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Abstract

We propose a way to compare the extent of preference misrepresentation between

two strategies. We define a preference revelation mechanism to be monotone strate-

gyproof if declaring a “more truthful” preference ordering dominates (with respect to

the true preferences) declaring a “less truthful” preference ordering. Our main result

states that a mechanism is strategyproof if, and only if, it is monotone strategyproof.

This result holds for any deterministic social choice function on any domain; for prob-

abilistic social choice functions it holds under a mild assumption on the domain.

JEL codes C72, D41.

Keywords: strategyproofness, Kemeny sets, misrepresentations, dominant strategy.
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1. Introduction

Truthful revelation is a primary goal in mechanism design. Ideally, it is a dominant strategy

to truthfully reveal one’s preferences, and a mechanism that induces such a dominant strategy

for all agents and all preference profiles is said to be strategyproof. Non-trivial strategyproof

mechanisms do not always exist if other desired properties are also imposed (Gibbard (1978),

Satterthwaite (1978)), but a number of environments have been identified for which non-

trivial strategyproof mechanisms exist, e.g. voting, two-sided matching, house allocation, or

auctions.1

Strategyproof mechanisms induce a radical division between strategies, for they distin-

guish the truthful strategy from all other strategies. All non-truthful strategies are deemed

undesired regardless of their other characteristics; a lie is a lie, whether big or small. This

gave the prior literature little reason to scrutinize misrepresentations in strategyproof mech-

anisms, for instance by measuring how much they deviate from the truth. We argue that this

is an important omission and we focus in this paper specifically on non-truthful strategies in

strategyproof mechanisms.

We believe there is a need for a general tool to analyze misrepresentations. There is

indeed now growing evidence that strategyproof mechanisms perform poorly in the laboratory

(see Chen (2008) for a survey).2 Actually, experimental data from games with a dominant

strategy also exhibit seemingly irrational behavior.3 Overall, most experimental analysis of

strategyproof mechanisms cannot go further than acknowledging the percentage of subjects

not being truthful, and analyzing how this percentage varies when changing some environment

parameters or the mechanism itself. However, the existing studies have not been able to rank

non-truthful strategies on how close they are to the true preferences, save for some specific

cases.4 This is a serious limitation because what makes strategyproof mechanisms appealing

is, among other things, their ability to generate quality data about individuals’ preferences.

1See for instance Moulin (1980) for voting with single-peaked preferences, Dubins and Freedman (1981)

and Roth (1982) for two-sided matching. See also Barberà (2011) for a recent survey.
2See for instance Cason et al. (2006) for the pivotal and the Groves-Clarke mechanisms, Chen and Sönmez

(2006) or Calsamiglia et al. (2010) in a matching context.
3See Palacios-Huerta and Volij (2009) for the centipede game, Kagel and Levin (1986) for auction games

or Andreoni (1995) for public good games.
4Chen and Sönmez (2006) and Calsamiglia et al. (2010) for instance analyze which type of alternative is

likelier to be displaced in the preference orderings.
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Such information is crucial if one wishes to run counterfactuals and test potential new policies.

Policy makers (and econometricians) may prefer a mechanism with a large percentage of

individuals not being truthful but “close” to the truth over a mechanism with a smaller

percentage of misrepresentations but consisting of large deviations from the truth.

From a theoretical perspective we argue that studying misrepresentations can help under-

standing further the anatomy of strategyproof mechanisms. By its definition, strategyproof-

ness imposes the existence of a dominant strategy in the mechanism. But does it also impose

any structure on misrepresentations? To address this question we classify misrepresentations

so as to be able to rank strategies on how much they misrepresent the true preferences. Our

contention is that such a classification must be linked to the cost of misrepresenting prefer-

ences. Drawing on the intuition for strategyproofness, small misrepresentations should have

a lower impact on agents’ welfare than large ones, or, put differently, small deviations should

dominate large ones.5 We call a mechanism satisfying this property monotone strate-

gyproof. One might conjecture that imposing monotonicity between payoffs and distance

from the truth would be more restrictive than the usual incentive compatibility, i.e., that

some strategyproof mechanisms may not be monotone strategyproof. Our main contribution

here is to show that monotone strategyproofness is actually equivalent to strategyproofness.

This seemingly counterintuitive result turns out to be straightforward to show and holds for

a very general class of environments.

Our result is derived within a typical environment where each individual has a preference

relation over a finite set of alternatives and participates in a strategyproof mechanism. We

first devise a measure to compare the degree of preference misrepresentation. Given two

preference orderings Pi and P ′i , we define the Kemeny set of Pi and P ′i as the pairs of

alternatives that are not ordered in the same way under these two preferences.6 We compare

the degree of misrepresentation by comparing Kemeny sets: Given a true preference ordering

Pi, an ordering P ′i is defined to be more truthful than P ′′i when the Kemeny set of P ′i and Pi

is a subset of that of P ′′i and Pi. That is, P ′i is more truthful than P ′′i when P ′′i has relatively

more elements whose order disagrees with Pi. In this context, a mechanism is said to be

monotone strategyproof if a more truthful strategy always dominates a less truthful one.7

5See Jackson (1992) for a similar argument in the case of in an exchange economy.
6The cardinality of this set is the well-known Kemeny distance (Kemeny, 1959).
7The equivalent definition for stochastic mechanisms simply replaces dominance with stochastic domi-

nance.
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It is straightforward to see that monotone strategyproofness implies strategyproofness. Our

main result (Theorem 2) states that the reverse also holds under a mild assumption on the

domain of the mechanism. For deterministic social choice functions this equivalence actually

holds for any environment (Theorem 1).

We compare strategies by comparing their Kemeny sets. A natural question is whether a

non-truthful strategy P ′i that dominates another non-truthful strategy P ′′i is necessary closer

to the true preferences in the way we define it. In other words, is Kemeny set inclusion

equivalent to the dominance relation? It turns out that this equivalence is true for determin-

istic mechanisms, but not for the general case. For non-deterministic mechanisms we show

how one preference ordering may dominate another without Kemeny set inclusion. This

observation illustrates the complication added by non-deterministic mechanisms.

Two closely related papers are Carroll (2012) and Sato (2013). Like us, they also com-

pare “large” and “small” misrepresentations, but they address a different question than we

do. Both Carroll and Sato characterize conditions under which “local” strategyproofness

implies “global” strategyproofness, that is, conditions under which restricting misrepresen-

tations that only switch the ranking of two consecutive alternatives in one’s preferences is

enough to characterize strategyproofness. So their concern is more about the transitivity of

strategyproofness.8 Another related paper is Cho (2014). While considering closely related

issues to ours, the analysis in Cho (2014) is constrained by a more restrictive environment.

Cho studies probabilistic assignment mechanisms (Carroll, Sato and us consider any social

choice mechanism). Cho’s main contribution consists of proposing several ways to compare

probabilistic assignments, and he shows that Sato’s result continue to hold with these new

notions of assignment comparison. As a by-product, Cho finds equivalence between mono-

tone strategyproofness (that he calls “lie-monotonicity”) and strategyproofness for stochastic

mechanisms under specific domain conditions.9 This result is covered in our Corollary 1.

We obtain results for a more general domain, and also consider deterministic social choice

8Another, somewhat less related paper, is Pathak and Sönmez (2012), who also focus on misrepresenta-

tion of preferences. However, Pathak and Sönmez are interested in comparing mechanisms—and therefore

consider mechanisms that are not strategyproof—while we are interested in comparing misrepresentations

under strategyproof mechanisms.
9Cho’s definition of lie-monotonicity is more restrictive than our notion of monotone strategyproofness, as

he only compares preference orderings that differ only in the relative ranking of two consecutive alternatives.

Under his domain restriction this turns out to be equivalent to monotone strategyproofness.
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functions and mechanisms with cardinal types.

We outline the environment we consider in Section 2. Monotone strategyproofness is

defined and shown to be equivalent to strategyproofness in Section 3. In Section 4 we discuss

the relevance of using Kemeny sets to compare strategies and show how similar result can

be obtained when agents have cardinal utility functions over outcomes. We conclude in

Section 5.

2. Preliminaries

Let N be a set of agents and X a finite set of alternatives. We shall focus in this paper on the

incentives from an individual agent’s perspective, henceforth called agent i.10 A preference

Pi for agent i over X is a linear order on X. Given a preference relation Pi we denote by Ri

the weak ordering associated with Pi, i.e., xRix
′ implies xPix

′ or x = x′.11

A preference profile is a list P of preferences for each agent j ∈ N , P = ×j∈NPj.

We follow the usual convention to denote by P−i the profile (P1, . . . , Pi−1, Pi+1, . . . , Pn). The

set of all possible preferences, called the universal domain, is denoted P . A domain is a

non-empty subset of P , which does not need to be a product of individual domains.

A domain D is connected if, for any two preference orderings Pi, P
′
i ∈ D, there exists

a sequence (P 1, . . . , P `) such that P 1 = Pi, P
` = P ′i and for each h < l, P h and P h+1

are adjacent. A sequence of preference orderings (P 1, . . . , P `) satisfies the non-restoration

property if whenever for some x, x′ ∈ X and some h < ` we have xP hx′ and x′P h+1x then

it implies that x′P h′
x for each h′ > h+ 1.

A lottery is a vector of probabilities π ∈ R|X| such that
∑

x∈X πx = 1. We denote by

∆(X) the set of all lotteries over X. A social choice function (or a mechanism) on a

domain D is a mapping ϕ : ×i∈ND → ∆(X). Given a profile P , we denote by ϕx(P ) the

probability of alternative x under the lottery ϕ(P ). The social choice function is determin-

istic if for each P ∈ DN , ϕ(P ) is a degenerate lottery. In this case (abusing notation) we

shall denote by ϕ(Pi, P−i) the alternative x such that ϕx(Pi, P−i) = 1.

10Thus, the set of individuals need not be finite nor countable.
11Our model only describes the problem from a unique agent’s perspective, so one can view an agent i’s

preferences as a preference ordering over i’s individual outcomes. This way our model encompasses private

good environments like two-sided matching models, where agents are defined as having preferences over

potential partners while an outcome is a matching that involves all agents.
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Given preference orderings Pi, P
′
i , P

′′
i , we say that P ′i (stochastically) dominates P ′′i

with respect to Pi, denoted P ′i �Pi P ′′i , when

for each P−i, for each x ∈ X,
∑

x′ : x′Rix

ϕx′(P ′i , P−i) ≥
∑

x′ : x′Rix

ϕx′(P ′′i , P−i) . (1)

For a deterministic social choice function, condition (1) can be rewritten as

for each P−i, ϕ(P ′i , P−i)Ri ϕ(P ′′i , P−i) . (1’)

Definition 1 A social function ϕ is strategyproof on a domain D if for each agent i ∈ N ,

and for each Pi, P
′
i ∈ D, Pi dominates P ′i with respect to Pi.

Observe that the sets of individuals, the (true) preference profile P , and a social choice

function ϕ on a domain D induce a strategic form game Γϕ = 〈N,D, P 〉, where N is the set

of players, D is the set of (pure) strategy profiles, the outcome of a strategy profile P is given

by ϕ(P ), and each player i ∈ N evaluates the outcome ϕ(P ) using his true preferences Pi. In

this context, a social choice function ϕ is strategyproof if in the game form Γϕ the truthful

strategy Pi is a (weakly) dominant strategy for each player i.

3. Monotone strategyproofness

One natural way to compare two preference orderings is by counting the number of pairs of

alternatives whose relative rank differ between the two orderings. This method is known as

the Kemeny distance (Kemeny, 1959). We propose instead to compare preference orderings

with what we call the Kemeny sets of the preference orderings.

Definition 2 Given two preference orderings Pi, P
′
i , the Kemeny set of Pi and P ′i is the

set of all pairs (x, x′) ∈ X ×X that are not ordered identically in Pi and P ′i ,

K(Pi, P
′
i ) = {(x, x′) ∈ X ×X : x′Pix and xP ′ix

′}. (2)

We are now ready to introduce our main concept:

Definition 3 A social choice function is monotone strategyproof on a domain D if for

each Pi ∈ D and each pair P ′i , P
′′
i ∈ D such that K(P ′i , Pi) ⊂ K(P ′′i , Pi), P

′
i dominates P ′′i

with respect to Pi.
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Note that if a social choice function is monotone strategyproof it is obviously strate-

gyproof. Indeed, K(Pi, Pi) = ∅ implies that Pi dominates any other preference ordering P ′i .

The next theorem states that the converse also holds for deterministic social choice functions

on any domain.

Theorem 1 Let ϕ be a deterministic social choice function on a domain D. Then ϕ is

strategyproof if, and only if, it is monotone strategyproof.

Proof Let Pi, P
′
i and P ′′i such that K(P ′i , Pi) ⊂ K(P ′′i , Pi) with Pi, P

′
i , P

′′
i ∈ D. Let P−i

be any profile, and let x′ = ϕ(P ′i , P−i) and x′′ = ϕ(P ′′i , P−i) and assume that x′ 6= x′′.12

Observe that if x′P ′′i x
′′, then ϕ cannot be strategyproof. This is because if P ′′i were the

true preferences, then individual i could benefit by reporting P ′i instead of P ′′i . Similarly, it

cannot be that x′′P ′ix
′. So it must be that x′P ′ix

′′ and x′′P ′′i x
′. Since K(P ′i , Pi) ⊂ K(P ′′i , Pi),

we have x′Pix
′′. That is, ϕ(P ′i , P−i)Piϕ(P ′′i , P−i). �

Observe that Theorem 1 holds for any domain, but only for deterministic social choice

functions. If we want to consider non-deterministic social choice functions a result similar to

Theorem 1 can be obtained under certain conditions on the domain. Before presenting those

conditions some definitions are in order.

For any two preferences Pi and P ′i we first construct the set of connected components of

the graph G(Pi, P
′
i ) = (X,K(Pi, P

′
i )), where X is the set of vertices and K(Pi, P

′
i ) is the set of

edges. That is, in the graph G(Pi, P
′
i ) there is an edge between x and x′ if (x, x′) ∈ K(Pi, P

′
i ),

i.e., if the relative order of x and x′ differ between Pi and P ′i . Two alternatives x and x′ are

connected in G(Pi, P
′
i ) if there exists a sequence (x1, . . . , xk) with x = x1, x

′ = xk such that

(xh, xh+1) ∈ K(Pi, P
′
i ) for each h < k. A connected component is a set of alternatives

C ⊆ X such that any two alternatives in C are connected in G(Pi, P
′
i ) and no alternative in

C is connected with an alternative in X\C.

For instance, if K(Pi, P
′
i ) = {(x1, x2), (x2, x4), (x3, x5)}, then the graph G(Pi, P

′
i ) has

three edges: between x1 and x2, between x2 and x4, and between x3 and x5. The connected

components in G(Pi, P
′
i ) are {x1, x2, x4} and {x3, x5}.

For a subset of alternatives C ⊂ X, let Pi restricted to C, denoted Pi|C , be a preference

ordering defined on C such that for any x, y ∈ C, xPi|C y if, and only if xPiy. We say that a

12If ϕ(P ′i , P−i) = ϕ(P ′′i , P−i) for any profile P−i, then P ′i and P ′′i are equivalent strategies and thus P ′i

trivially dominates P ′′i .
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preference ordering P ′i is a complete reversal of Pi when for any x and y, xPiy if, and only

if yP ′ix.

A domainD is weakly connected if for any two distinct preferences Pi and P ′i there exists

a sequence (P 1, . . . , P k) that satisfies the non-restoration property where P 1 = Pi, P
k = P ′i

and for each h < k, and the graph G(P h
i , P

h+1
i ) has exactly one connected component C,

such that either |C| ≤ 3, or P h+1|C is a complete reversal of P h|C .13

Theorem 2 Let ϕ be a social choice function on a weakly connected domain D. Then ϕ is

strategyproof if, and only if, it is monotone strategyproof.

The proof of Theorem 2 will invoke the Lemmas 1, 2 and 3 that we present below.

Lemma 1 Let Pi, P
′
i and P ′′i be preference orderings, and let C ⊂ X be a unique connected

component of the graph G(P ′i , P
′′
i ). If P ′i |C �Pi|C P ′′i |C, then P ′i �Pi P ′′i .

Proof Since C is the unique connected component, P ′i |X\C = P ′′i |X\C . Let A be the set of

alternatives that are above C in P ′i , A = {x : xP ′iy for all y ∈ C}. The set C being the unique

connected component implies that we also have A = {x : xP ′′i y for all y ∈ C}. Similarly, we

can define the set B of alternatives below C, B = X\(A ∪ C) = {x : yP ′ix for all y ∈ C} =

{x : yP ′′i x for all y ∈ C}.
By strategyproofness, P ′i �P ′

i P ′′i and P ′′i �P ′′
i P ′i imply that, for any P−i and any

x ∈ A,
∑

yR′
ix
ϕy(P

′
i , P−i) ≥

∑
yR′

ix
ϕx(P ′′i , P−i) and

∑
yR′′

i x
ϕy(P

′′
i , P−i) ≥

∑
yR′′

i x
ϕx(P ′′i , P−i),

respectively. Since P ′i |A = P ′′i |A, for each of the above inequalities both sides must be

identical. It follows then that ϕx(P ′i , P−i) = ϕx(P ′′i , P−i), for each x ∈ A.

Let x1 be the highest alternative in P ′i |B (so x1 is also the highest alternative ranked in

P ′′i |B) and let x′0 and x′′0 be the lowest alternatives ranked in P ′i |C and P ′′i |C , respectively.

Clearly, P ′i �P ′
i P ′′i implies

∑
yR′

ix
′
o
ϕX(P ′i , P−i) and P ′′i �P ′′

i P ′i implies
∑

yR′′
i x

′′
o
ϕX(P ′′i , P−i).

Observe that {x : xR′ix
′
0} = {x : xP ′ix1} = A ∪ C = {x : xR′′i x

′′
0} = {x : xP ′ix1}. So we

have
∑

xP ′
ix1

ϕx(P ′i , P−i) =
∑

xP ′′
i x1

ϕx(P ′′i , P−i). Again using P ′i �P ′
i P ′′i and P ′′i �P ′′

i P ′i

we obtain
∑

xR′
ix1
ϕx(P ′i , P−i) =

∑
xR′

ix1
ϕx(P ′′i , P−i). Therefore, ϕx1(P

′
i , P−i) = ϕx1(P

′′
i , P−i).

13We could allow in the definition that two consecutive preference ordering in the sequence, say, Ph
i and

Ph+1
i are identical, in which case the graph G(Ph

i , P
h+1
i ) would have no connected component. To avoid

taking care of those trivial cases we require that along the sequence there is always at least one connected

component.
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Continuing with the alternatives ranked below x1 (which are ordred identically in P ′i and P ′′i )

we then obtain, for each x ∈ B, ϕx(P ′i , P−i) = ϕx(P ′′i , P−i).

We now show that P ′i �Pi P ′′i , i.e., for any x ∈ X,∑
y:yRix

ϕy(P
′
i , P−i) ≥

∑
y:yRix

ϕy(P
′′
i , P−i) . (3)

Let x be any alternative in X. Since ϕy(P
′
i , P−i) = ϕy(P

′′
i , P−i) for each y /∈ C,∑

y:yRix& y 6∈C

ϕy(P
′
i , P−i) =

∑
y:yRix& y 6∈C

ϕy(P
′′
i , P−i) . (4)

Moreover, P ′i |C �Pi|C P ′′i |C implies∑
y:yRix& y∈C

ϕy(P
′
i , P−i) ≥

∑
y:yRix&∈C

ϕy(P
′′
i , P−i) (5)

Summing Eqs. (4) and (5) yields (3), the desired result. �

Lemma 2 Suppose P ′′i is a complete reversal of Pi. Then for any P ′i , K(P ′i , Pi) ⊆ K(P ′′i , Pi),

and for any stochastic strategyproof mechanism P ′i �Pi P ′′i .

Proof Let Pi = x1, . . . , xk, then P ′′i = xk, . . . , x1. So K(Pi, P
′′
i ) = {(xh, xh′) ∈ X ×X : h 6=

h′}, and thus we obviously have K(Pi, P
′
i ) ⊆ K(Pi, P

′′
i ) for any P ′i . Consider any profile P−i

and let πh, π′h and π′′h denote the probability of alternative xh under the strategy Pi, P
′
i and

P ′′i , respectively. We need to show that P ′i �Pi P ′′i , that is,

π′1 ≥ π′′1 (a1)

π′1 + π′2 ≥ π′′1 + π′′2 (a2)

. . .

π′1 + · · ·+ π′k−1 ≥ π′′1 + · · ·+ π′′k−1 (ak−1)

π′1 + · · ·+ π′k−1 + π′k ≥ π′′1 + · · ·+ π′′k−1 + π′′k (ak)

By strategyproofness P ′′i �P ′′
i P ′i , i.e.,

π′′k ≥ π′k (a′k)

π′′k + π′′k−1 ≥ π′k + π′k−1 (a′k−1)

. . .

π′′k + · · ·+ π′′2 ≥ π′k + · · ·+ π′2 (a′2)

π′′k + · · ·+ π′′2 + π′′1 ≥ π′k + · · ·+ π′2 + π′1 (a′1)

10



Since there are k alternatives ∑
h

π′h =
∑
h

π′′h = 1 . (6)

Note that (ak) follows directly from (6). For 1 < l ≤ k, observe that Eq. (6) implies that

(a′l) is equivalent to 1−
∑

h<l π
′′
h ≥ 1−

∑
h<l π

′
h ⇔

∑
h<l π

′
h ≥

∑
h<l π

′′
h, i.e., Eq. (al−1). �

Lemma 3 Let |X| = 3, and let Pi, P
′
i and P ′′i such that K(P ′i , Pi) ⊂ K(P ′′i , Pi). For any

strategyproof social choice function, P ′i �Pi P ′′i .

Proof Let |X| = 3, and let Pi, P
′
i and P ′′i such that K(P ′i , Pi) ⊂ K(P ′′i , Pi). Note that

|K(P ′i , P
′′
i )| = 0 implies P ′i = P ′′i and thus P ′i �Pi P ′′i trivially holds.

If |K(P ′i , P
′′
i )| = 1, then the graph G(P ′i , P

′′
i ) has exactly one connected component,

say, C = {x, y}, where xP ′iy and yP ′′i x. Due to Kemeny set inclusion, xPiy. Therefore,

P ′i |C = Pi|C and thus P ′i|C �
P ′
i|C P ′′i|C is equivalent to P ′i |C �Pi|c P ′′i |C . By Lemma 1,

P ′i �Pi P ′′i .

If |K(P ′i , P
′′
i )| = 3 then P ′′i is a complete reversal of P ′i . By Kemeny set inclusion, it must

be that P ′i = Pi. Therefore, P ′′i is a complete reversal of Pi, and by Lemma 2, P ′i �Pi P ′′i .

Consider now the case when |K(P ′i , P
′′
i )| = 2. By Kemeny set inclusion, either |K(P ′i , Pi)| =

0 or |K(P ′i , Pi)| = 1. In the former case, P ′i = Pi and thus by strategyproofness, P ′i �Pi P ′′i .

In the latter case, by Kemeny set inclusion |K(P ′′i , Pi)| = 3, i.e., P ′′i is a complete reversal of

Pi. Then by Lemma 2, P ′i �Pi P ′′i . �

Proof of Theorem 2 Let Pi, P
′
i and P ′′i such that K(P ′i , Pi) ⊆ K(P ′′i , Pi). Since the do-

main is weakly connected, there exist a sequence P 1
i , . . . , P

`
i that satisfies the non-restoration

property where P ′i = P 1
i , P ′′i = P `

i , and for each h < `, the graph G(P h
i , P

h+1
i ) has only one

connected component C, such that either |C| ≤ 3 or P h+1|C is a complete reversal of P h|C .

Notice that the non-restoration property implies that K(P h
i , Pi) ⊆ K(P h+1

i , Pi). Since the

stochastic dominance relation is transitive it is sufficient to show that for any h < ` we have

P h
i �Pi P h+1

i .

Let C be the (unique) connected component of G(P h
i , P

h+1
i ). If |C| 6= 3 then P h+1

i |C is a

complete reversal of P h
i |C by weak connectedness. Therefore by Lemma 2 implies P h

i |C �Pi|C

P h+1
i |C . When |C| = 3, then by Lemma 3 we have P h

i |C �Pi|C P h+1
i |C . Since C is a unique

connected component of G(P h
i , P

h+1
i ) and P h

i |C �Pi|C P h+1
i |C , P h

i �Pi P h+1
i follows from

Lemma 1. �
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A domain D is strongly connected if for any two distinct preferences Pi and P ′i there

exists a sequence (P 1, . . . , P k) that satisfies the non-restoration property where P 1 = Pi,

P k = P ′i and for each h < k, and the graph G(P h
i , P

h+1
i ) has exactly one connected component

C such that |C| = 2.14 Sato (2013) showed that the single-peaked domain is strongly con-

nected and Carroll (2012) showed that the (maximal) single-crossing domain is also strongly

connected.15 Note that the universal domain is obviously strongly connected. Clearly, any

strongly connected domain is also weakly connected. Therefore, following corollary holds.

Corollary 1 Let ϕ be a social choice function on a strongly connected domain D. Then ϕ

is strategyproof if, and only if, it is monotone strategyproof.

The next example shows that when the domain is not weakly connected then strate-

gyproofness and monotone strategyproofness are no longer equivalent.

Example 1 Let X = {x1, x2, x3, x4}, and let D be the domain composed of the three pref-

erence orderings depicted in Table 1. Note that K(P ′i , Pi) = {(x3, x4)} and K(P ′′i , Pi) =

Pi P ′i P ′′i

x1 x1 x2

x2 x2 x4

x3 x4 x3

x4 x3 x1

Table 1: A domain not strongly connected

{(x3, x4), (x1, x2), (x1, x3), (x1, x4)}, i.e., K(P ′i , Pi) ⊂ K(P ′′i , Pi). However, the domain D is

not weakly connected.

Let ϕ be a mechanism such that, for any P−i, the probability to obtain alternative x ∈
X for each of the preferences in D is given by the Table 2. It can be verified that ϕ is

14Sato (2013) calls a strongly connected domain a connected domain that satisfies the non-restoration

property. The strongly path-connected domain defined by Chatterji et al. (2013) rests on a similar notion but

the notion of connectedness is imposed on alternatives and not preferences.
15Both single-peakedness and single-crossingness assume the existence of an ordering of alternatives, and

admissible preferences are obtained using this ordering. It is of course possible to have a (small) domain

that satisfies the properties required by single-peakedness or single-crossingness but does not contain enough

preferences such that any pair of preferences in the domain are connected.

12



Pi P ′i P ′′i

x1 .51 .51 .1

x2 .3 .3 .7

x3 .18 .01 .1

x4 .01 .18 .1

Table 2: Probabilities of each alternative under Pi, P
′
i and P ′′i

strategyproof, yet it is not monotone strategyproof as P ′i �Pi P ′′i does not hold. Indeed,

.82 =
∑

x : xRix3
ϕx(P ′i , P−i)) <

∑
x : xRix3

ϕx(P ′′i , P−i)) = .9

4. Discussion

4.1. Weak preferences

Until now we have only considered the case of strict preference domains. In this section

we question whether our results extend to the case of weak preferences. A weak preference

relation Ri for agent i over X is a complete, reflexive and transitive binary relation on X.

Given a preference relation Ri we denote by Pi and Ii the corresponding strict and indifference

preference relation, respectively. That is, xPix
′ if xRix

′ and not x′Rix, and xIix
′ if both xRix

′

and x′Rix hold. We denote by R the domain of all possible preference profiles over X.

The natural extension of the Kemeny set inclusion for weak preference relations —when

comparing two preference orderings with respect to a third one— is the notion of intermediate

preferences introduced by Grandmont (1978).

Definition 4 R′i is between Ri and R′′i (noted as R′i ∈ (Ri, R
′′
i )) if for all x, x′ ∈ X,

(a) xRix
′ and xR′′i x

′ imply xR′ix
′.

(b) xPix
′ and xP ′′i x

′ imply xP ′ix
′.

(c) (xIix
′ and xP ′′i x

′) or (xPix
′ and xI ′′i x

′) imply xR′ix
′.

One easily see that for a triple (Pi, P
′
i , P

′′
i ) of strict preferences K(P ′i , Pi) ⊆ K(P ′′i , Pi)

implies that condition (b) of Definition 4 holds. In this case a natural definition of monotone

strategyproofness would be that for any triple of preference relations (Ri, R
′
i, R

′′
i ) such that

13



R′i ∈ (Ri, R
′′
i ), it holds that R′i dominates R′′i with respect to Ri. One could then conjecture

that monotone strategyproofness would be equivalent to strategyproofness in this setting.

However, there exist situations where this property does not hold. To see this, let R′i ∈
(Ri, R

′′
i ) such that for some preference profile R−i we have ϕ(R′i, R−i) = x′ and ϕ(R′′i , R−i) =

x′′, and assume that x′ 6= x′′. Suppose that we have x′′Pix
′, x′I ′ix

′′ and x′I ′′i x
′′. That is, for

the pair (x′, x′′) we have to consider the second part of condition (c) of Definition 4. It is

then easy to see that the pair (x′, x′′) does not violate the fact that R′i is between Ri and R′′i ,

yet we clearly have that R′i cannot dominate R′′i with respect to Ri.

In other words, the equivalence between strategyproofness and monotone strategyproof-

ness is not assured when considering indifferences. The reason behind it is that when an

agent is indifferent between two alternatives, strategyproofness does not impose any par-

ticular selection among these two alternatives. That is, we may well have that under two

preferences R′i and R′′i individual i is indifferent between two alternatives, say, x′ and x′′, yet

x′ is strictly preferred to x′′ under Ri. Strategyproofness in this case does not impose that

alternative x′ should be chosen over x′′ under either R′i or R′′i for some preference profile P−i.

4.2. Comparing preferences

Theorems 1 and 2 show that Kemeny set inclusion captures dominance relations between

different strategies in a strategyproof mechanism. One natural question to address is whether

the converse also holds, i.e., when a preference ordering P ′i dominates another ordering P ′′i ,

is it necessarily the case that K(P ′i , Pi) is a subset of K(P ′′i , Pi)? In other words one may

ask whether the partial order over preferences induced by the Kemeny set relation is the

weakest possible order such that the equivalence between monotone strategyproofness and

strategyproofness holds.

To investigate this question, first note that we may be limited in the set of alternatives

we can compare. To see this, suppose that for some alternatives x and y, and preference

orderings P ′i and P ′′i , there is no P−i such that ϕ(P ′i , P−i) = x and ϕ(P ′′i , P−i) = y. If this

happens, it is impossible to know how P ′i and P ′′i compare those two alternatives, and thus

we cannot say anything about Kemeny set inclusion. So when comparing two preference

orderings P ′i and P ′′i , we can only consider pairs of alternatives x, y such that, for some P−i,

ϕ(P ′i , P−i) = x and ϕ(P ′′i , P−i) = y.

Given a mechanism ϕ, the joint range of two preference orderings Pi and P ′i is the set of

14



pairs of alternatives (v, v′) for which there exists a profile P−i such that ϕ(Pi, P−i) = v and

ϕ(P ′i , P−i) = v′. The joint range of Pi and P ′i for mechanism ϕ is denoted Jϕ(Pi, P
′
i ).

Definition 5 Given three preference orderings Pi, P
′
i and P ′′i , the Kemeny set of P ′ with

respect to P on joint range with P ′′ is the set of all pairs (x, x′) ∈ X ×X that are not

ordered identically in Pi and P ′i and that belong to the joint range of P ′i and P ′′i , i.e.,

K̂(P ′i , Pi, P
′′
i ) ≡ K(P ′i , Pi) ∩ Jϕ(P ′i , P

′′
i ) . (7)

Proposition 1 Let ϕ be a deterministic strategyproof social choice function, and let (Pi, P
′
i , P

′′
i )

be any triple of preferences. Then P ′i dominates P ′′i with respect to Pi if, and only if,

K̂(P ′i , Pi, P
′′
i ) ⊆ K̂(P ′′i , Pi, P

′
i ).

Proof The if direction is a direct corollary of Theorem 1. Consider the only if direc-

tion, and let Pi, P
′
i and P ′′i such that P ′i �Pi P ′′i . We need to show that K̂(P ′i , Pi, P

′′
i ) ⊆

K̂(P ′′i , Pi, P
′
i ). So we only need to check the Kemeny set inclusion for the pairs that are in the

joint range of P ′i and P ′′i . Accordingly, let (x, y) be any pairs of alternatives in Jϕ(P ′i , P
′′
i ).

We then have to show that

(x, y) ∈ K(P ′i , Pi) ⇒ (x, y) ∈ K(P ′′i , Pi) . (8)

Observe that if (x, y) /∈ K(P ′i , Pi), then Eq. (8) is trivially satisfied. Suppose then that

(x, y) ∈ K(P ′i , Pi). Note that since P ′i �Pi P ′′i and x 6= y imply xPiy.16 If (x, x′) /∈ K(P ′′i , Pi)

then xP ′′i y, which is equivalent to ϕ(P ′i , P−i)P
′′
i ϕ(P ′′i , P−i). This contradicts strategyproof-

ness, so yP ′′i x and thus (x, y) ∈ K(P ′′i , Pi). �

Kemeny set inclusion (or betweeness) is more restrictive than Kemeny set inclusion on the

joint range. The next example illustrates this point with the median voter with single-peaked

preferences, where P ′i dominating P ′′i with respect to Pi does not imply that K(Pi, P
′
i ) ⊂

K(Pi, P
′′
i ).

Example 2 Let ϕ be the standard median voter social choice function, and let the domain

be the single-peaked preference domain. It is well known that for the single-peaked domain

the median voter rule is strategyproof (Moulin, 1980). Let L be the order of the alternatives

16Clearly, if (x, y) ∈ Jϕ(P ′i , P
′′
i ) we must have by the definition of the joint range x 6= y.
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under which the domain is single-peaked. For simplicity, assume here that there is an odd

number of individuals.

Let i be an individual and Pi his true preferences where x is the most preferred alternative

(the peak) according to Pi. Consider now two preference orderings (that are single-peaked

under the order L), P ′i and P ′′i , where x′ and x′′ are their respective peaks. Suppose that

xLx′Lx′′. Then P ′i dominates P ′′i .17

Suppose that there exists a pair of alternatives, say x1 and x2, such that (x1, x2) ∈
K(P ′i , Pi) yet (x1, x2) /∈ K(P ′′i , Pi). We claim that (x1, x2) /∈ Jϕ(P ′i , P

′′
i ). To see this, without

loss of generality suppose that ϕ(P ′i , P−i) = x1 and ϕ(P ′′i , P−i) = x2. Consider first the case

when x1Lx
′. If x1Lx

′, then by choosing P ′′i instead of P ′i individual i cannot change the

outcome, so x1 = x2, a contradiction. So, x′Lx1. Using symmetric argument we obtain

x2Lx
′′. So we have xLx′Lx1Lx2Lx

′′, which contradicts (x1, x2) ∈ K(P ′i , Pi). If x2Lx1, a

similar argument leads to a contradiction, too. It is important to note that (x1, x2) ∈
K(P ′i , Pi) and (x1, x2) /∈ K(P ′′i , Pi) does not contradict single-peakedness. So, even though

P ′i dominates P ′′i we can still have K(P ′i , Pi) * K(P ′′i , Pi). However, it cannot be that

K̂(P ′i , Pi, P
′′
i ) * K̂(P ′′i , Pi, P

′
i ). �

The result in Proposition 1 does not hold for non-deterministic social choice functions, as

the example below shows.

Example 3 Consider a non-deterministic social choice function ϕ and following preference

profiles, where the numbers in parenthesis are the probabilities that the corresponding al-

ternative obtains for any profile P−i under ϕ (one can readily verify that in such case ϕ is

strategyproof),

Pi P ′i P ′′i

x1 (.5) x2 (.5) x3 (.5)

x2 (.3) x1 (.3) x1 (.2)

x3 (.2) x3 (.2) x2 (.3)

It is easy to check that P ′i �Pi P ′′i . Yet we have K(P ′i , Pi) * K(P ′′i , Pi).

17Consider any profile P−i. Observe that if ϕ(Pi, P−i) = ϕ(P ′′i , P−i) then ϕ(P ′i , P−i) = ϕ(Pi, P−i), and thus

ϕ(P ′i , P−i)Riϕ(P ′′i , P−i). So, assume ϕ(Pi, P−i) 6= ϕ(P ′′i , P−i). If ϕ(P ′i , P−i) = ϕ(Pi, P−i) or ϕ(P ′i , P−i) =

ϕ(P ′′i , P−i) then again ϕ(P ′i , P−i)Riϕ(P ′′i , P−i). So, suppose that ϕ(Pi, P−i) 6= ϕ(P ′i , P−i) 6= ϕ(P ′′i , P−i).

This implies that ϕ(Pi, P−i) = x, ϕ(P ′i , P−i) = x′ and ϕ(P ′′i , P−i) = x′′. So, ϕ(P ′i , P−i)Piϕ(P ′′i , P−i).
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4.3. Cardinal environments

The concept of monotone strategyproofness can be easily adapted to cardinal environments,

i.e., when an individual is characterized by a utility vector over the set of alternatives and

individuals have expected utility preferences over lotteries. A few more definitions are needed

before going further.

A type space is a non-empty subset of ×i∈NR|X|, and an individual’s type is a vector

in R|X|. Given a type space T , a mechanism is a mapping ϕ : T → ∆(X). We denote by ui

a generic type of individual i, and u = (ui)i∈N is a type profile. Given a (true) type profile u

and a reported type profile u′, the expected utility of individual i is given by the inner product

ui · ϕ(u). A mechanism is incentive compatible on a type space T if, for each i ∈ N , for

each u ∈ T and each u′ ∈ T such that u−i = u′−i, we have ui · (ϕ(ui, u−i)− ϕ(u′i, u−i)) ≥ 0.

Definition 6 A mechanism is monotone incentive compatible on a type space T if,

for each i ∈ N , for each u ∈ T and each u′, u′′ ∈ T such that u−i = u′−i = u′′−i and

u′i = α · ui + (1− α) · u′′i for some α ∈ [0, 1], we have ui · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0.

We can now introduce the counterpart of Theorem 2 for cardinal mechanisms.18

Proposition 2 A mechanism is incentive compatible if, and only if, it is monotone incentive

compatible.

Proof That a monotone incentive compatible mechanism is also incentive compatible is

obvious.19 Consider then an incentive compatible mechanism ϕ on a type space T . Let ui

be any admissible type for individual i, and u′i, u
′′
i such that u′i = (1 − α) · ui + α · u′′i for

some α ∈ [0, 1]. Note that if α = 0 or α = 1 then u′i = ui or u′′i and thus we trivially have

ui · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0. So assume α ∈ (0, 1). Since ϕ is incentive compatible,

u′i · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0

u′′i · (ϕ(u′′i , u−i)− ϕ(u′i, u−i)) ≥ 0

Multiplying the second constraint by α and adding up the two inequalities and rearranging

yields

(u′i − αu′′i ) · (ϕ(u′i, u−i)− ϕ(u′′i , u−i)) ≥ 0

18The proof of Proposition 2 is built on the proof of Proposition 1 in Carroll (2012).
19Take any ui and u′′i and set u′i = 0 · ui + (1− 0) · u′′i .
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Note that u′i−αu′′i = (1−α) ·ui. Since α ∈ (0, 1) we obtain ui · (ϕ(u′i, u−i)−ϕ(u′′i , u−i)) ≥ 0.

�

A straightforward application of Proposition 2 is for incentive compatible auction mecha-

nisms with private values. Consider the case when individuals’ types are real numbers (their

value of the good to be auctioned). Our result then simply says that if an individual’s private

value for the auctioned good is, say, x, then bidding x′ < x dominates bidding x′′ < x′.

5. Conclusions

We showed that for strategyproof mechanisms one can meaningfully compare the extent of

preference misrepresentation by comparing pairs of alternatives. We defined the concept

of monotone strategyproofness, which captures the link between incentives and the extent

of a misrepresentation: a larger extent of misrepresentation makes the individual (weakly)

worse off. Remarkably, requiring monotone strategyproofness does not reduce the set of

strategyproof social choice functions. This result shows that imposing strategyproofness (or

incentive compatibility) does not only consist of imposing the existence of one dominating

strategy (the one corresponding to the true type/preferences) but also imposes the existence

of a large collection of dominance relations between strategies, thereby providing further

evidence that strategyproofness is a very demanding property. The works of Nehring and

Puppe (2007) or Barberá, Berga and Moreno (2010) share some similarities with ours in the

sense that we all address the question of which additional property, or feature, is implied

by strategyproofness. Barberá et al. characterize domains of preferences under which any

strategyproof social choice function is also strategyproof, and Nehring and Puppe (2007)

show that when the domain is a subdomain of generalized single-peaked preferences then any

strategyproof social choice function takes the form of voting by issues.20

Our results also shed light on the complications that arise when social choice functions

are non-deterministic, or are defined on domains with indifferences. Strategyproofness in the

non-deterministic case imposes that the truthful strategy stochastically dominates any other

strategy. It is well known that the mere existence of a stochastically dominating strategy

20The similarities between their works and ours stop here. The domains identified by Nehring and Puppe

(2007) or Barberá et al. (2010) differ significantly from that of weakly connected preferences. Contrary to

these two papers, our domain condition never consist of comparing or relating preferences across individuals.
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can be very challenging in a general setting, so it is not a surprise that one needs to impose

some constraints on the domain to obtain the equivalence between strategyproofness and

monotone strategyproofness for stochastic mechanisms. As for the case of domains with weak

preferences we encounter stronger hurdles. Our discussion in Section 4.1 indeed suggests that

obtaining a similar result for the case of weak preferences seems beyond reach.

19



References

[1] Andreoni, J. (1995) “Cooperation in public-goods experiments: Kindness or confusion?,”

American Economic Review, 85, 891–904.
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