(1− λ)Fu(b) + λ (ρ+ (1− ρ)Fs(b))]
N−1 γb,

where πu = π and πh = π̃. We also know from Lemma 1 that the following three mutually
exclusive cases are also exhaustive: bu > c, bu = 0 and bh > c, and bh = 0.

Case 1: bu > c.
For each b ∈ [c, bu], Fu(b) is derived from the fact that Vu(b) = 0. In addition, combining

Fu(bu) = 1 with Vu(bu) = 0, we obtain

bu =
π(1− λ)N−1v

π(1− λ)N−1 + (1− π)(1− λ+ λρ)N−1γ
.

We see immediately that bh = bu when bu > c. Hence, Vh is determined by considering a type h
buyer who bids bu. From (13) in the proof of Lemma 1 and Fh(bu) = 0, we find that

Vh =
(1− π)ρ

π + (1− π)(1− ρ)
(1− λ+ λρ)N−1γbu.

Substituting bu in the above expression for Vh and arranging the terms, Vh is obtained as in (6). For
each b ∈ [bh, bh], Fh(b) is derived from the fact that Vh(b) = Vh.

A necessary and sufficient condition for the equilibrium described in the above paragraph to
exist is that Fu(c) ∈ (0, 1). From Vu(c) = 0, we obtain[

1 +
λρ

(1− λ)Fu(c)

]N−1
=

π(v − c)
(1− π)γc

.

Hence, Fu(c) > 0 if, and only if, γ < γ̂ = π(v − c)/(1 − π)c, and Fu(c) < 1 if, and only if,
λ < λ(γ); note that λ(γ) > 0 if, and only if, γ < γ̂.

Suppose now that λ < λ(γ), so that γ < γ̂ a fortiori. Then bu = 0 implies that the payoff to a
type u buyer from bidding b = c is at least

π(1− λ)N−1(v − c)− (1− π)(1− λ+ λρ)N−1γc,

which is positive given that λ < λ(γ). Thus, bu > c.

Case 3: bh = 0.
Note that if type h buyers are indifferent between bidding b = 0 and bidding b ∈ [c, bh], then
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Fh(b) must be such that

Vh(b) = π̃ [1− λ+ λFh(b)]
N−1 (v − b)− π̃ [1− λ+ λ (ρ+ (1− ρ)Fh(b))]

N−1 γb = 0.

A necessary and sufficient condition for this equilibrium to exist is that Fh(c) > 0. Straightforward
algebra shows that Fh(c) > 0 is equivalent to λ > λ(γ).

Suppose now that λ > λ(γ). Then bh > 0 implies that

Vh(c) ≤ π̃(1− λ)N−1(v − c)− (1− π̃)(1− λ+ λρ)N−1γb < 0,

a contradiction. Thus, bh = 0.

Case 2: bu = 0 and bh > c.
We know from above that bu = 0 and bh > c if, and only if, λ ∈ [λ(γ), λ(γ)]. Moreover, the

analysis in the main text shows that there exists a unique equilibrium when λ ∈ [λ(γ), λ(γ)] and
that Vh is given by (7) in this equilibrium.

Proof of Proposition 3

Noticee that VI(G(k), γ) ≤ VI(G(0), γ) for all k ≥ 0 by Lemma 2. Moreover, VI(G(0), γ)
converges to zero as γ decreases to zero by Proposition 1 and the fact that G(0) < λ(γ) if γ is
small enough. Hence, k∗(γ) converges to zero as γ decreases to zero. A straightforward argument
shows that k∗(γ) is also continuous in γ.

Now note that k(γ) is continuous and nonincreasing in γ, with k(0) = 1 and k(γ) = 0 if
γ ≥ π(v− c)/(1−π)c. Since k∗(γ) > 0 for γ > 0 and k∗(γ) < 1 if γ is small enough, there exists
γ ∈ (0, 1) with k∗(γ) = k(γ). Let γ̃ ∈ (0, 1) be the greatest value of γ for which k∗(γ) = k(γ).
ThenG(k∗(γ̃)) = λ(γ̃), as k(γ̃) = k∗(γ̃) > 0. So, by the reasoning in the main text, k∗(γ) < k∗(γ̃)
if γ < γ̃. Given that k(γ) ≥ k(γ∗), there exists no other γ such that k∗(γ) = k(γ).

Proposition 7 and Proof

Proposition 7. The equilibrium cutoff cost for inspecting the asset is k∗ = 0 when γ = 0.

We prove that if γ = 0, then the expected payoff to a type h buyer is zero regardless of the
probability λ that the other buyers become informed. Since Vh = 0 implies that VI(λ, 0) = 0, it
immediately follows that k∗ = 0 when γ = 0.

Suppose, by contradiction, that Vh > 0, so that bh ≥ c and bh < v. Given that

Vs(b) = πsξH(b)(v − b)

for all b ≥ c, we then have Vu ≥ Vu(bh) > 0, so that bu ≥ c and bu < v as well. Therefore,
b = min{bu, bh} ∈ [c, v). It is now easy to see that ξH has no mass point. This, however, implies
that Vu(b) = Vh(b) = 0, so that either Vu = 0 or Vh = 0, a contradiction.
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Proof of Lemma 3

Consider first the case where λ ∈ (0, λ(γ)), so that bu > c. Suppose p = 0. In this case, all buyers
must be either of type ` or of type u. Therefore,

φ(0;λ, γ) =
π

π + (1− π)

[
1 +

λρ

(1− λ)Fu(0)

]N .
Now suppose p ∈ [c, bu]. In this case, the winner must be uninformed, while all other buyers are
either of type ` or of type u bidding below p, so that

φ(p;λ, γ) =
π

π + (1− π)

[
1 +

λρ

(1− λ)Fu(p)

]N−1 .
Since Fu(c) = Fu(0) > 0 and Fu(p) is strictly increasing in p when p ∈ [c, bu], it is easy to see
that φ(0;λ, γ) < φ(c;λ, γ) and that φ(p;λ, γ) is strictly increasing in p when p ∈ [c, bu].

Finally, if p ∈ [bh, bh], then the winner must be of type h, while any other buyer can be of type
`, of type u, or of type h bidding less than p. Therefore,

φ(p;λ, γ) =
π

π + (1− π)(1− ρ)

{
1 +

λρ[1− Fh(p)]
1− λ+ λFh(p)

}N−1 .
It is easy to see that φ(bh;λ, γ) > φ(bu;λ, γ). Moreover, since Fh(p) is strictly increasing in p
when p ∈ [bh, bh], we have that φ(p;λ, γ) is strictly increasing in p when p ∈ [bh, bh]. To finish,
note that Fh(bh) = 1 implies that φ(bh;λ, γ) = π̃.

Consider now the case where λ ∈ [λ(γ), λ(γ)]. Then, since now Fu(0) = 1, we have that

φ(0;λ, γ) =
π

π + (1− π)

[
1 +

λρ

1− λ

]N
and

φ(p;λ, γ) =
π

π + (1− π)(1− ρ)

{
1 +

λρ[1− Fh(p)]
1− λ+ λFh(p)

}N−1
for all p ∈ [c, bh]. We see immediately from the analysis above that φ(0;λ, γ) < φ(c;λ, γ),
φ(p;λ, γ) is strictly increasing in p when p ∈ [c, bh], and φ(bh;λ, γ) = π̃.
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Derivation of Ω∗L(π+, γ)

The only change from Ω∗H(· ; γ) is that now each informed buyer is of type h with probability
λ(1− ρ) and of type l with probability λρ. Therefore, if γ < γ̃, then

Ω∗L(π+; γ) =



0 if π+ ∈ [0, φ(0))

[(1− λ∗(γ))F ∗u (0) + λ∗(γ)ρ]N if π+ ∈ [φ(0), φ(c))

[(1− λ∗(γ))F ∗u (φ−1(π+)) + λ∗(γ)ρ]
N if π+ ∈

[
φ(c), φ(bu)

)
(1− λ∗(γ) + λ∗(γ)ρ)N if π+ ∈

[
φ(bu), φ(bh)

)
{1− λ∗(γ) + λ∗(γ)[ρ+ (1− ρ)F ∗h (φ−1(π+))]}N if π+ ∈

[
φ(bh), φ(bh)

]
,

(14)
and if γ ≥ γ̃, then

Ω∗L(π+; γ) =


0 if π+ ∈ [0, φ(0))

(1− λ∗(γ) + λ∗(γ)ρ)N if π+ ∈ [φ(0), φ(c))

{1− λ∗(γ) + λ∗(γ)[ρ+ (1− ρ)F ∗h (φ−1(π+))]}N if π+ ∈
[
φ(c), φ(bh)

] .
(15)

Proof of Proposition 5

The proof consists of three steps. We first show that I(γ) is strictly decreasing in γ if γ > γ̃.
We then show that I(γ̃ − ε) > I(γ̃) for ε positive but sufficiently small. We finally show that
I(γ̃) > limγ→0 I(γ) = 0.

Step 1. I ′(γ) < 0 if γ > γ̃.
Suppose γ > γ̃. We begin by establishing some properties of Ω∗(· ; γ) that are useful in the

argument that follows. A straightforward consequence of Lemma 3 is that if π+ ∈ [φ(c), π̃], then
φ(p) = φ(p;λ∗(γ), γ) ≤ π+ if, and only if,

a =

[
(1− π+)π

π+(1− π)(1− ρ)

] 1
N−1

≤ 1 +
λ∗(γ)ρ [1− F ∗h (p)]

1− λ∗(γ) + λ∗(γ)F ∗h (p)
;

note that a ≥ 1 since π+ ≤ π̃. Hence,

F ∗h (φ−1(π+)) = 1− 1

λ∗(γ)

a− 1

a− 1 + ρ
,

and so λ∗(γ)[1−F ∗h (φ−1(π+))] is independent of γ for all π+ ∈ [φ(c), π̃]. Therefore, (10) and (15)
imply that Ω∗(π+; γ) is independent of γ when π+ ∈ [φ(c), π̃]. Another consequence of (10) and
(15) is that

Ω∗(π+; γ) = π(1− λ∗(γ))N + (1− π)(1− λ∗(γ) + λ∗(γ)ρ)N

for all π+ ∈ [φ(0), φ(c)). Thus, from Proposition 3, we have that Ω∗(π+; γ) is strictly increasing
in γ when π+ ∈ [φ(0), φ(c)).
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We now compute the derivative of E[H(π+)] with respect to γ. First note that

E[H(π+)] = Ω∗(φ(0); γ)H(φ(0)) +

∫ π̃

φ(c)

H(π+)dΩ∗(π+; γ)

= H(π̃) + Ω∗(φ(0); γ) [H(φ(0))−H(φ(c))]−
∫ π̃

φ(c)

H ′(π+)Ω∗(π+; γ)dπ+,

where the second equality follows from integration by parts and the fact that Ω∗(φ(c); γ) =
Ω∗(φ(0); γ). Given that

d

dγ

∫ π̃

φ(c)

H ′(π+)Ω∗(π+; γ)dπ+ = −Ω∗(φ(c); γ)H ′(φ(c))
dφ(c)

dγ

by the Fundamental Theorem of Calculus and the fact that Ω∗(π+; γ) is independent of γ when
π+ ∈ [φ(c), π̃], we then have that

dE[H(π+)]

dγ
=
dΩ∗(φ(0); γ)

dγ
[H(φ(0))−H(φ(c))] + Ω∗(φ(0); γ)H ′(φ(0))

dφ(0)

dγ
.

Since H(φ(c)) < H(φ(0)) + H ′(φ(0))(φ(c) − φ(0)) by the strictly concavity of H(φ) and
dΩ∗(φ(0), γ)/dγ > 0, the equation for dE[H(π+)]/dγ derived above implies that

dE[H(π+)]

dγ
> H ′(φ(0))

{
−dΩ∗(φ(0); γ)

dγ
φ(c) +

d

dγ
[Ω∗(φ(0); γ)φ(0)]

}
.

We claim that the right-hand side of the above equation is zero. Indeed,

dΩ∗(φ(0); γ)

dγ
= −N

[
π(1− λ∗(γ))N−1 + (1− π)(1− ρ)(1− λ∗(γ) + λ∗(γ)ρ)N−1

] dλ∗(γ)

dγ
,

and so Lemma 3 implies that

−dΩ∗(φ(0); γ)

dγ
φ(c) = Nπ(1− λ∗(γ))N−1

dλ∗(γ)

dγ
.

The desired result follows from the fact that Lemma 3 also implies that Ω∗(φ(0); γ)φ(0) = π(1−
λ∗(γ))N . We can then conclude that E[H(π+)] is strictly increasing in γ when γ ∈ (γ̃, 1]. This
implies that I ′(γ) < 0 if γ > γ̃.

Step 2. I(γ̃ − ε) > I(γ̃) for ε positive but sufficiently small.
Suppose that γ < γ̃. By the same argument as in Step 1, Ω∗(π+; γ) is independent of γ when

π+ ∈ [bh, π̃]. In addition, as in Step 1, if π+ ∈ [φ(c), φ(bh)], then

F ∗u (φ−1(π+)) =
λ∗(γ)

(1− λ∗(γ))(â− 1)
,
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where â > 1 is the only variable that depends on π+. Hence, when π+ ∈ [φ(c), φ(bu)], (9) and (14)
imply that Ω∗(π+; γ) = Ψ(π+, λ∗(γ)), where Ψ(π+, λ) is strictly increasing in λ. In particular,
Ω∗(π+; γ) is strictly increasing in γ when π+ ∈ [φ(c), φ(bu)] according to Proposition 3. Now
observe from the proof of Proposition 1 that

(1− λ∗(γ))F ∗u (0) =
λ∗(γ)ρ

(γ̂/γ)1/(N−1) − 1
,

where γ̂ = π(v − c)/(1 − π)c. Hence, (9) and (14) together with Proposition 3 also imply that
Ω∗(φ(0), γ) is strictly increasing in γ.

We now compute dE[H(π+)]/dγ. Integration by parts implies that

E[H(π+)] = H(π̃) + Ω∗(φ(0); γ) [H(φ(0))−H(φ(c))] + Ω∗(φ(bu); γ)
[
H(φ(bu))−H(φ(bh))

]
−
∫ φ(bu)

φ(c)

H ′(π+)Ω∗(π+; γ)dπ+ −
∫ π̃

φ(bh)

H ′(π+)Ω∗(π+; γ)dπ+,

where we used the fact that Ω∗(φ(c); γ) = Ω∗(φ(0); γ) and Ω∗(φ(bh); γ) = Ω∗(φ(bu); γ). By the
Fundamental Theorem of Calculus and the fact that Ω∗(π+; γ) is independent of γ when π+ ∈
[φ(c), π̃], we then have

dE[H(π+)]

dγ
=

dΩ∗(φ(0); γ)

dγ
[H(φ(0))−H(φ(c))] + Ω∗(φ(0); γ)H ′(φ(0))

dφ(0)

dγ

+
dΩ∗(φ(bu); γ)

dγ

[
H(φ(bu))−H(φ(bh))

]
−
∫ φ(bu)

φ(c)

H ′(π+)
dΩ∗(π+; γ)

dγ
dπ+.

Since Ω∗(φ(0); γ) is strictly increasing in γ and H(φ) is strictly concave in φ,

dE[H(π+)]

dγ
> H ′(φ(0))

{
−dΩ∗(φ(0); γ)

dγ
φ(c) +

d

dγ
[Ω∗(φ(0); γ)φ(0)]

}
+
dλ∗(γ)

dγ

{
∂Ψ(π+;λ∗(γ))

∂λ

[
H(φ(bu))−H(φ(bh))

]
−
∫ φ(bu)

φ(c)

H ′(π+)
∂Ψ(π+;λ∗(γ))

∂λ
dγdπ+

}
.

Now observe that Ω∗(φ(0); γ)φ(0) = π[(1 − λ∗(γ))F ∗u (0)]N . Moreover, straightforward algebra
shows that

dΩ∗(φ(0); γ)

dγ
φ(c) =

d

dγ
[Ω∗(φ(0); γ)φ(0)]+φ(c)(1−π)N [(1−λ∗(γ))F ∗u (0)+λ∗(γ)ρ]N−1ρ

dλ∗(γ)

dγ
.

Given that dλ∗(γ̃)/dγ = 0, we can then conclude that

dE[H(π+)]

dγ

∣∣∣∣
γ=γ̃

> 0.

Hence, there exists ε > 0 such that I(γ) is strictly decreasing in γ when γ ∈ (γ̃ − ε, γ̃).
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Step 3. I(γ̃) > limγ→0 I(γ) = 0.
Since I(γ̃) > 0, it suffices to show that I(γ) converges to zero as γ tends to zero. The result is

a straightforward consequence of Proposition 3: limγ→0 k
∗(γ) = 0, and so Ω∗(· ; γ) converges to

the degenerate distribution that assigns probability one to π as γ tends to zero.

Proof of Proposition 6

Let k̃ = k∗(γ̃). Notice that:

π(1−G(k̃))N−1(v − c)− (1− π)(1−G(k̃) + ρG(k̃))N−1γ̃c = 0 (16)

and that

π(1−G(k̃))N−1(v − c)− (1− π)(1− ρ)(1−G(k̃) + ρG(k̃))N−1γ̃c = k̃. (17)

Equation (16) follows from the fact that type u buyers are indifferent between bidding zero and bid-
ding b = c when γ = γ̃, while (17) follows from the fact that k̃ = [π+(1−π)(1−ρ)]Vh(G(k̃), γ̃).
Combining (16) and (17), we obtain that

k̃ = πρ(1−G(k̃))N−1(v − c) (18)

and that
k̃ = (1− π)ρ(1−G(k̃) + ρG(k̃))N−1γ̃c. (19)

It is clear from (18) that k̃ is strictly increasing in both π and ρ. It is also clear from (19) that γ̃ is
strictly increasing in π. Now observe that (18) and (19) together imply that

γ̃ =
π

1− π
v − c
c

(
1 +

ρG(k̃)

1−G(k̃)

) 1
N−1

.

Since k̃ is strictly increasing in ρ, this last equation implies that γ̃ is strictly decreasing in ρ.
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